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Result

® |n the early Universe, Black Holes (BH)
frequently form at the center of DM halos.

® The BH can generate a DM spike whlch is




Result

. ~ The Fermi LAT 1FGL Source Catalog
® IntheearlyUn/"" . ..o
frequently fornm L, |

® The BH can gei™
bound to the B

2 ""t‘*‘ ’.
W e  TE

~ AGN-Blazar

[ ]| AGN-Non Blazar X -
O No Association [} Starburst Galaxy ( PSR w/PWN ==
[J Possible Association with SNR and PWN -+ Galaxy " Globular Cluster | -
. Possible confusion with Galactic diffuse emission > HXB or MQO

Credit: Fermi Large Area Telescope Cotaboration |85
R

-2 e

A St ]



Qutline

® BH formation

® first stars/DarkStars

PR

5

) M.O. .*.“..

-5
LI S

® direct collapse

® DM sp

: Ry )
A T 1 AR5y .
i N Lyt
T B e 0 e S
- - AT e P v
= o . ,
ETRRTD I SRR S
v".,-" I.l..t..4\.l l-.a ,’._o.
o o Y I
W e ,

ion and

ike format



The First Stars and first galaxies

CMB

fraction
of a second
4o 3o Sl
OG I present
S sq ese
i B O
K Ry
Years '.__3;: ,-'.' .II_.,"_.."F-_-;‘-: i
(O% ) OOO/ 1'-:1{:%_ ‘ *j - ;
% 137billion
G -
O/ll j?@(y years
Oj'oy (From a slide by Max

(Graphics from Gary Hinshaw/WMAP team)




The First Stars and first galaxies

CMB Way Station

last scattering

fraction
of a second
%
O@ ’ present
&[]] 0‘9@ A ay
K oo 3
L years ‘*" XX
%J OOO/ ‘*""I‘* . -? &
7 13.7 billion )
Q :
QZ[ j}\éol years
0][) ) (From a slide by Max

(Graphics from Gary Hinshaw/WMAP team)




The First Stars and first galaxies

CMB Way Station

last scattering

fraction
of a second
%
O@ ’ present
&[]] 0‘9@ A ay
K oo 3
L years ‘*" XX
%J OOO/ ‘*""I‘* . -? &
7 13.7 billion )
Q :
QZ[ j}\éol years
0][) ) (From a slide by Max

(Graphics from Gary Hinshaw/WMAP team)




The First Stars and first galaxies

® |mportant for

CMB Way Station

last scattering

fraction
of a second
o
O@ ’ present
Sy By
K oo 3
L years ‘*" XX
s . OOO/ e 38 ‘ f
7 13.7 billion )
Q :
Qg[ ﬁ@d years
0][) ) (From a slide by Max

(Graphics from Gary Hinshaw/WMAP team)




The First Stars and first galaxies

® |mportant for

= end of Dark Ages

CMB Way Station

last scattering

fraction
of a second
%
O@ ’ present
&[2] 0‘9@ A ._ ay
L years ‘*‘* XX
% ) OOO/ he ’¥_ ’ t‘ :'-.:' ’
7 13.7 billion )
Q :
QZ[ j}"@ol years
0][) ) (From a slide by Max

(Graphics from Gary Hinshaw/WMAP team)




The First Stars and first galaxies

® |mportant for

= end of Dark Ages

reionize the universe

CMB
last scattering

Way Station

fraction
of a second

oXd present
§) 6’7&@ day
QO - ."*.'1"":'-,;'-‘1'_,‘ )
OZZ j _'E;-"' 'g;ﬁ '*-:_ "'_'.'.- "
A years S ;:1 Bl
(l{; OO .- i%) '.‘i 3 Q’ h‘_’_;-:'r
>) ,{) (074 g A
o, e 13.7 billion
/z,,]] S years
2

(From a slide by Max
(Graphics from Gary Hinshaw/WMAP team)




The First Stars and first galaxies

® |mportant for

= end of Dark Ages

reionize the universe

= enriched gas for later
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The First Stars and first galaxies
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® Formation Basics

= first luminous objects ever

= made only of H/He

= form inside DM halos of 10°-10° Mg

= at redshift z=5-50

= Mass of the first stars is unknown

» typically ~ 100 Mg .

|. Goes SuperNova upon death accretion
2. Form BH upon death.

