Status and Future Plans of the Cryogenic Dark Matter Search Experiment

H. Chagani

University of Minnesota for the CDMS Collaboration

2 August 2011

The CDMS Collaboration

California Institute of Technology

Z. Ahmed, J. Fillipini, S. R. Golwala, D. Moore, R. Nelson, R. W. Ogburn

Case Western Reserve University

D. Akerib, C. N. Bailey, M. R. Dragowsky, D. R. Grant, R. Hennings-Yeomans

Fermi National Accelerator Laboratory

D. A. Bauer, F. DeJongh, J. Hall, D. Holmgren, L. Hsu, E. Ramberg, R. L. Schmitt, R. B. Thakur, J. Yoo

Massachusetts Institute of Technology

A. Anderson, E. Figueroa-Feliciano, S. Hertel, S. W. Leman, K. A. McCarthy, P. Wikus

NIST K Irwin

Queen's University

P. Di Stefano, C. Crewdson, J. Fox, S. Liu, C. Martinez, P. Nadeau, W. Rau, Y. Ricci

Santa Clara University

B. A. Young

Southern Methodist University

J. Cooley, B. Karabuga, H. Qiu

SLAC/KIPAC

M. Asai, A. Borgland, D. Brandt, P. L. Brink, W. Craddock, E. do Couto e Silva, G. G. Godfrey, J. Hasi, M. Kelsey, C. J. Kenney, P. C. Kim, R. Partridge, R. Resch, K. Schneck, M. Swiatlowski, A. Tomada, D. Wright

Stanford University

B. Cabrera, M. Cherry, R. Moffatt, L. Novak, M. Pyle, M. Razeti, B. Shank, S.Yellin, J. Yen

Syracuse University

M. Kos, M. Kiveni, R. W. Schnee

Texas A & M

A. Jastram, K. Koch, R. Mahapatra, M. Platt, K. Prasad, J. Sander

University of California, Berkeley

M. Daal, T. Doughty, N. Mirabolfathi, A. Phipps, B. Sadoulet, D. N. Seitz, B. Serfass, D. Speller, K. M. Sundqvist

University of California, Santa Barbara R. Bunker, D. O. Caldwell, H. Nelson

University of Colorado, Denver

B. A. Hines, M. E. Huber

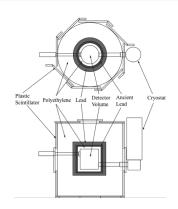
University of Florida

T. Saab, D. Balakishiyeva, B. Welliver

University of Minnesota

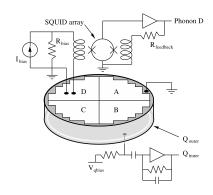
J. Beaty, H. Chagani, P. Cushman, S. Fallows, M. Fritts, O. Kamaev, V. Mandic, X. Qiu, A. Reisetter, A. Villano, J. Zhang

Unviersity of Zurich


S. Arrenberg, T. Bruch, L. Baudis, M. Tarka

The Cryogenic Dark Matter Search Experiment

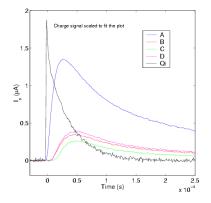
- Search for Dark Matter in the form of Weakly Interacting Massive Particles (WIMPs)
- Located in Soudan Mine, Minnesota, USA (2090 mwe)
- ullet Ge & Si crystals cooled to pprox 40 mK
- Passive Pb & polyethylene shielding



- Muon scintillator veto
- Collect phonon & ionisation signals for event-by-event discrimination

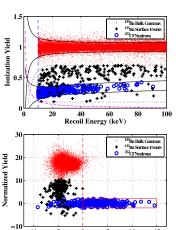
CDMS-II Detector: ZIP

- Z-sensitive Ionisation & Phonon detector (ZIP)
- 3'' diameter \times 1 cm thick
- Mass:
 - 19 × 250 g (Ge)
 - 11 × 100 g (Si)


- 2 charge electrodes on one surface:
 - inner disc & outer ring
- 4 phonon sensors on opposite surface:
 - each covers one quadrant

