This is the best available information, so it must be of value.

Everyone knows the limitations. Everyone understands the implications of these assumptions.

This is better than nothing.

No one has proven this is wrong.

There is no systematic error, on average. The systematic errors don't matter.

The systematic errors are accounted for in the post processing.

Normality is always a good first approximation. In the limit, it has to be normally distributed, at least approximately.
Everyone assumes it is normally distributed to start with.

Everyone makes approximations like that.

Everyone makes this approximation.

We have more advanced techniques to account for that.

The users demand this. The users will not listen to us unless we give them the level of detail they ask for.
We must keep the users on-board.

If we do not do this, the user will try and do it themselves.

There is a commercial need for this information, and it is better supplied by us than some cowboy.
Refusing to answer a question is answering the question.

Refusing to use a model is still using a model.

Even if you deny you have a subjective probability, you still have one. All probabilities are subjective.
The model just translates your uncertainty in the inputs to your rational uncertainty in the future.

Sure this model is not perfect, but it is not useless.

No model is perfect.

No model is useless if interpreted correctly. It is easy to criticise.

This model is based on fundamental physics.

The probabilities follow from the latest developments in Bayesian statistics.

Think of the damage a decision maker might do without these numbers.

Any rational user will agree.

Things will get better with time, we are making real progress.

You have to start somewhere. What else can we do? It might work, can you deny that?

What damage will it do?




Predictability + School on Data Assimilation

from 26 April 2011 to 27 May 2011 Nordita

Predicting the unpredictable is a challenge that is common to various
physical systems whose dynamics is governed by the equations of
fluid dynamics. The oldest example is weather prediction and was
developed since the 1950s by various people including the Norwegian
meteorologist Ragnar Fjortoft. Other examples include climate
prediction, space weather forecast, and solar cycle forecast. The
mathematics developed for these applications is extremely interesting
and deserves more detailed understanding, so that these techniques
can be used also in other areas where the application of this technique
is less well developed.

A major difference between weather forecasting and climate or solar
cycle forecasting is the long time scale and an additional shortage of
diagnostic data. Climate models are also more complex and involve
coupling between atmosphere and oceans. Solar cycle modeling, on
the other hand, is still only at a rather exploratory level. It was only
recently that a proper data assimilation method using the so-called
Ensemble Kalman Filter to take into account uncertainties of dynamo
model and measurements has been used for solar cycle prediction
O o However, significant progress is expected within the next few years.

Climate Change and

the Environment Nordica 3 May 2011 © Leonard Smith
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Internal (in)consistency... Model Inadequacy

B
Grantham Research Institute on
Climate Change and
the Enviranment Nordica 3 May 2011 © Leonard Smith
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Internally Coherent Data Assimilation (UQ/ME)
in

Maths, Physics, Forecasting and Decision Support

Leonard A Smith
LSE CATS/Grantham
Pembroke College, Oxford

*
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Not possible without:
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_Which problem do you want to attack?
’_

Maths  Physics Forecasting Decision

(Science) Support

Linearity

Perfect Model Class
Stochastic/Deterministic
Probability Theory
Epistemology

(Ethics)

Grantham Research Institute on
Climate Change and
: the Environyrient Nordica 3 May 2011 © Leonard Smith



_Things that interest me include:

Model Improvement (Imperfection errors, Pseudo orbits)
Model Evaluation (Shadowing)

Forecast Evaluation (Scores and Communication)

Forecast Improvement (Model, Ensemble, Interpretation, Obs)
Nonlinear Data Assimilation (imperfect model, incomplete obs)

Relevance of Linear Assumption (Ensemble Formation and Adaptive Obs)

Decision Support (Value vs Skill, “Best available” vs “Decision Relevant”)

Relevance of Bayesian Way/
Probability Theory in Nonlinear Systems

Grantham Research Institute on
Climate Change and
the Environment Nordica 3 May 2011 © Leonard Smith



_Things that interest me: -

Model Improvement (Imperfection errors, Pseudo orbits,Parameters) -

K Judd, CA Reynolds, LAS & TE Rosmond (2008) The Geometry of Model Error.
Journal of Atmospheric Sciences 65 (6), 1749-1772.

LAS, M.C. Cuéllar, H. Du, K. Judd (2010) Exploiting dynamical coherence: A
geometric approach to parameter estimation in nonlinear models, Physics Letters
A, 374,2618-2623

K Judd & LA Smith (2004) Indistinguishable States II: The Imperfect Model
Scenario. Physica D 196: 224-242.

Grantham Research Institute on
Climate Change and
: the Environipient Nordica 3 May 2011 © Leonard Smith



_Things that interest me:
Model Evaluation (Shadowing)

L.A. Smith, M.C. Cuéllar, H. Du, K. Judd (2010) Exploiting dynamical coherence:

A geometric approach to parameter estimation in nonlinear models, Physics
Letters A, 374, 2618-2623

LA Smith (2000) 'Disentangling Uncertainty and Error: On the Predictability of
Nonlinear Systems' in Nonlinear Dynamics and Statistics, ed. Alistair I Mees,
Boston: Birkhauser, 31-64.

