Direct detection of dark matter

An overview, not a review

Paolo Gondolo University of Utah

Strong limits from XENON-100

Aprile et al (XENON-100) 1104.2549

3 events observed 1.8±0.6 expected background

The CoGeNT modulation

Events in the CoGeNT ``irreducible excess" modulate with a period of one year and a phase compatible with DAMA's annual modulation.

Aalseth et al 1106.0650

Some headlines this past year.....

Science journalists should be careful not to stoke the remarkable and scientific hype that has characterized theoretical high-energy physics for decades. [Note that I am not criticizing experimental hep.] *Robert Oldershaw*

In the age of instant information.....

Welcome to INSPIRE β: the upgrade of SPIRES We now recommend that you use this site instead of SPIRES Please send feedback on INSPIRE to feedback@inspirebeta.net					
HEP :: INST :: HELP SPIRES HEPNAMES :: CONF :: EXP :: JOBS					
Citations to the CoGeNT excess paper 1002.4703					
Sort by: Display results: Output format: latest first : - or rank by - : 25 results : HTML citesummary					
HEI 205 records found 1 25 b jump to record: 1 Search took 0.03 seconds.					
 Dark Matter Searches: The Nightmare Scenario. Gianfranco Bertone, Daniel Cumberbatch, Roberto Ruiz de Austri, Roberto Trotta. Jul 2011. 14 pp. e-Print: arXiv:1107.5813 [astro-ph.HE] 					
References BibTeX LaTeX(US) LaTeX(EU) Harvmac EndNote Abstract and Postscript and PDF from arXiv.org Detailed record - Similar records					

In the age of instant information.....

Welcome to INSPIRE 6: the upgrade of SPIRES We now recommend that you use this site instead of SPIRES Please send feedback on INSPIRE to feedback@inspirebeta.net

SPIRES HEPNAMES :: CONF :: EXP :: JOBS

Citations to the XENON100 first-results paper 1005.0380

Sort by:	Display results:	Output format:
latest first 🛟 desc. 🗘 - or rank	by - \$ 25 results \$ single list	HTML brief t
HEF 209 records found 1	25 b b jump to record: 1	Search took 0.01 seconds.
 Dark Matter Searcnes: T Gianfranco Bertone, Danie pp. e-Print: arXiv:1107.5813 	he Nightmare Scenario. el Cumberbatch, Roberto Ruiz de astro-ph.HE]	e Austri, Roberto Trotta. Jul 2011. 14
References BibTe> Abstract and Postsc Detailed record - Similar records	(LaTeX(US) LaTeX(EU) Han ript and PDF from arXiv.org	vmac EndNote
2. Fine-Tuning Implications Maxim Perelstein, Bibhus e-Print: arXiv:1107.5048	s of Direct Dark Matter Searche han Shakya. Jul 2011. 23 pp. [hep-ph]	s in the MSSM.
Deferred DibTe		and the distance

Basic ideas

The principle

Dark matter particles scatter off nuclei in a detector

Dark matter particle

Low-background underground detector

Background discrimination

From Sanglard 2005

Standard presentation of results

Spin-independent interactions

Savage, Gelmini, Gondolo, Freese 2010

Standard presentation of results

Spin-dependent interactions

Savage, Gelmini, Gondolo, Freese 2009

DM Direct Search Progress Over Time (2009)

$$v'$$

$$m' = m + \delta$$

Recoil energy $E = \frac{1}{2}MV^2$

$$\begin{pmatrix} \text{number of} \\ \text{events} \end{pmatrix} = (\text{exposure}) \times \begin{pmatrix} \text{detector} \\ \text{response} \end{pmatrix} \otimes \begin{pmatrix} \text{recoil} \\ \text{rate} \end{pmatrix}$$

$$\begin{pmatrix} \text{detector} \\ \text{response} \end{pmatrix} = \begin{pmatrix} \text{energy} \\ \text{response function} \end{pmatrix} \times \begin{pmatrix} \text{counting} \\ \text{acceptance} \end{pmatrix}$$
$$\begin{pmatrix} \text{recoil} \\ \text{rate} \end{pmatrix} = \begin{pmatrix} \text{particle} \\ \text{physics} \end{pmatrix} \times (\text{astrophysics})$$

$$\begin{pmatrix} \text{number of} \\ \text{events} \end{pmatrix} = (\text{exposure}) \times \begin{pmatrix} \text{detector} \\ \text{response} \end{pmatrix} \otimes \begin{pmatrix} \text{recoil} \\ \text{rate} \end{pmatrix}$$