BH can also grow with

Could first Stars be larger?
DarkStars



Dark-Star Spotter’s Guide to the Universe

a definition of a ‘Dark Star’: any star whose structure
or evolution has ben effected by DM annihilation

—>  There are Many kinds of dark stars....

e Main Sequence stars- fed by scattering (salati, Spergel,
Press, Scott, Fairbairn, iocco, Freese)

° Whlte dwarfs fed by scatterlng (Moskalenko Wal
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DarkStars in the Early Universe

® First Stars form Deep inside DM halo

= Very high DM denisty
= DM heating can drive the stellar structure

= Star MUCH cooler than typical first stars
» 10,000 K vs. 100,000 K
» Hence can accrete More baryons
» Live one the order of a million years
» Mass can be much larger than first stars
e 10° to 10° Mg

® Upon Collapse Form Massive BHs




Direct Collapse (DC)
Star

® In Halos with mass of 10" to 10° Mg, gas rapidly
cools due to Hydrogen cooling and neutrino
cooling. The gas collapses to form a BH with a
mass of 10* to 10° Mg
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Black Holes

® Many galaxies (if not all galaxies) have a Super
Massive Black Hole at the center of the Galaxy.

® Have observed high redshift quasars z 2 6

® Presumably powered by accretion onto a
massive central Black hole ~ 10°M
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DM spike

® Adiabatic contraction

= as baryons fall in to form Dark star or accrete BHs (at center of
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Testing Adiabatic Contraction

Adiabatically |
Contracted points frc?m
profile cosmological
N-Body
simulation
Original
NFW Profile

Simple Prescription determine DM
density within a factor of 2 !



What About DM
spikes today?



What About DM
spikes today?

® Use Via Lactea |l simulation




What About DM
spikes today?

® Use Via Lactea Il simulation:*

Sk

® to identify halos which
could have hosted first
stars and have survived
until today




|dentify halos hosting first stars
Early z=23

Early

zf =23
Intermediate
zf =15

Late
zf =11

Parametrize end of
Population lll.1 star
formation a la Greif &

Bromm (2006):




Via Lactea |l gives the distribution of the
different host halos in MilkyWay Halo

early _ b

Introduce fD s
Actual Nsp = st - Total Possible Nsp
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Point Source vs. Diffuse Flux

Two ways they could show up: (FSC and EGB both Abdo et al. 2010)

DM spikes may already show up as point sources in the FGST catalog!

|. Brightest one can't be brighter than the brightest observed source — minimal distance,

2.If a source is far enough away [dim enough], FGST won't be able to pick it out as a point
source — maximal distance for point sources,

Diffuse Flux

How many point sources are there? Does the number predicted by VL2 agree with the number
of unassociated FGST sources? What can we learn about the number of these objects
that formed in the early universe?

If spikes are dim enough [far enough away], they won't be identifiable as point sources, and
would contribute to the diffuse gamma-ray flux.

Does the expected diffuse flux from all non-PS spikes overproduce the FGST-measured
diffuse flux?
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Point Sources

DmaxPS: maximal distance at
which a PS would be bright
enough to have been identified by
FGST in the first year of operation

100 GeV
—_— 1 TeV

DminPS: minimum distance at
which a PS can be located so that
it's not brighter than the brightest
FGST point source

1000

LO‘Q,]()( \ /Hl {/\ / )




Diffuse Flux
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Constraining fps

®  With diffuse flux (“Diffuse Constraint™):

¢ (fps) = fps X ©;(fps =1)

Require that diffuse flux does not exceed the EGB by more than 30.




Fermi Constraints on
Fraction of DM spikes

DM =100 GeV

*Decays into b-mesons
edifferent colors correspond to
different end of DS formation
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Slightly less conservative

* The brightest point source 1s associated with the Vela Pulsar.

e It is extremely unlikely that the brightest DM spike is located exactly along our line-of-sight
to Vela.

e Furthermore, it is even more unlikely that in addition to the brightest spike being in line
with Vela, the second brightest spike is also located along our line-of-sight to a very
bright associated FGST point source.

e What if we require that the brightest spike not be brighter than the brightest unassociated
FGST point source?



Continue... Slightly less Conservative
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Strong Constraints on
Low Mass WIMPs

® Motivated by DAMA, Cogent, CREST, Fermi GC
excesses, etc.

Standard first star BH

Reversed!

Log,o(Mgu/M,)
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Conclusion

® We have placed conservative limits on the fraction of minihalos in the early

universe that could have the first stars (robust w.r.t. uncertainties about
inner halo dynamics).

=] _ow Luminosity Spikes: most contribute to diffuse flux, but not enough for a
Diffuse Constraint close ones not bright enough for a Point Source Constraint

= ncreasing Luminosity: Diffuse Constraint kicks in distance at which spikes can be
identified as point sources increases, so Some spikes in the distribution are bright
(close) enough

= High Luminosity:most spikes in our Galactic halo are bright point sources (Point
Source Constraint) only spikes in the outer regions of the halo are far enough away
that they contribute to the diffuse flux (no Diffuse Constraint)

Fermi may have already seen some of these things! Buckley & Hooper (2010)
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