Grantham Research Institute on
Climate Change and
: the Environyrient Nordica 3 May 2011 © Leonard Smith



_Things that interest me:

Forecast Evaluation (Scores)

J Brocker, LA Smith (2007) Scoring Probabilistic Forecasts: The Importance of
Being Proper Weather and Forecasting, 22 (2), 382-388.

J Brocker & LA Smith (2007) Increasing the Reliability of Reliability Diagrames.
Weather and Forecasting, 22(3), 651-661.

A Weisheimer, LA Smith & K Judd (2005) A New View of Forecast Skill:
Bounding Boxes from the DEMETER Ensemble Seasonal Forecasts, Tellus 57 (3)
265-279.

LA Smith & JA Hansen (2004) Extending the Limits of Forecast Verification with
the Minimum Spanning Tree, Mon. Weather Rev. 132 (6): 1522-1528.

MS Roulston & LA Smith (2002) Evaluating probabilistic forecasts using
information theory, Monthly Weather Review 130 6: 1653-1660.

D Orrell, LA Smith, T Palmer & J Barkmeijer (2001) Model Error in Weather
Forecasting, Nonlinear Processes in Geophysics 8: 357-371.

Grantham Research Institute on
Climate Change and
the Enviranment Nordica 3 May 2011 © Leonard Smith




_Things that interest me:

Forecast Evaluation (Communication)

R Hagedorn and LA Smith (2009) Communicating the value of probabilistic
forecasts with weather roulette. Meteorological Applications 16 (2): 143-155.

MS Roulston & LA Smith (2004) The Boy Who Cried Wolf Revisited: The Impact
of False Alarm Intolerance on Cost-Loss Scenarios, Weather and Forecasting 19
(2): 391-397.

N Oreskes, DA Stainforth, LA Smith (2010) Adaptation to Global Warming: Do
Climate Models Tell Us What We Need to Know? Philosophy of Science, 77 (5)
1012-1028

Grantham Research Institute on
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_Things that interest me:

Forecast Improvement

J Brocker & LA Smith (2008) From Ensemble Forecasts to Predictive
Distribution Functions Tellus A 60(4): 663.

M S Roulston & LA Smith (2003) Combining Dynamical and Statistical
Ensembles, Tellus 55 A, 16-30.

K Judd & LA Smith (2004) Indistinguishable States Il: The Imperfect Model
Scenario. Physica D 196: 224-242.

Grantham Research Institute on
Climate Change and
: the Environyrient Nordica 3 May 2011 © Leonard Smith



_Things that interest me:

Nonlinear Data Assimilation (im/perfect model, incomplete obs)

H. Du (2009) PhD Thesis, LSE (online, papers in review)
Khare & Smith (2010) Monthly Weather Review in press

K Judd, CA Reynolds, LA Smith & TE Rosmond (2008) The Geometry of
Model Error . Journal of Atmospheric Sciences 65 (6), 1749-1772.

K Judd, LA Smith & A Weisheimer (2004) Gradient Free Descent: shadowing
and state estimation using limited derivative information, Physica D 190 (3-4):
153-166.

K Judd & LA Smith (2001) Indistinguishable States I: The Perfect Model
Scenario, Physica D 151: 125-141.

Grantham Research Institute on
Climate Change and
the Enviranment Nordica 3 May 2011 © Leonard Smith




_Things that interest me:

Relevance of Linear Assumption (Adaptive Obs)

I Gilmour, LA Smith & R Buizza (2001) Linear Regime Duration: Is 24 Hours a
Long Time in Synoptic Weather Forecasting? J. Atmos. Sci. 58 (22): 3525-3539.

JA Hansen & LA Smith (2000) The role of Operational Constraints in Selecting
Supplementary Observations, J. Atmos. Sci., 57 (17): 2859-2871.

PE McSharry and LA Smith (2004) Consistent Nonlinear Dynamics: identifying
model inadequacy, Physica D 192: 1-22.

Grantham Research Institute on
Climate Change and
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_Thlngs that interest me: -
Decision Support -
Probabilities vs Odds (with Roman Frigg, in preparation)

Science for Decision Support (with Nick Stern, in preparation)

MS Roulston, DT Kaplan, J Hardenberg & LA Smith (2003) Using Medium Range
Weather Forecasts to Improve the Value of Wind Energy Production, Renewable
Energy 29 (4)

MS Roulston, J Ellepola & LA Smith (2005) Forecasting Wave Height Probabilities
with Numerical Weather Prediction Models, Ocean Engineering 32 (14-15), 1841-
1863.

MG Altalo & LA Smith (2004) Using ensemble weather forecasts to manage utilities
risk, Environmental Finance October 2004, 20: 8-9.

MS Roulston & LA Smith (2004) The Boy Who Cried Wolf Revisited: The Impact of
False Alarm Intolerance on Cost-Loss Scenarios, Weather and Forecasting 19 (2):
391-397.

R Hagedorn and LA Smith (2009) Communicating the value of probabilistic
forecasts with weather roulette. Meteorological Applications 16 (2): 143-155.

Grantham Research Institute on
Climate Change and
the Environipient Nordica 3 May 2011 © Leonard Smith




_Things that interest me:

Relevance of Bayesian Way/

Probability Theory to Real Nonlinear Systems -

LA Smith, (2002) What Might We Learn from Climate Forecasts? Proc. National
Acad. Sci. USA 4 (99): 2487-2492.