Ionisation & Phonon Signals

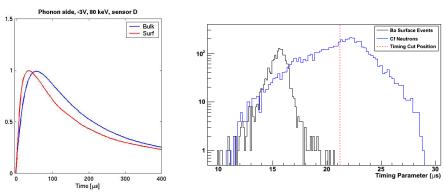
Simultaneous measurement of charge-carriers (ionisation) and phonons generated by an event


- Ionisation signal:
 - Fast: 1 μ s rise- & 40 μ s fall-times
 - Provides event time information
- Phonon signal:
 - Pulse shape depends on event position
- Recoil energy from ionisation & phonon signal amplitudes
- Event position reconstruction from timing and amplitude of phonon signals

Electron-Nuclear Recoil Discrimination

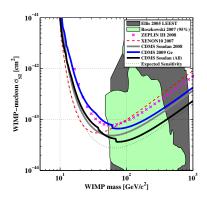
Nuclear recoils generate less ionisation than electron recoils of the same deposited energy

Therefore, ionisation-phonon recoil energy ratio is a discrimination parameter \Longrightarrow Ionisation Yield


Normalized Timing Parameter

- γ -rays from ¹³³Ba source define electron recoil band
- neutrons from ²⁵²Cf source define nuclear recoil band
- Bands are well separated down to 10 keV
- Surface electron-recoil events:
 - Incomplete charge collection
 - Reduced yield ⇒ background

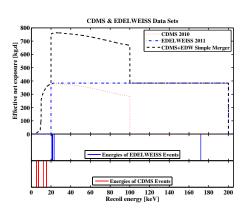
Surface Event Rejection


Shape of phonon pulses indicates interaction depth

Surface events have faster rise time than bulk events, enabling definition of a timing cut

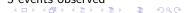
Results from Final Exposure of CDMS-II

- 612 kg-days exposure
- 2 candidate events:
 - **1** $E_R = 12.3 \text{ keV}$, Tower 1, ZIP 5, 02:48 GMT 28 Oct 07
 - ② $E_R = 15.5 \text{ keV}$, Tower 3, ZIP 4, 19:41 GMT 5 Aug 07
- Expected irredicible backgrounds:
 - 0.8 ± 0.1 (stat) ± 0.2 (sys) misclassified surface electron recoils
 - ullet pprox 0.1 background neutrons from cosmic-rays & radioactivity
- 23% probability of observing 2 or more background events over this exposure time

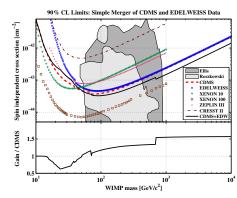


Z. Ahmed et al., Science 327, 1619 (2010)

- Cannot be interpreted as significant evidence for WIMP interactions, nor can either event be rejected as a WIMP
- In process of reanalysing results to reduce background estimates


CDMS-EDELWEISS Combined Limit

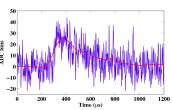
 EDELWEISS also uses cryogenic Ge detectors to search for WIMPs at Modane Underground Laboratory (4800 mwe)


Z. Ahmed *et al.*, Phys. Rev. D **84**, 011102 (2011)

- Same target nucleus allows results to be combined without introducing additional model dependence
- Technology not identical: 400 g crystals & patterned electrodes
- CDMS data:
 - Threshold pushed down to 5 keV
 - 4 events observed
- EDELWEISS data:
 - Threshold set at 20 keV
 - 5 events observed

CDMS-EDELWEISS Combined Limit

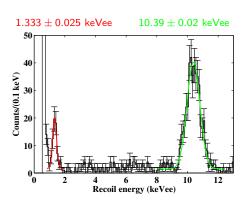
- Sum exposure-weighted efficiencies
- Treat all events on equal footing regardless of experiment of origin
- Biggest improvement at high WIMP masses due to large eventless window between 23.2 & 172 keV
 - ullet Up to a factor of ~ 1.6 for $M_{\gamma} > \sim 50 \text{ GeV}$
- Low energy events in EDELWEISS lead to degredation in limit for low mass WIMPs