Astrophysics factor

How much dark matter comes to Earth?

$$\begin{array}{c|c} \hline \text{Local halo density} \\ (\text{astrophysics}) = \rho \int_{v > v_{\min}(E)} \frac{f(\vec{v}, t)}{v} \, \mathrm{d}^{3}v \end{array}$$

Minimum speed to impart energy $E, \,\, v_{
m min}(E) = (ME/\mu + \delta)/\sqrt{2ME}$

Astrophysics factor: local density

Galactic density profile from Aquarius simulations

Astrophysics factor: local density

Ullio, Catena 2009

locco, Pato, Bertone, Jetzer 2010

Astrophysics factor: velocity distribution The velocity factor $\eta(E,t) = \int_{v > v_{\min}(E)} \frac{f(\vec{v},t)}{v} d^3v$

- If f(E,t) is non-truncated Maxwellian in detector frame, $\eta(E,t)$ is exponential in E
- $\eta(E,t)$ depends on time (unless WIMPs move with detector)

Example: annual modulation $\eta(E,t) = \eta_0(E) + \eta_m(E) \cos \omega (t-t_0)$

Drukier, Freese, Spergel 1986

Inclusion of baryonic disk may lead to a dark disk

Read, Lake, Agertz, De Battista 2008

Ling 2009

Tidal forces can destroy subhalos and generate tidal streams

Odenkirchen et al 2002 (SDSS)

Stellar streams near the Sun

 Table 1.
 Current census of solar neighborhood halo streams

Stream	$\langle v_{\phi} \rangle$	$\sigma_{v_{m{\phi}}}$	$\langle [Fe/H] \rangle$	$\sigma_{\mathrm{[Fe/H]}}$	Ν	References
	$({\rm km}~{\rm s}^{-1})$	$({\rm km \ s^{-1}})$				
C2	-75	24	-1.6	0.4	53	Klement et al. (2009)
S_3	-48 ^a	14	-1.6	0.4	33	Klement et al. (2009)
Kapteyn	-46 ^b	63	-1.5	0.3	14	Wylie-de Boer et al. (2010)
ωCen	-30				56	Dinescu (2002)
C3	-24	14	-1.7	0.4	44	Klement et al. (2009)
C1	-16	9	-1.5	0.2	32	Klement et al. (2009)
S_3	-9 ^a	10	-1.9	0.5	10	Dettbarn et al. (2007)
S_2	-7	4	-1.9	0.1	4	Dettbarn et al. (2007)
\mathbf{S}_1	21	2	-1.7	0.5	4	Dettbarn et al. (2007)
SKOa	43	25	-2.0	0.2	6	Smith et al. (2009)
R2	59	15	-1.4	0.3	19	Klement et al. (2009)
KFR08	69	11	-0.7	0.3	19	Bobylev et al. (2010)
Groombridge 1830	71 °	18		• • •	5	Eggen and Sandage (1959)
RHLS	99	25	-2.0	0.2	3	Re Fiorentin et al. (2005)
H99	140	33	-1.8	0.4	33	Kepley et al. (2007); Klement et al. (2009)
C4	173	9	-2.3	0.3	20	Klement et al. (2009)