LA Smith (2000) 'Disentangling Uncertainty and Error: On the Predictability of
Nonlinear Systems' (PDF) in Nonlinear Dynamics and Statistics, ed. Alistair I
Mees, Boston: Birkhauser, 31-64.

DA Stainforth, MR Allen, ER Tredger & LA Smith (2007) Confidence,
uncertainty and decision-support relevance in climate predictions, Phil. Trans. R.
Soc. A, 365, 2145-2161.

DA Stainforth, T Aina, C Christensen, M Collins, DJ Frame, JA Kettleborough, S
Knight, A Martin, J Murphy, C Piani, D Sexton, L. Smith, RA Spicer, AJ Thorpe,
M.J Webb, MR Allen (2005) Uncertainty in the Predictions of the Climate
Response to Rising Levels of Greenhouse Gases Nature 433 (7024): 403-406.

PE McSharry and LA Smith (2004) Consistent Nonlinear Dynamics: identifying
model inadequacy, Physica D 192: 1-22.

Grantham Research Institute on
Climate Change and
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Definitions

Weather-like: decisions made very often, we can learn from mistakes.
large forecast-outcome library
“interpolation” in state space
nontrivial out-of-sample library
(some) user memory of pain

Climate-like: new information arrives very slowly
model lifetime << forecast lead time
extrapolation into the unobserved
strong contrarian pressures (well intended)
(sometimes) anti-science lobby
Ensembles:
Monte Carlo sampling of initial conditions and parameters in R M
Grand Ensembles: opportunistic constrained weird sampling
of deployable model manifold in ???

Grantham Research Institute on
Climate II'_h;!.rIL_:U and
. the Environment Nordica 3 May 2011 © Leonard Smith



Lyapunov Exponents Do Not
Indicate Predictability!

Even with a perfect deterministic model, the
future is, at best, a probability density function.

The limit of predictability reflects the leadtime
our forecast PDF is “worse” than climatology.

And RMS forecast error is at best irrelevant.
McSharry & Smith, PRL, (1999) Better
nonlinear models from noisy data: Attractors
with maximum likelihood,

.00 YVhat skill scores should we be using?
J Brocker, LA Smith (2007) Scoring
Probabilistic Forecasts: The Importance of
00 Being Proper Weather & Forecasting, 22 (2),
382-388.

oo lgnorance: Good, 1952; MS Roulston & LA
oo Smith (2002) Evaluating probabilistic forecasts

oo using information theory, Monthly Weather
Smith (2002) Chaos and Predictability in Encyc Atmos Sci  Review 130 6: 1653-1660.)

Grantham Research Institute on
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_ Lyapunov Exponents Do Not Indicate
Predictability!

C Ziehmann, LA Smith & J Kurths (2000),
Localized Lyapunov Exponents and the Prediction
of Predictability, Phys. Lett. A, 271 (4): 237-251.

LA Smith (2000) 'Disentangling Uncertainty and Error: On the Predictability of
Nonlinear Systems' in Nonlinear Dynamics and Statistics, ed. Alistair I Mees,
Boston: Birkhauser, 31-64.

LA Smith, C Ziehmann & K Fraedrich (1999) Uncertainty Dynamics and
Predictability in Chaotic Systems, Quart. J. Royal Meteorol. Soc. 125: 2855-2886.

LA Smith (1997) The Maintenance of Uncertainty. Proc International School of
Physics "Enrico Fermi', Course CXXXIII, 177-246, Societ'a Italiana di Fisica,
Bologna, Italy.

LA Smith (1994) Local Optimal Prediction. Phil. Trans. Royal Soc. Lond. A, 348
(1688): 371-381.

Grantham Research Institute on
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_ Fallacy of Misplaced Concreteness

“The advantage of confining attention to a definite group of abstractions, is that
you confine your thoughts to clear-cut definite things, with clear-cut definite
relations. ...

The disadvantage of exclusive attention to a group of abstractions, however well-
founded, is that, by the nature of the case, you have abstracted from the
remainder of things. ... it is of the utmost importance to be vigilant in critically
revising your modes of abstraction.

Sometimes it happens that the service rendered by philosophy is entirely obscured
by the astonishing success of a scheme of abstractions in expressing the dominant

interested of an epoch.”
A N Whitehead. Science and the Modern World. Pg 58/9

Probability forecasts based on model simulations provide excellent realisations of
this fallacy, drawing comfortable pictures in our mind which correspond to
nothing at all, and which will mislead us if we carry them into decision theory.
And today that is dangerous!

You don’t have to believe everything you compute!
Q e Solar Physics: Data Assimilation or Model Intercomparison?

the Environment Nordica 3 May 2011 © Leonard Smith



Betting on the future voltage in this circuit.

Ensemble pradictions up 1o lead time 256.

e e e e
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Lead time, t o
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Betting on the future voltage in this circuit.
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Model 1
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Lead time, t o

Ensemble predictions up o lead time 256,

Model 2
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Figure 7: Ensemble predictions using (a) model 1 and () modd 2. The
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Moore-Spiegel Circuit (by Reason Machette)
One Initial State — Another Initial State -

.. Ensamble pradictions up to lead tima 256, 5 Ensemble predictions up to lead time 256.
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Forecasts busts in a Chaotic Circuit
512 member ensembles

i
Best known 1-step model
paT: o 00 200 20 w00 =00 512 step free running forecasts

So wait until we know the
future, then look for model

T | ' | | trajectories that “shadow” the
Nv | obs to within the noise.