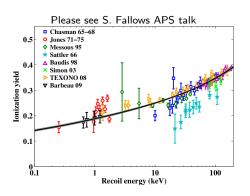
Z. Ahmed et al., Phys. Rev. D 84, 011102 (2011)

 Alternative procedures for combining data are explored, and could provide stronger constraints at certain masses

CDMS-II Low Energy Analysis

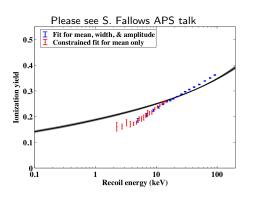

- \bullet Recent results from DAMA/LIBRA & CoGENT have been interpreted in terms of elastic scatters from a WIMP with mass ~ 10 GeV and cross-section $\sim 10^{-40}~\rm cm^2$
- \bullet Previous CDMS results not sensitive to such WIMPs since thresholds were ~ 10 keV to maintain sufficient rejection of electron recoils
- Can lower threshold significantly at cost of higher backgrounds
- Repeat analysis with lower 2 keV threshold:
 - Use 8 Ge detectors with lowest thresholds
 - Results driven by best detector (Tower 1, ZIP 5)

2 keVnr phonon pulse (Tower 1 ZIP 5)


Energy Calibration

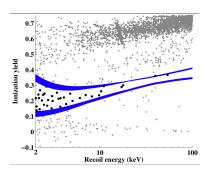
- Ionisation energy scale initially calibrated with 356 keV line (¹³³Ba)
- Phonon energy calibrated by normalising phonon-based recoil energy for electron recoils to their mean ionisation energy
- \bullet From 1.3 and 10.4 keV lines, small rescaling (\sim 4%) applied to ensure electron recoil energy scale was not underestimated

Energy Calibration

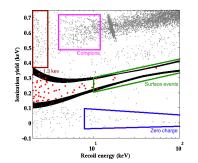

- Ionisation energy scale initially calibrated with 356 keV line (¹³³Ba)
- Phonon energy calibrated by normalising phonon-based recoil energy for electron recoils to their mean ionisation energy
- ullet From 1.3 and 10.4 keV lines, small rescaling (\sim 4%) applied to ensure electron recoil energy scale was not underestimated

 Ionisation yield measured for nuclear recoils from ²⁵²Cf source

Energy Calibration

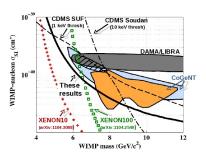

- \bullet lonisation energy scale initially calibrated with 356 keV line (133 Ba)
- Phonon energy calibrated by normalising phonon-based recoil energy for electron recoils to their mean ionisation energy
- \bullet From 1.3 and 10.4 keV lines, small rescaling (\sim 4%) applied to ensure electron recoil energy scale was not underestimated

- Ionisation yield measured for nuclear recoils from ²⁵²Cf source
 - Measured to \sim 4 keV, power-law extrapolation to lower energies
 - Conservative when compared with literature


Nuclear Recoil Definition

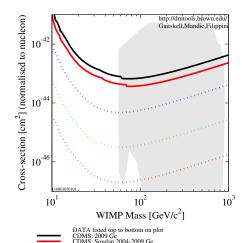
- ullet lonisation energy within $(+1.25, -0.5)\sigma$ of mean from $^{252}{
 m Cf}$ calibration
- Maximise sensitivity while limiting leakage from electron recoils & zero-charge events

Nuclear Recoil Definition


- ullet lonisation energy within $(+1.25, -0.5)\sigma$ of mean from $^{252}{
 m Cf}$ calibration
- Maximise sensitivity while limiting leakage from electron recoils & zero-charge events
- Events in nuclear recoil band can be identified as possible background
- Zero-charge events have ionisation signals consistent with noise
 - Charge carriers collected on cylindrical wall
 - ullet At $E_R < 10$ keV, phonon-based reconstruction unreliable