Astrophysics factor: velocity distribution WIMP arrival directions

Astrophysics factor

The local density may be "known" within a factor of 2, but the velocity distribution is still an open question

$$\begin{pmatrix} \text{number of} \\ \text{events} \end{pmatrix} = (\text{exposure}) \times \begin{pmatrix} \text{detector} \\ \text{response} \end{pmatrix} \otimes \begin{pmatrix} \text{recoil} \\ \text{rate} \end{pmatrix}$$
$$\begin{pmatrix} \text{detector} \\ \text{response} \end{pmatrix} = \begin{pmatrix} \text{energy} \\ \text{response function} \end{pmatrix} \times \begin{pmatrix} \text{counting} \\ \text{acceptance} \end{pmatrix}$$
$$\begin{pmatrix} \text{recoil} \\ \text{rate} \end{pmatrix} = \begin{pmatrix} \text{particle} \\ \text{physics} \end{pmatrix} \times (\text{astrophysics})$$

Particle physics factor

What force couples dark matter to nuclei?

Particle physics factor

Scalar and vector currents give spin-independent terms

Example: neutralino

$$2f_p \simeq 2f_n \simeq \sum_q \langle \bar{q}q \rangle \left[-\sum_h \frac{g_{h\chi\chi}g_{hqq}}{m_h^2} + \sum_{\tilde{q}} \frac{g_{L\tilde{q}\chi q}g_{R\tilde{q}\chi q}}{m_{\tilde{q}}^2} \right]$$

Main uncertainty is $\langle m_s \bar{s} s \rangle$ (strange content of nucleon)

Particle physics factor

Axial and tensor currents give spin-dependent terms

$$\sigma_{SD}(E) = \frac{32\mu^2 G_F^2}{2J+1} \begin{bmatrix} a_p^2 S_{pp}(q) + a_p a_n S_{pn}(q) + a_n^2 S_{nn}(q) \end{bmatrix}$$

$$\overbrace{\text{Effective four-particle vertices}}^{\chi} \overbrace{p}^{\chi} \overbrace{p}^{\chi} \overbrace{n}^{\chi} \overbrace{2\sqrt{2}G_F a_p \vec{\sigma}_p \cdot \vec{\sigma}_\chi}^{\chi}} \overbrace{p}^{\chi} \overbrace{n}^{\chi} \overbrace{2\sqrt{2}G_F a_n \vec{\sigma}_n \cdot \vec{\sigma}_\chi}^{\chi}}$$

$$\overbrace{\text{Nuclear spin structure functions}}^{\text{Nuclear spin structure functions}}$$

Example: neutralino

$$2\sqrt{2}G_F a_p = \sum_q \Delta q \left[\frac{g_{Z\chi\chi}g_{Zqq}}{m_Z^2} + \sum_{\tilde{q}} \frac{g_{L\tilde{q}\chi q}^2 + g_{R\tilde{q}\chi q}^2}{m_{\tilde{q}}^2} \right]$$

Main uncertainty is nuclear spin structure functions S(q)

Exchange scalar, vector, pseudovector,?

- I.Come up with an idea, possibly explaining more than one experiment.
- 2. Test it against existing data. If it passes all tests, go to 3.
- 3. Make predictions for upcoming experiments.
- 4. Post your findings on arxiv.org.
- 5. Go to 1.

Exchange scalar, vector, pseudovector, ?

- Supersymmetry
- Extra U(I) bosons
- Extended Higgs sector

Just too many theoretical models to mention here.

My suggestion: pay theorists more, so they do not need to work so hard.

$$\begin{pmatrix} \text{number of} \\ \text{events} \end{pmatrix} = (\text{exposure}) \times \begin{pmatrix} \text{detector} \\ \text{response} \end{pmatrix} \otimes \begin{pmatrix} \text{recoil} \\ \text{rate} \end{pmatrix}$$
$$\begin{pmatrix} \text{detector} \\ \text{response} \end{pmatrix} = \begin{pmatrix} \text{energy} \\ \text{response function} \end{pmatrix} \times \begin{pmatrix} \text{counting} \\ \text{acceptance} \end{pmatrix}$$
$$\begin{pmatrix} \text{recoil} \\ \text{rate} \end{pmatrix} = \begin{pmatrix} \text{particle} \\ \text{physics} \end{pmatrix} \times (\text{astrophysics})$$

The energy response function

Typically written as a single Gaussian with mean value

$$E_{\rm ee} = \boxed{QE}$$
Quenching factor

and standard deviation σ_E , but may be different.

