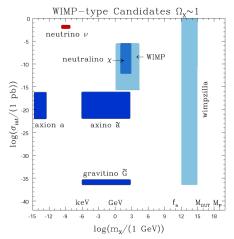

# Anti proton constraints from electroweak bremsstrahlung in dark matter annihilations

arXiv:1105.5367 [hep-ph]
JCAP07(2011)028
Alejandro Ibarra, Mathias Garny, Stefan Vogl

Stefan Vogl




# Why do we need Dark Matter?



- there is a compelling list of cosmological and astrophysical indications for the existence of dark matter
- rotation curves, weak gravitational lensing, bullet cluster and so on

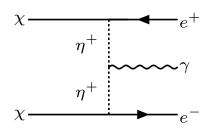
#### What is Dark Matter?

- we don't know any properties like mass, spin, interaction strength
- there are a number of candidates that are motivated by particle physics



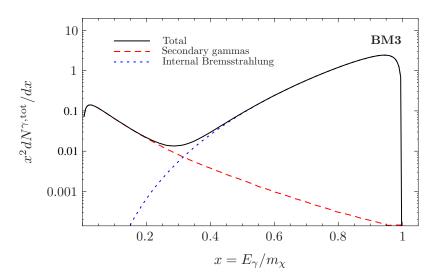
## A Majorana Fermion as Dark Matter

- a possible choice for Dark Matter is a Majorana Fermion
- most popular example of Majorana dark matter: the neutralino
- ullet thermally averaged cross section  $\langle \sigma_{\it ann} v 
  angle$  can be expanded as


$$\langle \sigma_{ann} v \rangle = a + bv^2 + \mathcal{O}(v^4)$$

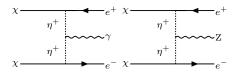
- today  $v \approx 10^{-3}$ , this means that the p-wave is strongly suppressed
- for Majorana fermions annihilation in two light fermions in s-wave is suppressed by chirality

$$\langle \sigma_{ extsf{ann}} extsf{v} 
angle pprox extsf{a} pprox rac{m_{ extsf{f}}^2}{m_{ extsf{DM}}^2}$$


# A Gamma feature from bremsstrahlung

- the annihilation of Majorana Dark Matter  $\chi$  into a pair of light fermions  $f\bar{f}$  is suppressed in the non relativistic limit
- $\chi\chi\to far{f}\gamma$  lifts this suppression and can lead to a hard feature in the  $\gamma$  spectrum [Bergström, Bringmann, Edsjö 08]




02.08.2011

#### Gamma feature



# A minimal anti proton signal from bremsstrahlung

 the suppression can be lifted as well by the emission of electroweak gauge-bosons W<sup>±</sup> and Z

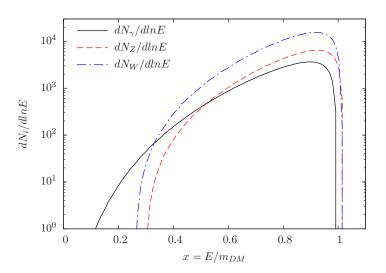


 $\bullet$  the fragmentation of Z,W  $^\pm$  leads to the minimal production of anti protons that is associated with a gamma-ray feature

## Toy Model

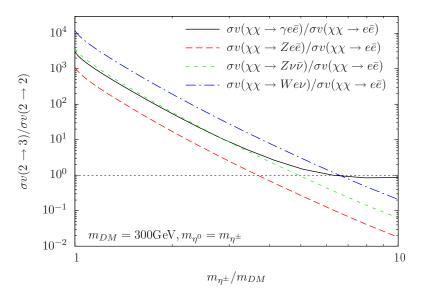
- Making room for Dark Matter: add a Majorana fermion  $\chi$  as dark matter and a scalar  $\eta$  to the Standard Model, with  $m_\chi < m_\eta$
- The charges under SU(3)<sub>C</sub> × SU(2)<sub>L</sub> × U(1)<sub>Y</sub> are

$$\chi \equiv (1,1,0), \quad \eta = \begin{pmatrix} \eta^+ \\ \eta^0 \end{pmatrix} \equiv (1,2,1/2)$$


and  $\eta$  carries electron lepton number  $L_{\rm e}=-$ 1, which prevents coupling to quarks, or  $\mu$  and  $\tau$ 

ullet The Lagrangian for the interaction of  $\chi$  with fermions reads [motivated by Ma 01]