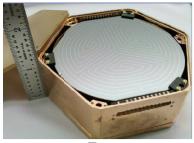
- Signal-to-noise too low at E_R < 5 keV to reject surface events with phonon timing
- At E_R < 5 keV ionisation-based discrimination breaks down
- 1.3 keV line leaks above 2 keV threshold as recoil energy estimate assumes ionisation signal is consistent with nuclear recoil

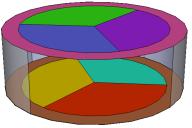
90% Confidence Upper Limits


- Can extrapolate observed spectra for each potential background to lower energies to estimate leakage, but systematic errors are potentially large and difficult to quantify
- Therefore, be conservative and assume all candidates are WIMPs
- No background subtraction
- For spin-independent, elastic scattering, 90% confidence level limits incompatible with DAMA/LIBRA & CoGENT excess

Z. Ahmed *et al.*, Phys. Rev. Lett. **106**, 131302 (2011)
D. S. Akerib *et al.*, Phys. Rev. D **82**, 122004 (2010)

$CDMS-II \Longrightarrow SuperCDMS \Longrightarrow GEODM$

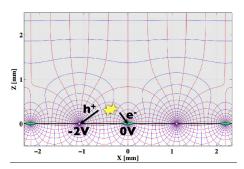

- CDMS-II @ Soudan
 - $3''\phi \times 1 \text{ cm} \rightarrow 250 \text{ g/det}$
 - Target mass 4 kg
 - ullet \sim 2 years ightarrow 612 kg-days
- SuperCDMS Soudan
 - $3'' \phi \times 1'' \rightarrow 600 \text{ g/det}$
 - Target mass 15 kg
 - ullet 2 years $\to \sim$ 8000 kg-days
- SuperCDMS SNOLAB
 - 100 mm $\phi \times$ 33.3 mm \rightarrow 1.37 kg/det
 - Target mass 100 kg
 - ullet 3 years $\to \sim$ 100000 kg-days
- Ge-Observatory for Dark Matter (GEODM) @ SNOLAB/DUSEL
 - $6'' \phi \times 2'' \rightarrow 5 \text{ kg/det}$
 - Target mass 1.5 T
 - ullet 4 years $o\sim$ 1500000 kg-days

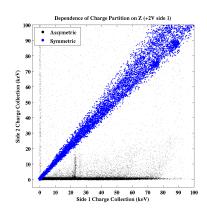


Ellis et. al 2005 LEEST (mu>0, pion Sigma=64 MeV)

SuperCDMS - 15 kg at Soudan

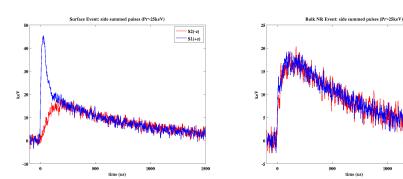
SuperCDMS Soudan Detector: iZIP





- interleaved Z-sensitive Ionisation & Phonon detector (iZIP)
- New detector design to improve surface event rejection efficiency
- Larger 3" diameter, 1" thick, 600 g crystals
- 8 phonon sensors, 4 on each side, provides new information on interaction depth
- Increased phonon sensor surface coverage improves collection efficiency and signal-to-noise ratio
- Better timing resolution from outer phonon sensor ring, which also breaks degeneracies in position reconstruction

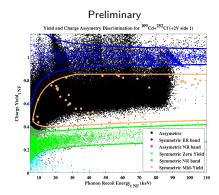
Surface Event Rejection: Ionisation Signals


 Two ionisation electrodes on each surface: central disc & outer ring

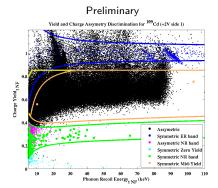
 Interleaved electrodes, so surface events show up on one detector side only

Surface Event Rejection: Phonon Signals

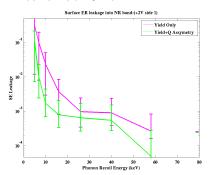
Two phonon-based discrimination parameters:


- Pulse shape differences as with ZIPs
- Side asymmetry provides new surface event rejection parameter

