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Studies of secondary CR fluxes:

important information on CR propagaton

indirect searches for DM signals

Exciting PAMELA result: energy rise of e+/e− ratio
[Adriani et al., 2009]
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PAMELA positron excess & SNR mechanism

Studies of secondary CR fluxes:

important information on CR propagaton

indirect searches for DM signals

Exciting PAMELA result: energy rise of e+/e− ratio
[Adriani et al., 2009]

DM signal? (no p̄/p rise?!))

contributions of nearby
pulsars?

alternative explanation:
production & reacceleration
of e± in SNRs [Blasi, 2009]
- steep rise of e+/e− ratio
predicted!
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Time-dependent MC approach

spherical SNR shock: vsh(t) from self-similar solutions
[Truelove & McKee, 1994]

random walk with prescibed (Bohm-like) diffusion coefficient:

D =
cl0
3

=
c2 p

3Z efB B
≃

2c2 EAGeV

3efB B

⇒ (approximately) same D for different nuclei with same
E/nucleon (EAGeV)

intend to maximize the SNR contribution:

’age-limited’ scenario - CRs don’t escape upstream

neglect adiabatic cooling

thermal leakage injection model [Malkov & Völk, 1995]

all nuclei injected at 10 GeV/nucleon

isotopic abundances from [Strong & Moskalenko, 2001]
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Time-dependent MC approach

spallation cross sections / decay tables from GALPROP
[Strong & Moskalenko, 1998]: data-improved parametrization
of Silbelberg & Tsao / BNL reaction network

standard SNR parameters:

Mej = 4M⊙

ESNR = 5×1051 erg

τSNR = 13000yr

nISM = 2 cm−3

fBB = 1µG
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Production & reacceleration of secondary nuclei in SNRs:
qualitative analysis

assume 1-step spallation (not counting radioactive decays),
e.g. 12C→ 10B+d

(multi-step contributions typically small)

let us trace the ’life-way’ of a particular carbon nucleus:

injected with Einj (GeV/N)

underwent acceleration during time tacc till Ef
C = Einj +

dE
dt

∣

∣

C tacc

( dE
dt

∣

∣

C =
v2
sh

20DC(E)/E ≃
3
40 efBBv2

sh/c for r = 4 and A/Z ≃ 2)

stayed in the downstream during time (τSNR− tacc)

what happens if it spallates at ts < tacc or tacc< ts < τSNR?
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Production of secondary nuclei in SNRs: outcome

similar reasoning applies for spallation at tacc< ts < τSNR

total spallation probability: w2 ≃ σC→B
spall rnISM c(τSNR− tacc)

boron of the same energy Ef
C is produced

⇒ each primary nucleus accelerated in SNR converts into a
secondary of the same final energy with total probability
w = σspallrnISM c(τSNR− tacc) ∼ 10−2

⇒ fluxes of secondary nuclei produced in SNRs
follow the behavior of the primary ones

naturally, the discussed correspondence is an approximate one
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Galactic propagation

performed using GALPROP [Strong & Moskalenko, 1998]

same spallation cross sections used

propagation parameters tuned to reproduce secondary/primary
ratios for γ = −2

e.g., D(E) ∼ E−δ with δ = 0.7

CR fluxes from the acceleration in SNRs:
used as the input spectra for the propagation

main aim: investigate corrections to secondary/primary ratios
due to the production & reacceleration in SNRs
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cent level above 1 TeV

at lower energies: ∼ 10%
correction due to the
SNR mechanism

NB: we aimed on maximal possible effect

AMS measurements of the B/C ratio at TeV energies may
provide information on acceleration process / environement
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Potential variations

B-field amplification [Bell & Lucek, 2001; Bell, 2004]

extends CR spectra to higher energies

probably modifies spectral shape both for primary and for
secondary CRs

but: spectral ratio just after the source should stay unchanged

however: absolute normalization of secondary spectra produced
may change - due to a higher compression factor

’space-limited’ acceleration scenario

particles in the downstream are adiabatically cooled

final CRs - escape from upstream

⇒ spectral shape for all CRs will be different

however: should not influence the spectral ratios

NB: residence time of CRs in SNRs will be reduced
⇒ so will be the SNR contribution to secondary/primary ratios
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Summary

1 production & reacceleration of secondary CRs in SNRs
has been studied with a time-dependent MC treatment

2 acceleration process depends on particle rigidity ⇒ spectra of
secondary nuclei have the same shape as the primary ones

⇒ no energy-rise of secondary/primary ratios follows

the conclusions are robust with respect to different choices of
SNR parameters / different acceleration scenario

3 B/C ratio - expected to ’flatten’ at per cent level in the TeV
range

4 precise normalization depends on the properties of
acceleration sites / mechanisms