(But what is noise, really?)

1
=100 a 100

I
=100 Q 100 200 300 400 =0

=1

00
e Grantham Research Institute on
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_

After a flight, the series of control

perturbations required to keep a by-

design-unstable aircraft in the air look with the Eurofighter Tuphoon, in
are arandom time series and arguably e st ine presous peine

lies in front of the centre of

are StOChaStIC. gravity, therefore making the

aircraft aeradynarmically

There is no stochastic fix:

unztable, and iz why Eurofightar

But you cannot fly very far by specifying [iheen hes sueh 2 comples

Flight Contral Systern -

the perturbations randomly! computers react quicker than 3
pilot,
2 When Eurafighter Typhoon
Th I n k Of WC4dvar/ ISIS/GD . crosses intogsuperszpnic flight, the pressure point rnoves behind the cantre of
perturbations as what is required to gravity, giving a stable sircraft,
keep the mOdeI flyl ng near the The advantages of an intentionally unstable design aver that of a stable

observations: we can learn from them, 77T T I LI DT
but no “stochastic model” could
usefully provide them.

Which is NOT to say stochastic models are not a good idea:
Physically it makes more sense to include a realization of a process rather than it mean!
But a better model class will not resolve the issue of model inadequacy!

It will not yield decision-relevant PDFs!

Grantham Research Institute on
Climate Change and

the Environment Nordica 3 May 2011 © Leonard Smith



Useful(1): log(p) scores much better than unconditioned distribution, p
Useful(2): yields insight of use in making better policy decisions
Useful(3): enhances scientific understanding of the system

Definitions

Wrong(1): empirically adequate (effectively perfect, wrong on a technicality)
Wrong(2): shadowing time long (useful forecasts: chaos per se not deadly
Wrong(3): qualitatively dissimilar (useful for scientific understanding)

BIMBJARD 3 .,BOss

e SN T
= b o I-“:-‘._" )
Grantham Research Institute on
_ Climate Change and
\ the Envi t H i
_ e Environmen Nordica 3 May 2011 © Leonard Smith
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Simple Geometric Approaches...

Grantham Research Institute on
Climate Change and
the Environment Nordica 3 May 2011 © Leonard Smith



Suppose we wish to distinguish two sets of simulations (say, storm/no
storm); 1n terms of indistinguishable states, the AO question 1s simply
“Which observations are most likely to separate these sets?”

afantng i instit
Climate Change and
. the Environment Nordica 3 May 2011 © Leonard Smith



To do this, merely color the trajectories in each set, and determine the
observation in space and time (post ‘now’) that is likely to yield the most
relevant information.

Grantham Research Institute on
Climate Change and
the Enviranment Nordica 3 May 2011 © Leonard Smith



A measurement along this line provides less information
— for distinguishing blue from brown.

No linearization,
No implicit perfect model assumption,
And the ability to update the AO in light of scheduled obs without

| _ rerunning the simulations.
Grantham Ressarch Institute on
Climate Change and
: the Enviranment Nordica 3 May 2011 © Leonard Smith



_ Model Inadequacy and Data Assimilation

Inside the perfect model scenario, I know what I am looking for:

The model and the system are effectively identical.
There is a state ("Truth”) that is defines the future of the system.

In chaotic systems “Truth” is not identifiable given noisy observations.

The most likely state, given with observations (and the noise model) will
fall in the set H(x), the indistinguishable states of x, which are in turn a
subset of the unstable manifold of x.

K Judd & LA Smith (2001) Indistinguishable states I: the perfect model
scenario Physica D 151: 125-141

Even if you do not believe in the mathematical niceties of
Indistinguishable States, if you are aiming to make decisions PDFs from
ensembles, you must be targeting something similar! (No?)

Grantham Research Institute on
Climate Change and
the Environment Nordica 3 May 2011 © Leonard Smith



_ What 1s a manifold?

“Utter and Senseless Destruction of Dynamical Information?”

M=11
(X,y,z,u,w,v...)

Observation
Obs-Covar Matrix
Unknown Manifold

(existence proof only)

Lets make an ensemble!

Grantham Research Institute on
Climate Change and
. Hie S 16 Tune 2005 (Con)Fusing Geophysical Models with Data © L.A. Smith




_ Now evolve the ensemble

under the (perfect) model:

" o s e S e e .

Lets make an ensemble!

Grantk
Clims
- the E 16 Tume 2005 (Con)Fusing Geophysical Models with Data © LA Smuth




_ Now evolve the ensemble under the (perfect) model:

And get a new observation...