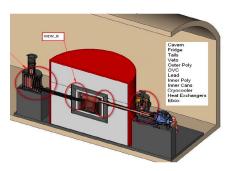
S2(-z)

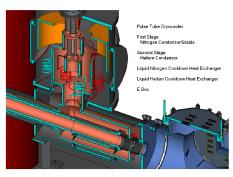

S1(+z)

iZIP Performance


Electron recoils (133 Ba γ -rays) Surface events (109 Cd β -particles) Nuclear recoils (252 Cf neutrons & 7 evt/h background at surface test facility) • Electron & nuclear recoils well-separated above $\approx 6 \text{ keV}$

iZIP Performance

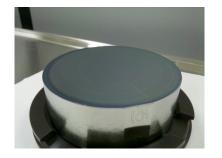



Electron recoils (133 Ba γ -rays) Surface events (109 Cd β -particles) Nuclear recoils (7 evt/h background at surface test facility)

- Electron & nuclear recoils well-separated above $\approx 6 \text{ keV}$
- Yield-only discrimination begins to fail at 10 keV

SuperCDMS SNOLAB

- Target mass 100 kg
- SNOLAB provides deeper facility (> 4000 mwe) than Soudan
- New fridge and shield design work in progress at Fermilab
- Deploy crystals of iZIP detector technology

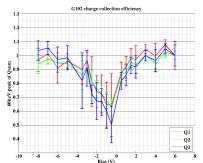

Scaling to 100-1000 kg

- iZIP technology appears to meet requirements for larger target masses
- Scaling difficult: \sim 170 $3''\phi\times 1''$ crystals for 100 kg target mass
- A number of factors make this expensive:
 - Increased manpower: fabrication and testing are labour intensive
 - Increased heat load: additional wiring to room temperature and Field Effect Transistors (FETs) on 4 K stage (5 mW/FET)
 - Increased cold hardware & warm electronics
- Can alleviate these problems through a number of R & D directions we are currently pursuing, to simplify the technology and hence reduce the cost:
 - Multiplexing to reduce number of signal wires to room temperature
 - Alternative SQUID-based ionisation readout
 - Increase the size of individual detectors

100 mm Diameter Germanium Crystals

- Up to 100 mm diameter detector-grade Ge crystals can be grown
- Purchased 2 crystals from Umicore, 33.3 mm thick and of mass 1.37 kg

- Fabricated at SLAC & Stanford, and tested at Minnesota
- New hardware to enable standard 3" readout


Ionisation Measurements

- Ionisation electrodes patterned as four concentric rings
- ²⁴¹Am source above each electrode

Ionisation Measurements

- Ionisation electrodes patterned as four concentric rings
- ²⁴¹Am source above each electrode

To be presented at LTD14 on Thursday & to appear in J. Low Temp. Phys.

- Charge collection efficiency:
 - Bias voltage varied across detector
 - Gaussian fit to summed charge spectra from all four channels
 - Mean of peak used as a measure of charge collection efficiency
 - Scaling past measurements on 1 cm thick crystals, a bias voltage of 1.7 V required to achieve complete charge collection
- These crystals have necessary charge collection efficiency to be operated as dark matter detectors

Summary

- CDMS-II has completed operation
 - See 2 candidate events, but cannot claim nor reject these as possible WIMPs
 - Reanalysis in progress to reduce background estimates
 - New result published combining CDMS & EDELWEISS data
 - Recent reanalysis with lower 2 keV threshold incompatable with an interpretation of DAMA/LIBRA & CoGENT in terms of spin-independent elastic scatters of low-mass WIMPs
- iZIP technology allows for better rejection of surface events:
 - Essential for scaling to larger target masses
 - 15 kg of 3" diameter, 1" thick Ge iZIP detectors to be installed at Soudan in Autumn 2011 forming SuperCDMS Soudan
- lonisation tests conducted on larger 100 mm diameter,
 33.3 mm thick Ge crystal:
 - Crystals have necessary charge collection efficiency to be operated as dark matter detectors
 - New mask designed with interleaved electrodes to investigate surface event rejection