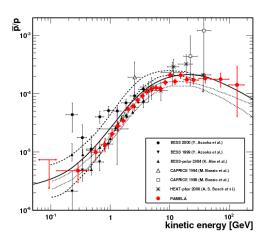
$$\mathcal{L}_{ ext{int}}^{ ext{fermion}} = f ar{\chi} (
u_{eL} \eta^0 - e_L \eta^+) + ext{h.c.}$$


- In this setup the production of the heavy gauge bosons  $W^{\pm}$  and Z in a three body final state is the only mechanism for sizable  $\bar{p}$  production.
- the toy model allows an easy access to the phenomenology of this process and offers the possibility to calculate constraints on the total allowed cross section

## gauge boson spectra



Spectrum of photons, W<sup>±</sup>, and Z produced by internal bremsstrahlung for  $m_{\chi}=300{\rm GeV}$  and  $m_{\eta^0}=m_{\eta^\pm}=330{\rm GeV}$ 


# How important can the three body final state be?

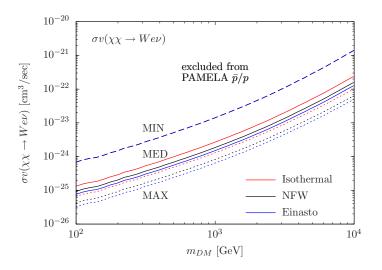


• IB dominates over the two body process for doublet masses  $m_{\bar{r}} < 5 m_{\chi}$ 

10 / 16

## Pamela anti proton to proton flux ratio

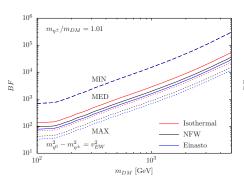


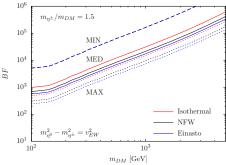

 the anti proton to proton flux ratio measured by Pamela is described well by astrophysical sources

## PAMELA anti proton to proton flux ratio



The anti proton to proton ratio for a dark matter mass of 1 TeV and with a cross section of  $1.87 \times 10^{-24} cm^3 s^{-1}$  against the PAMELA data


#### Bounds on the cross section




Upper bound on the cross section  $\langle \sigma v(2 \rightarrow 3) \rangle$  calculated from the PAMELA data on the cosmic anti proton to proton ratio.

## Boost factors for thermal production

- there are a few arbitrary constants in the model, notably the coupling f and the masses of the scalar  $m_n$ .
- demanding thermal production determines the coupling for a given set of masses and allows the calculation of the maximal boost factors consistent with observations





#### Application to the MSSM

- electroweak bremsstrahlung appears also in the MSSM
- we analyze a number of mSUGRA benchmark points that are known to exhibit a pronounced gamma ray feature [Bringmann, Doro, Formasa 09]

| Model | $m_{DM}$ | $BF(\bar{p}/p)$ | $BF(\bar{p}/p)$      |
|-------|----------|-----------------|----------------------|
|       | [GeV]    | Med             | Med                  |
|       |          | total           | $2 \rightarrow 3$    |
| BM2   | 453      | < 5900          | $< 1.3 \cdot 10^{5}$ |
| BM3   | 234      | < 1500          | $< 1.3 \cdot 10^4$   |
| BMJ'  | 316      | < 330           | $< 3.5 \cdot 10^{4}$ |
| BMI'  | 141      | < 11            | < 6900               |

Table: Upper limits on the boost factor BF in the Milky Way obtained from the PAMELA  $\bar{p}/p$  data for several MSSM benchmark points at 95%C.L. The number in brackets correspond to the boost factors from 2  $\rightarrow$  3, while those without include channels with quark production

 for more realistic models the constraints on the boost factor get stronger by a factor of at least 10 when other anti proton sources are taken into account

#### Conclusion

- the chirality suppression of  $\chi\chi\to e^+e^-$  is efficiently lifted by the emission of W $^\pm$  or Z for  $m_\eta$  comparable to  $m_\chi$
- for  $m_{\text{dark matter}} \geq \frac{m_W}{2}$  gamma rays from electromagnetic bremsstrahlung are always accompanied by electroweak bremsstrahlung and thus antiprotons
- the maximal allowed thermally averaged cross section  $\sigma v(2 \to 3)$  can be of order  $10^{-24} \frac{cm^3}{s}$  for reasonable choice of halo and propagation model
- in models that are not strictly leptophilic constraints from anti protons are even more stringent