Do I really want to make a KF update?
_OI’_

Can I use the fact that the model dynamics

(stochastic or deterministic) trace out the manifold =1

I know exists but cannot sample directly?!?
Grantk
Clime
the E 16 Tume 2005 (Con)Fusing Geophysical Models with Data © LA Smith




How does this compare with En KF :Shree (student of JA))
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FIG. 7. Results for the Ikeda model. The upper lett panel consists of a snapshot of K = 1000
member IS and EN ensembles. The target is located at the intersection of the two lines,
where as the observation is depicted by the circle. The EN ensemble is depicted by the 1000
magenta crosses. The EN ensemble members are equally likely and are therefore given the

same color. The colored dots depict the weighted ensemble obtained via the IS method. The

Grantham Ressareh Insti coloring indicates their relative likelihood given observations from fggs to tygo;. The upper Khare & LAS, in press MWR
Climate Change ar
the Environment right, lower left and lower right panels depict ensembles for the next 3 observation times.
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The g-ball method EnKF
Obs
Consider a series of spheres - ISIS

of radius € (Y& —balls”)
centred on “Truth.”

Count how many times each
method “wins” by putting
more probability mass within
€ of the “Truth” (as a
function of €)
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ISIS
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Figure 3.6: Compare the EnKF and [SIS results via e-ball, the blue line denotes
the proportion of EnKF method wins and the red line denotes the proportion of
ISIS method wins a) Ikeda experiment, Noise level (.05 (Details of the experiment
are listed mn Appendix B Table B.3); b) Lorenz%6 experiment, Noise level 0.5
(Details of the experiment are listed in Appendix B Table B.4)
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How does this compare with En KF (Du after Anderson)
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Figure 3.5: Ensemble results from both EnKF and ISIS for the Ikeda Map (Ex-
periment C). The true state of the system is centred in the picture located by the
cross; the square is the corresponding observation; the background dots indicate
samples from the Ikeda Map attractor. The EnKF ensemble is depicted by 512
purple dots. Since the EnKF ensemble members are equally weighted, the same
colour is given. The ISIS ensemble is depicted by 512 coloured dots. The colour-
ing indicates their relative likelihood weights. Each panel is an example of one
nowcast.

ISIS ensemble from
the indistinguishable
states of an estimate
of X.

Du (2009)

© Leonard Smith



With En KF in an M=12 Lorenz 96 system (
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1 1
FIG. 10. Results for the 12-variable Lorenz 1996 model. The upper left panel consists of a
snapshot of & = 1000 member IS and EN ensembles at assimilation time t)gp;. The target is
located at the intersection of the two lines, where as the observation is depicted by the circle.
The EN ensemble is depicted by the 1000 magenta crosses. The EN ensemble members are
equally likely and are therefore given the same color. The colored dots depict the weighted
ensemble obtained via the IS method. The coloring indicates their relative likelihood given
observations from tgse to fijoo1. The upper right, lower left and lower right panels depict

ensembles for the assimilation times fimi. finor and tinar respectivelv,
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Khare & LAS, in press
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But the point here is that all the
grey dots, the target for PDF
forecasting, go away when the
model is imperfect!

Given an imperfect model, we can test
against additional observations in “now
cast” mode, but the aim of a relevant (PDF)
ensemble has vanished.

(and would be a function of lead-time if
resurrected!)

EnKF
Obs
ISIS

(See Du’s thesis for much discussion and
- examples)

f
|
I
1

'\ Figure 3.6: Compare the EnKF and [SIS results via e-ball, the blue line denotes

N the proportion of EnKF method wins and the red line denotes the proportion of
] \ (I ISIS method wins a) Ikeda experiment, Noise level (.05 (Details of the experiment
s} \ . are listed mn Appendix B Table B.3); b) Lorenz%6 experiment, Noise level 0.5
-an} | & (Details of the experiment are listed in Appendix B Table B.4)
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So how does this work?

Grantham Research Institute on
Climate Change and

the Environment Nordica 3 May 2011
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All we have are
observations
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Forecasts from
observations
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Apply shadowing
filter
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The aim is to minimize the
mismatches simultaneously.

This is simply gradient
decent, in a N*M (=15)
dimensional space, towards
unique global minima
which form the trajectory
manifold.

After using them to define
the starting point, we ignore
the observations during the
(initial) decent.
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[terate 1
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Iterate 4
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Iterate 6
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Convergence toward a
trajectory.

Once very close, the
trajectory passing through
any point on the psuedo-
orbit can be used/contraste
with other trajectories.
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Near Truth, but not
Truth
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The trajectory is near the
natural manifold; the obs
are not!

(Near defined rather poorly
using the noise model!)

The trajectory is also near
to (but different from) the
segment of truth that
generated the obs.
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This 1s achieved by paying
more attention to the
dynamics over the window.
Statistical properties of the
trajectory from the
observations are secondary.

This proves remarkably
robust either:

- when the model is perfect
- in high-dimensional space
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Suppose the observation
at t=3 had been
significantly in error.

The shadowing filter can
recover using
observations from t=4 and
beyond, in a manner that
sequential filters cannot.

In the shadowing filter,
the mismatch at t=3 and
t=4 is decreased by
bringing the estimated
state at t=3 back toward
the model manifold
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In the shadowing filter,
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t=4 is decreased by
bringing the estimated
state at t=3 back toward
the model manifold

Sequential filters do not
have access to this

multi-step information.
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Suppose the observation
at t=3 had been
significantly in error.

The shadowing filter can
recover using
observations from t=4 and
beyond, in a manner that
sequential filters cannot.

