Dark Matter distribution in the Milky Way: microlensing and dynamical constraints

Fabío Iocco

Marie Curie fellow at Institut d'Astrophysique de Paris

Based on **arXiv:1107.5810** In collaboration with: *G. Bertone*, *P. Jetzer*, <u>*M. Pato*</u>

Outline

Microlensing, an introduction

 \rightarrow Optical depth τ

Modelling baryons in the MW

 \rightarrow Modelling the DM, parameters

Rotation curve observations, an overview

 Results: constraining Adiabatic Contraction and fitting the DM to rotation curve

Microlensing: principles

compact object (lens) between us and source creates two unresolved object result: light magnification *A(t)*

$$A(t) = \frac{u(t)^2 + 2}{u(t)\sqrt{u(t)^2 + 4}}$$

Lens need to be close to los: Einstein radius

$$R_{\rm E} = 2.85 \text{ AU} \sqrt{\frac{MD_d [1 - (D_d/D_s)]}{1 \text{ kpc}}}$$

Optical/NIR surveys: / field (620-920) nm *B* field(420-720) nm

[EROS 2006]

Microlensing caused by compact objects only

Microlensing optical depth τ

The integrated probability of having a luminosity enhancement: events with A>1.34

Observationally:

$$\tau = \frac{1}{N_{\rm obs} \Delta T_{\rm obs}} \frac{\pi}{2} \sum_{\rm events} \frac{t_{\rm E}}{\epsilon(t_{\rm E})}$$

Theoretically,

we need models for the source ad lens distribution

$$\tau(\ell, b, D_s) = \frac{4\pi G}{c^2} \int_0^{D_s} dD_l \ \rho_l(\ell, b, D_l) D_l \left(1 - \frac{D_l}{D_s}\right)$$
$$\langle \tau \rangle(\ell, b) = \frac{\int_0^{r_\infty} dD_s \ \tau(\ell, b, D_s) \ dn_s / dD_s}{\int_0^{r_\infty} dD_s \ dn_s / dD_s}$$

Notice that opt depth depends on mass distribution only, no IMF!!!

Microlensing observations of GC

MACHO CGR = average of 9 fields

$$(\ell, b) = (1.50^{\circ}, -2.68^{\circ})$$

$$\langle \tau \rangle = 2.17^{+0.47}_{-0.38} \times 10^{-6}$$

few < t_E /days < 700 10⁻³ < M_I/Msun < 80

Sources: red clump giant in the bulge

Insensitive to recently discovered Jupiter mass objects, However, below uncertainty: 0.1% mass content

MACHO [Popowski et al. 2005]

Galactic (baryonic) models

Ingredients: Exponential/Gaussian bulge (with bar) + thin / thick disk Bar at R < 2.5 kpc: bar angle $\alpha \approx 25^{\circ}$

- Model 1: E2 bulge and thin+thick disk;
- Model 2: G2 bulge and thin+thick disk;
- Model 3: G2 bulge and thin disk;
- Model 4: Zhao bulge and thin disk; and

Model 5: bar + disk + <u>gas</u>

Shape fixed, density normalization ρ_b calibrated to fit the MACHO observations

Galactic baryonic models

They fit quite well other microlensing observations:

GC and beyond!!

Mass ditribution used to obtain gravitational potential (circular velocities) using non-spherical Poisson equation; And adding DM (see the following...)

Rotation curves: observations

Gas clouds moving in the disk: inner Galaxy HI or CO line used as tracers <u>circular velocity assumption</u>

 $v_c(R_0 \sin \ell) = v_t(\ell) + v_0 \sin \ell \quad v_0 \equiv v_c(R_0)$

Need to adopt (R_0, v_0) : different values in literature unified rotation curve for (8 kpc, 200km/s)

Rotation curve: uncertainties

We bracket the uncertainty in the determination of (R_0,v_0) 7.5 kpc < R0 < 8.5kpc 200 km/s < v0 < 260 km/s

Transformations valid only in the inner circle (safe, see later)

$$R' = R \frac{R'_0}{R_0} \quad v'_t = v_t + \frac{R}{R_0} (v'_0 - v_0)$$

Checking our baryonic models

With DM: NFW $r_s=20$ kpc ; $\alpha=1$; $\rho_0=0.4$ GeV/cm3

Let's use this to constrain DM!

Rotation Curves (all matters)

Microlensing optical depth (only compact bodies)

Diffuse components (DM and Gas)

[Binney & Evans '01]

Test failure: 2 sigma overshoot

NFW (α , ρ_0) = (1.8,0.4)

Einasto (α , ρ_0) = (0.05,0.5)

Observational velocity uncertainties: statistical + systematic (average of literature spread in 0.5 kpc bin)

Theoretically reconstructed uncertainties: MACHO 2005 statistical propagated

The constraints that follow are quite conservative

Constraining the parameter space: the "fiducial" configuration

Constraints come from 2.75kpc, 7.75kpc bins, thus no worries about kinematic transformations

Getting at the extremes (bracketing)

What DM configurations can we esclude if we change Solar radius and local velocity?

Rescaling: rotation curve baryon modelling DM halo

Conservative $(r_s, R_0, v_0) = (35, 7.5, 260)$ Mean $(r_s, R_0, v_0) = (20, 8.0, 230)$ Aggressive $(r_s, R_0, v_0) = (10, 8.5, 200)$

Fitting the best DM parameters

using Model 5 (includes gas, best shape fitting)

Adiabatic Contraction the embarassing guest

Concluding

- Combining Microlensing observations of galactic Bulge with observations of rotation curves, possible to have information about DM distribution in the Galaxy
 - Agreement with NFW and Einasto suggested by numerical simulations
 - Rule out extreme flavor of Adiabatic Contraction
 - Using a specific baryonic model, possible to find the best fitting NFW/Einasto parameters, obtaining the 1 σ interval ρ₀=[0.20-0.55] for spherical halos (R₀=8kpc, v₀=230km/s, r_s=20kpc, varying α)