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@ Studies of secondary CR fluxes:

@ important information on CR propagaton

o indirect searches for DM signals

@ Exciting PAMELA result: energy rise of €" /e~ ratio
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@ Studies of secondary CR fluxes:

@ important information on CR propagaton

o indirect searches for DM signals

@ Exciting PAMELA result: energy rise of €" /e~ ratio
[Adriani et al., 2009]
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PAMELA positron excess & SNR mechanism

@ Studies of secondary CR fluxes:

@ important information on CR propagaton

o indirect searches for DM signals

@ Exciting PAMELA result: energy rise of €" /e~ ratio
[Adriani et al., 2009]

@ DM signal? (no p/p rise?!))

Solid line — E =100TeV
max

dash—dot line — E =10TeV
max

@ contributions of nearby

:+ dotted fine — £ =3TeV pulsars?
? 010 ;
| |— i o o
< F @ alternative explanation:
= ) production & reacceleration

of € in SNRs [Blasi, 2009]
- steep rise of € /€ ratio
E(GeV) predicted!
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@ Same mechanism put forward for p [Blasi & Serpico, 2009]

@ similar energy rise of p/p ratio predicted above 100 GeV

o so far consistent with PAMELA data

s challenges p excess as a clear signal for DM

@ excellent cross check: production of secondary nuclei

[Mertsh & Sarkar, 2009]
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Time-dependent MC approach

@ spherical SNR shock: Vsp(t) from self-similar solutions
[Truelove & McKee, 1994]
@ random walk with prescibed (Bohm-like) diffusion coefficient:

_clo c2p NZCZEAGeV
3 3ZegB 3efB

@ = (approximately) same D for different nuclei with same
E/nucleon (EAGeV)

@ intend to maximize the SNR contribution:
o 'age-limited’ scenario - CRs don’t escape upstream
@ neglect adiabatic cooling
@ thermal leakage injection model [Malkov & Vélk, 1995]

@ all nuclei injected at 10 GeV/nucleon

o isotopic abundances from [Strong & Moskalenko, 2001]
I
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Time-dependent MC approach

@ spallation cross sections / decay tables from GALPROP
[Strong & Moskalenko, 1998]: data-improved parametrization
of Silbelberg & Tsao / BNL reaction network

@ standard SNR parameters:
o Mej=4M,

o Esnp=5x%x 10 erg
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Production & reacceleration of secondary nuclei in SNRs:

qualitative analysis

@ assume 1-step spallation (not counting radioactive decays),
e.g. 12C—> 1OB+d

o (multi-step contributions typically small)

@ let us trace the 'life-way' of a particular carbon nucleus:

@ injected with Ejnj (GeV/N)
o underwent acceleration during time tacc till EE: = Einj + %—%‘C tace

V2
(€| .= e ek 2efzBV2,/cforr=4and A/Z~2)

@ stayed in the downstream during time (Tsnr— taco)

@ what happens if it spallates at tg < tacc or tace < ts < TsNR?
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@ spallation probability doesn't depend on time tg:
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@ at time tg, the produced boron has energy (per nucleon):
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@ the produced boron has the same rigidity as its parent
= follows its 'destiny':

@ undergoes acceleration during time (tacc—ts) till energy
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o stays in the downstream during time (Tsnr— tacc)
@ = the carbon nucleus spallates during acceleration

o with total probability Wy =~ G Nism Clace
e always producing boron of the same energy per nucleon EE
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Production of secondary nuclei in SNRs: outcome

@ similar reasoning applies for spallation at tacc < ts < TsnR
o total spallation probability: wy ~ Gg@? rnism C(Tsnr — tacc)

o boron of the same energy EE is produced

@ = each primary nucleus accelerated in SNR converts into a
secondary of the same final energy with total probability
W = Ogpalll Nism C(TsNR— taco) ~ 102

@ = fluxes of secondary nuclei produced in SNRs
follow the behavior of the primary ones

@ naturally, the discussed correspondence is an approximate one
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Galactic propagation

@ performed using GALPROP [Strong & Moskalenko, 1998]

@ same spallation cross sections used

o propagation parameters tuned to reproduce secondary/primary
ratios for y= —2

o eg., D(E)~E 3 with =07
@ CR fluxes from the acceleration in SNRs:

used as the input spectra for the propagation

@ main aim: investigate corrections to secondary/primary ratios
due to the production & reacceleration in SNRs
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Secondary/primary ratios after propagation

1

B/C ratio

10

o B/C ratio 'flattens’ at per
cent level above 1 TeV

2
10
g @ at lower energies: ~ 10%
; L1 \\HH‘ L1 \\HH‘ | \\HH‘ | CorreCtion due to the
10° 10" 10° 10° SNR mechanism

E, MeVIN

@ NB: we aimed on maximal possible effect

@ AMS measurements of the B/C ratio at TeV energies may
provide information on acceleration process / environement
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Potential variations

o B-field amplification [Bell & Lucek, 2001; Bell, 2004]
o extends CR spectra to higher energies

@ probably modifies spectral shape both for primary and for
secondary CRs

@ but: spectral ratio just after the source should stay unchanged

o however: absolute normalization of secondary spectra produced
may change - due to a higher compression factor

@ ’'space-limited’ acceleration scenario

@ particles in the downstream are adiabatically cooled

©

final CRs - escape from upstream

= spectral shape for all CRs will be different

<

©

however: should not influence the spectral ratios

@ NB: residence time of CRs in SNRs will be reduced
= so will be the SNR contribution to secondary/primary raties
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© production & reacceleration of secondary CRs in SNRs
has been studied with a time-dependent MC treatment

© acceleration process depends on particle rigidity = spectra of
secondary nuclei have the same shape as the primary ones
@ = no energy-rise of secondary/primary ratios follows

o the conclusions are robust with respect to different choices of
SNR parameters / different acceleration scenario

© B/C ratio - expected to 'flatten’ at per cent level in the TeV
range

© precise normalization depends on the properties of
acceleration sites / mechanisms