In the shadowing filter,
the mismatch at t=3 and
t=4 is decreased by
bringing the estimated
state at t=3 back toward
the model manifold

Sequential filters do not
have access to this
multi-step information.
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Given that we can find
one such trajectory near
the obs, we can create an
ensemble form the set of
indistinguishable states
of that (and similar)
trajectories, and then
draw from that set
conditioned on how well
each member compares
with the observations.
(Judd & Smith, Physica D

Indistinguishable States I, 2001
Indistinguishable States II, 2004)

The aim of data
assimilation in this case
IS an accountable
probability forecast:
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FIG. 7. Results for the Ikeda model. The upper lett panel consists of a snapshot of K = 1000

member IS and EN ensembles. The target is located at the intersection of the two lines,

where as the observation is depicted by the circle. The EN ensemble is depicted by the 1000

magenta crosses. The EN ensemble members are equally likely and are therefore given the

same color. The colored dots depict the weighted ensemble obtained via the IS method. The

coloring indicates their relative likelihood given observations from fggs to tygo;. The upper

right, lower left and lower right panels depict ensembles for the next 3 observation times.

Khare & LAS, in press MWR
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_ Deployed: m=2, m=18, T20/T21, NOGAPS

K Judd, CA Reynolds, TE Rosmond & LA Smith (2008) The Geometry of Model Error .
Journal of Atmospheric Sciences 65 (6), 1749-1772.

[74] J Brocker & LA Smith (2008) From Ensemble Forecasts to Predictive Distribution
Functions Tellus A 60(4): 663.

Chemical Engineering Research and Design, 82(A), 1-10 SCI 4. Abstract

[66] K Judd & LA Smith (2004) Indistinguishable States II: The Imperfect Model Scenario.
Physica D 196: 224-242.

PE McSharry and LA Smith (2004) Consistent Nonlinear Dynamics: identifying model
inadequacy, Physica D 192: 1-22,

K Judd, LA Smith & A Weisheimer (2004) Gradient Free Descent: shadowing and state
estimation using limited derivative information, Physica D 190 (3-4): 153-166.

LA Smith (2003) Predictability Past Predictability Present. In 2002 ECMWF Seminar on
Predictability. pg 219-242. ECMWF, Reading, UK.

D Orrell, LA Smith, T Palmer & J Barkmeijer (2001) Model Error in Weather Forecasting,
Nonlinear Processes in Geophysics 8: 357-371.

K Judd & LA Smith (2001) Indistinguishable States I: The Perfect Model Scenario, Physica D
151: 125-141.

L.A. Smith, M.C. Cuéllar, H. Du, K. Judd (2010) Exploiting dynamical coherence: A geometric
approach to parameter estimation in nonlinear models, Physics Letters A, 374, 2618-2623

Grantham Research Institute on
Climate Change and
the Environment Nordica 3 May 2011 © Leonard Smith
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_ Mismatch Directions Reveal Model Error

(a)

Mismatch of Sp. Humidity (10%6)

Figure 10: Direction error for T47L24 and T79L30 models. Contour lines show
mean error and shading shows standard deviation. Details as in figure9

2]}';:2152‘;:;?{;!;;[;‘“ & Journal of Atmospheric Sciences 65 (6), 1749-1772

the Environment

. K Judd, CA Reynolds, LA Smith & TE Rosmond (2008) The Geometry of Model Error .

Nordica 3 May 2011 © Leonard Smith



_ When a model looks too good to be true...
s r" .

=

Grantham Research Institute on
Climate Change and
the Environment
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_ How would you design a “climate” model?

Run Time Ratio

What are you constrained by?

For decision support, the model has to run faster than real time.
The larger the lead time, the fewer ensemble members you can run to examine sensitivity.

Complex Models
A
We will quantify complexity in terms of a model’s run-time-ratio.
1000 A model with run-time-ratio of 10 will run 10x slower than the system
100 being modelled.
10
Forecast
1 >
Lead time
0.1
0.01 (That is, it will take ten years to simulate one model-year.
Sometimes fine for science, never good from policy makers.)
0.001
This impacts ensemble size, maximum lead time considered, and
0.0001 . s ’
which phenomena to “include”.
v
Simple Models

© Leonard Smith



_ How would you design a climate model?

Run Time Ratio

What are you constrained by?

Complex models may not fit in current hardware, even if you know what you would build.
And the more complex your model, the fewer “simulation hours” you will have.

Complex Models

1000

100

10

Forecast
>

Lead time

0.1
0.01 Inaccessibl
0.001 Accessible
0.0001 . .
Technological Constraints
v
Simple Models

© Leonard Smith



_ How would you design a climate model?

Run Time Ratio

What are you constrained by?

Requirements for model fidelity sets a lower bound on the complexity with lead time.
Almost always, the model is required to grow more complex at larger lead times.

Complex Models

Relevayt X\ 4
,¢* Irrelevant

1000 .o
100 et
10 .,-'°
Forecast
1 - >
Lead time
0.1 Lo
0.01 .'. Inaccessibl
0.001 | « Accessible
0.0001p Technological Constraints

Simple Models

Fidelity Constraints

© Leonard Smith



_ How would you design a climate model?