<u>Channeling</u>. If an ion incident onto the crystal moves in the direction of a symmetry axis or plane of the crystal, it has a series of small-angle scatterings which maintains it in the open channel. The ion penetrates much further into the crystal than in other directions.

From Gemmel 1974, Rev. Mod. Phys. 46, 129

<u>Blocking</u>. If an ion originating at a crystal lattice site moves in the direction of a symmetry axis or plane of the crystal, there is a reduction in the flux of the ion when it exit the crystal, creating a "blocking dip".

From Gemmel 1974, Rev. Mod. Phys. 46, 129

Channeling in DAMA's Nal(TI) is much less than previously published

Bozorgnia, Gelmini, Gondolo 2010

Bozorgnia, Gelmini, Gondolo 2010

Compilation of measurements of the quenching factor Q in germanium

Lin et al (TEXONO) 2007

Compilation of measurements of the quenching factor Q in Nal(TI)

Chagani et al 0806.1916

This is where one can tweak to make DAMA and CoGeNT compatible.

Compilation of measurements of the light efficiency factor L_{eff} in liquid xenon

 $\overline{E_{\text{ee}}} = \text{S1}/L_y (122\text{keV}_{\text{ee}})$ $Q = L_{\text{eff}} (S_{\text{nr}}/S_{\text{ee}})$

Finding dark matter

Finding a needle in a haystack

Hunts Needle in a Haystack

How LONG does it take to find a needle in a haystack? Jim Moran, Washington, D. C., publicity man, recently dropped a needle into a convenient pile of hay, hopped in after it, and began an intensive search for (a) some publicity and (b) the needle. Having found the former, Moran abandoned the needle hunt.

Popular Science magazine July 1939

• Experiments with e.m./nuclear discrimination observe events

- Limits are placed using
 - the "optimum interval" method, if backgrounds are not modeled
 - likelihood analysis, if backgrounds are modeled
- Two experiments without e.m./nuclear discrimination observe an annual modulation
 - Regions of interest are drawn with chi-squared fits to temporal behavior, or with likelihood analyses, or etc.

• Experiments with directional discrimination are still too small

Limits

XENON-100

3 events observed

1.8±0.6 expected background

Likelihood

Aprile et al (XENON-100) 1104.2549

XENON-100

Likelihood vs optimum interval

Aprile et al (XENON100), 1103.0303

CDMS

2 events observed

0.8±0.1±0.2 expected background

Hsu 2009

CDMS

Optimum interval

CDMS (low-threshold)

Optimum interval

Ahmed et al (CDMS) 1011.2482

32 events observed

8 expected background

Probst 2010

EDELWEISS-II

5 events observed

<3 expected background

Optimum interval

Torrento-Coello 1106.1454

Directional detectors

Directional detectors

Miuchi e al (NEWAGE) 2010

Daw et al (DRIFT-II) 2010

Claims of detection

The DAMA modulation

DAMA finds a yearly modulation as expected for dark matter particles

Drukier et al 1986

Bernabei et al 2003-10

The DAMA modulation

 $S = S_0 + S_m \cos[\omega(t - t_0)]$

Drukier et al 1986

Bernabei et al 2003-10

The DAMA modulation

Summary of the results obtained in the additional investigations of possible systematics or side reactions (DAMA/LIBRA - arXiv:0804.2741 to appear on EPJC)

