The cosmic X-ray and gamma-ray background from dark matter annihilation

Jesús Zavala Franco

(CITA National Fellow, University of Waterloo, Canada)

In collaboration with:

Mark Vogelsberger (CfA, Cambridge) Tracy Slatyer (IAS, Princeton) Abraham Loeb (CfA, Cambridge) Volker Springel (HITS, Heidelberg)

arXiv: 1103.0776

TeVPA, Stockholm, August 2011

Why DM annihilation?

Energy (GeV)

PAMELA, Adriani et al. 2009 excess of e+ for E>10GeV

Fig. from Feng, J. L., 2005

Cosmic ray anomalies

Large cross section BF > O(100) over thermal relic value (e.g. Bergström et al. 2009)
Annihilation mainly to leptons, proton/antiproton channel suppressed

Sommerfeld enhancement

(Hisano et al. 2004, Arkani-Hamed et al. 2009,)

Cosmic background radiation from dark matter annihilation

 Energy of photons per unit area, time, solid angle and energy range received by an observer located at z=0.

$$I = \frac{1}{4\pi} \int \mathcal{E}(E_0(1+z), z) \frac{\mathrm{d}r}{(1+z)^4} e^{-\tau(E_0, z)}$$

- Contribution from all dark matter structures along the line of sight of the observer (assumption: no contribution from unclustered DM).
- The volume emissivity of photons (energy of photons produced per unit volume, time and energy range) can be written as:

$$\mathcal{E} = \frac{f_{\text{WIMP}}}{2} E \rho_{\chi}(\vec{x})^2$$

• Properties of dark matter as a particle (WIMP factor):

$$f_{\rm WIMP} = \frac{\mathrm{d}N}{\mathrm{d}E} \frac{\langle \sigma v \rangle}{m_{\chi}^2}$$

• The density squared dependence is connected to the gravitational interactions of dark matter (astrophysical factor).

Photon yield

• In situ photons: Directly created in the annihilation process (annihilation channels).

Fig. from P. Scott, Fermi Symposium 2009

• Up-scattered photons: Background photons gain energy through Inverse Compton scattering with electrons and positrons produced in the annihilation: e+e- injection spectra \rightarrow e+e- equilibrium solution \rightarrow photon background \rightarrow final IC photon spectrum.

Gamma-ray photon spectrum

Annihilation in DM haloes (smooth component)

• For a region of volume V, the annihilation luminosity is proportional to:

$$L_{\gamma} \propto \int_{V} \rho_{\chi}^{2}(\vec{x}) d^{3}x$$

- Nearby regions of high DM density are promising in the search for an annihilation signal: GC (Abramowski et al. 2011, 1103.3226), MW satellites (Abdo et al. 2010, ApJ 712,147)...
- For a smooth DM halo (Springel et al. 2008): $L'_{\rm h} = \int \rho_{\rm NFW}^2(r) \,\mathrm{d}V = \frac{1.23 \, V_{\rm max}^4}{G^2 r_{\rm max}}$
 - Virgo Consortium's Aquarius Project (Simulation of MW-like haloes).
 - For the highest resolution:
 - $M_{h} = 1.84 \times 10^{12} Msun$
 - m_{DM}=1712 Msun
 - ε= 20pc

smooth main halo emission (MainSm)

Role of substructures

Substructures within haloes have a significant role for external observers. Their contribution to the total luminosity is uncertain ~ 2 - 2000 times the contribution of the smooth component for a MW-like halo (once their minimum mass is extrapolated to ~Earth mass).

- Same cosmology as Millennium I
- 100 Mpc/h box and ϵ =1kpc/h
- $N_p = 2160^3$, $m_{DM} = 6.89 \times 10^6 M sun/h$
- Bound substructures found using SUBFIND (Springel et al. 2001):
- 11x10⁶ subs at z=0
- M_{sb} (min)~1.4x10⁸Msun/h

All-sky maps (resolved structures up to z~10, E=10GeV)

Extrapolation for unresolved halos down to earth masses (~2 orders of magnitude uncertainty)

Isotropic component

 $m_{\chi} \sim 200 \; GeV, \chi \chi \rightarrow b\bar{b} \text{ and } \langle \sigma v \rangle \sim 6.2 \times 10^{-27} \text{cm}^3 \text{s}^{-1}$

Zavala et al. 2011

Isotropic component (annihilation channel)

Profumo and Jeltema 2010

Constraints on particle physics models

Sommerfeld-enhanced models fitting the cosmic ray excesses (Finkbeiner et al. 2011)

Benchmark no.	Annihilation Channel	m_{ϕ} (MeV)	m_{χ} (TeV)	α_{c}	δ (MeV)	$\frac{S_{\max} \langle \sigma v \rangle_0}{3 \times 10^{-26} \mathrm{cm}^3 \mathrm{s}^{-1}}$
1	1:1:2 e^{\pm} : μ^{\pm} : π^{\pm}	900	1.68	0.04067	0.15	530
2	$1:1:2 \ e^{\pm}: \mu^{\pm}: \pi^{\pm}$	900	1.52	0.03725	1.34	360
3	1:1:1 e^{\pm} : μ^{\pm} : π^{\pm}	580	1.55	0.03523	1.49	437
4	1:1:1 e^{\pm} : μ^{\pm} : π^{\pm}	580	1.20	0.03054	1.00	374
5	$1:1 \ e^{\pm} : \mu^{\pm}$	350	1.33	0.02643	1.10	339
6	e^{\pm} only	200	1.00	0.01622	0.70	171

- New force carrier in the "dark sector"
- Annihilation cross section enhanced by a Sommerfeld mechanism
- Correct relic density
- Fit to the cosmic ray excesses measured by PAMELA and Fermi
- Allowed by bounds on Smax from the CMB
- IC contribution dominates the photon yield

Sommerfeld-enhanced models fitting the cosmic ray excesses

Sommerfeld-enhanced models fitting the cosmic ray excesses

Summary and Conclusions

- We have constructed simulated all-sky maps of the cosmic X- and gamma-ray background from DM annihilation including:
 - Photon yield given by a WIMP model (in situ photons and upscattered photons of the CMB). In particular, it can be used for Sommerfeld-enhanced models.
 - Dark matter spatial distribution using Millennium-II simulation, uncertainty of ~2 orders of magnitude in extrapolation to unresolved structures.
- Isotropic component constrained by observations of the cosmic background, and contributions from blazars and star forming galaxies: although is not as clean as the CMB, it is also a powerful tool to constrain the intrinsic properties of dark matter.
- Results seem to disfavour an explanation of the e+ excess measured by PAMELA based on DM annihilation (keeping in mind the caveats)