Run Time Ratio

What are you constrained by?

be expected to

Limits of current scientific/mathematical knowledge mean the model may prove inadequate.
Following the financial sector, we will tolerate this as long as the Prob(Big Surprise) < 0.05

Complex Models

1000

100

10

Relevayt X\ 4
,¢* Irrelevant

Prob(Big Surprise) > 1 in 200

Forecast
>

0.1

0.01

0.001

0.0001

Simple Models

Lead time

Inaccessibl
Accessible

| Technological Constraints

Fidelity Constraints
Knowledge Constraints

© Leonard Smith



_ How would you design a climate model?

The decision you take will depend on how these three curves lie.

Complex Models

Relevallt X\ 4
,¢* Irrelevant

I
I
I
1000 .
o
o 100 T
= o’ Prob(Big Surprise) > 1 in 200
£ 10 o’ l
© o I Forecast
E 1 — >
= : Lead time
Z o e I
o I
0.01 . Inaccessibl
0.001 | « : Accessible
0-0001 , Technological Constraints
Fidelity Constraints
Simple Models Knowledge Constraints
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_ How would you design a climate model?

The decision you take will depend on how these three curves lie.

Complex Models

Relevane ° >
o Irrelevant

1000

100
Prob(Big Surprise) > 1 in 200

10

S
~N)
&
o Q Forecast
g 1 >
= Lo Lead time
= 0.1 ¢
m [ ]

0.01 RTTTLLL A Inaccessibl

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
P R Y

0001 | _o°° Accessible
. Technological Constraints
Fidelity Constraints
Simple Models Knowledge Constraints
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_ How would you design a climate model?

What are the challenges we face with interpreting model simulations
in different regions of this schematic?

Complex Models
Relevant ° ¥
> Irrelevant Ambiguity

(Knightian Uncertainty)

Intractability

1000

100
Prob(Big Surprise) > 1 in 200

10

Implied Uncertainty 3 Forecas{

(Knightian Risk)

0.1
[ ]

Lead time

Run Time Ratio
o

0.01 PPPTTL L

Inaccessibl
Accessible

0.001 .0'
0-0001 Technological Constraints
Fidelity Constraints
Simple Models Knowledge Constraints

© Leonard Smith



_ How would you design a climate model?

We need to be above the green line, below the red, and to the left of the blue.
So we could make a relevant 100 year simulation and have it a year from now.

Complex Models

1000

100

10

Relevane ° >
o Irrelevant

Prob(Big Surprise) > 1 in 200

° Forecast
>

0.1

Run Time Ratio
o

0.01

0.001

0.0001

Simple Models

Lead time

Inaccessibl
Accessible

Technological Constraints
Fidelity Constraints
Knowledge Constraints

4
—-— s s e e e e .
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_ How would you design a climate model?

Run Time Ratio

But in this case, this “100 year” model is out of our reach.
Of course we can build it anyway, call it “best available” knowing it is
both best and irrelevant; and pass it on (saying clearly that Prob(B.S.)~1)

Complex Models

Relevane * v
o Irrelevant

1000

100 ¢
Prob.(:Big Surprise) > 1 in 200

[
(=)

I Forecast
1 —evt >
' Lead time
0.1 ot I
0.01 o : Inaccessibl
0.001 | .° ! Accessible
0-0001F : Technological Constraints
Fidelity Constraints
Simple Models Knowledge Constraints

© Leonard Smith



_ Decision Support Model Model (Design to deliver)

Run Time Ratio

©

Complex Models

1000

100

10

0.1 .
0.01 .
( ]
( ]
0.001 |
( ]
[ ]
[ ]

0.0001

Simple Models

Grantham Research Institute on
Climate Change and
the Environment

Relevayt ) 4

.o ®* Irrelevant

There is some danger
in first picking the lead

time “required.”
Then finding an

accessible level of
complexity

Prob(Big SurprIe) >11in 200

Forecast
>

Lead time

Inaccessibl
Accessible

And using ensembles to
estimate “uncertainty”

Technological Constraints
Fidelity Constraints
Knowledge Constraints

Nordica 3 May 2011

within an irrelevant
model.
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_ Is designing the “art of the solvable” so different?

1000

100

Run Time Ratio

Complex Models

10

0.1 .
0.01 .

0.001

0.0001

Simple Models

Grantham Research Institute on
Climate Change and
the Environment

Technological Constraints
Relevang .V Fidelity Constraints
.o Irrelevant Knowledge Constraints

Prob(Big Surprise) > 1 in 200

Forecast
>

Lead time

Inaccessibl
Accessible

Other than the fact that identifying a
big surprise in this case means tenure!

Nordica 3 May 2011 © Leonard Smith



_ Where have we designed operational models?

Run Time Ratio

A subjective view of operational weather (< 10 days), seasonal (< 18 months),
GCM (<100 years) and hi-res Climate (< 80 years) models each fall.

Complex Models Technological Constraints

Relevane ® Fidelity Constraints

o Irrelevant

1000 Knowledge Constraints
100 .
Prob¢Big Surprise) > 1 in 200
10 o
. Forecast
1 — >
0 : Lead time
0.1 .X °® I\
X .° L4 I ~ ~
0-01 o’ I X 'S Inaccessibl
0.001 | .° s ~ Accessible
. I N
. N
0.0001)° | DS
l >
Prob(BS)>1in 2
Simple Models
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_ Decadal Forecasting at global scales.