Source	Main comment	Cautious upper limit (90%C.L.)
RADON	Sealed Cu box in HP Nitrogen atmospher 3-level of sealing, etc.	e, <2.5×10 ⁻⁶ cpd/kg/keV
TEMPERATURE	Installation is air conditioned+ detectors in Cu housings directly in conta with multi-ton shield→ huge heat capacit + T continuously recorded	ct <10 ⁻⁴ cpd/kg/keV y
NOISE	Effective full noise rejection near threshol	ld <10 ⁻⁴ cpd/kg/keV
ENERGY SCALE	Routine + instrinsic calibrations	<1-2 ×10 ⁻⁴ cpd/kg/keV
EFFICIENCIES	Regularly measured by dedicated calibrations <10 ⁻⁴ cpd/kg/keV	
BACKGROUND	No modulation above 6 keV; no modulation in the (2-6) keV <i>multiple-hits</i> events; this limit includes all possible sources of background	<10 ⁻⁴ cpd/kg/keV
SIDE REACTIONS	Muon flux variation measured by MACR	O <3×10 ⁻⁵ cpd/kg/keV
+ even if larger they cannot satisfy all the requirements of annual modulation signature		

Т

Slide by Belli (DAMA)

т То т

A neutralino with mass between \sim 5 GeV and \sim 100 GeV, when all uncertainties are included

Bottino, Donato, Fornengo, Scopel 2003-2011

Are low mass WIMPs compatible with other experiments?

Gondolo, Gelmini 2004, 2005; Petriello, Zurek 2008; Bottino et al 2008; Chang, Pierce, Weiner 2008; Fairbairn, Schwetz 2008; Hooper, Petriello, Zurek, Kamionkowski 2008; Chang, Kribs, Tucker-Smith, Weiner 2008; Savage, Gelmini, Gondolo, Freese 2008, 2010;

Gondolo, Gelmini hep-ph/0405278

Are low mass WIMPs compatible with other experiments?

Gondolo, Gelmini 2004, 2005; Petriello, Zurek 2008; Bottino et al 2008; Chang, Pierce, Weiner 2008; Fairbairn, Schwetz 2008; Hooper, Petriello, Zurek, Kamionkowski 2008; Chang, Kribs, Tucker-Smith, Weiner 2008; Savage, Gelmini, Gondolo, Freese 2008, 2010;

Petriello, Zurek 2008

Low mass WIMPs are compatible with other experiments

Gondolo, Gelmini 2004, 2005; Petriello, Zurek 2008; Bottino et al 2008; Chang, Pierce, Weiner 2008; Fairbairn, Schwetz 2008; Hooper, Petriello, Zurek, Kamionkowski 2008; Chang, Kribs, Tucker-Smith, Weiner 2008; Savage, Gelmini, Gondolo, Freese 2008, 2010;

Savage, Gelmini, Gondolo, Freese 2010

The CoGeNT "irreducible excess"

• CoGeNT, a low-electronic-noise Ge detector, finds an "irreducible excess of events"

Aalseth et al 2010

Interpretation of CoGeNT excess

- A dark matter particle with mass around 10 GeV?
- It might also explain DAMA!

Aalseth et al 2010

The CoGeNT modulation

- 442 live days, interrupted by fire
- I46 kg-day exposure
- Period of one year
- Phase compatible with DAMA's (within errors)
- 2.8 o

Kelso, Hooper 1106.1066

Aalseth et al 1106.0650

The devil is in the details

XENON-100 vs CoGeNT

Aprile et al (XENON-100) 1104.2549

Collar 1106.0653

~10 GeV dark matter?

- Degeneracy between exponential background and exponential signal in CoGeNT
- Different analyses find opposite results (from compatible to incompatible)
- Theoretically challenging

Couple more to protons

Spin-independent couplings to prot allow modulation signals compatibl

Kurylov, Kamionkowksi 2003; Giuliani 2005; Co 2010; Feng et al 2011;

A CoGeNT modulation analysis

Light neutralinos

Bottino, Donato, Fornengo, Scopel 2003-2011

May escape ATLAS/CMS bounds (see Baglio, Djouadi 2011)

Belli et al 1106.4667

Interesting times

Wednesday, August 3, 11

- XMASS
- EDELWEISS III
- XENON-Iton
- Super CDMS
- DM-ICE
- EURECA
- and many many others

Schumann 2011

Ge, CaWO<u>4, ...</u>

EURECA

150 kg 2015 1 ton 2018

Kudryatsev 2011

May you get what you wish May you be noticed by powerful people May you live interesting times

Wednesday, August 3, 11