289 T T T T T T

HadGem2 (3 members)

T

288.5

HadCRUTS (thick red) E
ERA40 (red)

288

T
L

287.5

Global mean temperature (K)

287

T
|

286.5

236 1 1 1 1 1 1
1960 1970 1980 1990 2000 2010

Year

Back off on “Laws of Physics” justification if post processing is required.
Transparent forecast evaluation in empirical units of interest.
Careful (true) cross-validation. (And some arguably true out-of-sample)

| Quantitative documentation of historical forecasts (for intercomparison)




R There are also less
= direct errors:
Missing mountain
ridges:

And resulting long term
feedbacks (bio-feed backs,
albedo, ...)

One-way coupled regional
models cannot account for
missing physics or inactive
feedbacks.

2000

1500

- 1000

) - 4500
At what lead times do

Inadequacies in
downstream flow (or
precipitation) result in
feedbacks with beyond
local impacts?

Grantham Ressarch Institute o
Climate Change and
the Environment
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_ Anomalies: Misrepresentation and Confusion

Post-processing removes the systematic error in each model.

FAQ 8.1, Figure 1. Global mean LO(
near-surface temperatures over the 20th
century from observations (black) and as
obtained from 58 simulations produced
by 14 different climate models driven by
both natural and human-caused factors
that influence climate (yellow). The
mean of all these runs is also shown
(thick red line). Temperature anomalies
are shown relative to the 1901 to 1950
T, vernear grey nmes manare me
timing of major volcanic eruptions.
(Figure adapted from Chapter 9, Figure
9.5. Refer to corresponding caption for
further details.)

051 [ops i
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L Grantham Research Institute on
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A report of Working Group | of the
Intergovernmental Panel on Climate Change

10 This risk of overconfidence is well
known and well founded.

Global Climate Projections

The effects of uncertainty in the knowledge of Earth system
processes can be partially quantified by constructing ensembles
of models that sample different parametrizations of these
processes. However, some processes may be missing from
the set of available models, and alternative parametrizations
of other processes may share common systematic biases.
Such limitations imply that distributions of future climate
responses from ensemble simulations are themselves subject to
uncertainty (Smith, 2002), and would be wider were uncertainty

due to structural model errors accounted for.

One would be exposed to significant losses/costs if distributions which are
not decision-support relevant probabilities are interpreted as if they were.

The IPCC itself might say this a bit louder/earlier.

LA Smith, (2002) What Might We Learn from Climate Forecasts?
gontan s e Prge, National Acad. Sci. USA 4 (99): 2487-2492

Climate Change and
the Environment Nordica 3 May 2011 © Leonard Smith




_ And if one must give numbers, include the

probability of model irrelevance with lead time.

If precip over the Amazon (or Okeefenokee) is badly

Spatial o . . . . .
Scales simulated, the biomass will be badly simulated, this
metres mjssing/extra feedback may lead to model
irrelevance... First local, then global.
Timescales for such things may be sound science! J
km . - . 8
No scientific forecast is A~
complete without one. g-
%)
1000km S
Target ©
Lead-time -
> 3
hours weeks years decades centuries o’
years
weeks
Temporal
Average

Scale day

g4 : . ! I',-.j:-__ .
Grantham Research nstitute on 7 W el e L3 St i 4 , { STy
' e i X 2 i -l
Climate Change and LR o T ; i
; the Environment Nordica 3 May 2011 © Leonard Smith




_Where did we get the idea of model-based PDFs?
What about insight and understanding (without PDFS)

When did the idea that climate models could provided quantitative insight
regarding the probability of future worlds come about?
Was it a philosopher who suggested (or failed to deprecate) this idea?

Because of the various simplifications of the model
described above, it is not advisable to take too seriously
the quantitative aspect of the results obtained in this
study. Nevertheless, it 1s hoped that this study not
only emphasizes some of the important mechanisms
which control the response of the climate to the change
of carbon dioxide,

The Effects of Doubling the CO, Concentration on the Climate
of a General Circulation Model!

Svurvro Manase anp Ricuarp T, WETHERALD

Ceophysical Fluid Dynamics Laboralory/NOAA, Princelon University, Princelon, N.J, 03540
{Manuseript received 6 June 1974, in revised form 8 August 1974)

Mechanisms == Insight

Nordica 3 May 2011



Moving Forward:
Plausible Planets or Implausible Earths?

How can we best develop our models as the available
computational power increases?

A) Simulate potentially real planets that get more and more
Earth-like while omitting any Earth-relevant process for which the
model cannot provide coherent physical drivers on Earth-like

scales. (no suggestion of linear superposition intended!)
Does water vapour come after mountains? ‘ﬁ
Does vegetation come after water vapour?
Do we avoid the penguin effect? (until it is simulated realistically)

B) Via an hodgepodge of unphysical/unbiological simulations
resembling no planet that could possibly exist, but “including”
every phenomena we can think of that might be important
(including penguins), and hoping the simulated planets will
suddenly become Earth-like at some resolution in an ill-defined

higgledy-piggledy way.

One might argue physical intuition is more effective in evaluating LA
plausible planets, as there is physics to intuit in that case. (and
at least a few examples.)

Grantham Research Institute on
Climate Change and
the Environment Nordica 3 May 2011




_ Watch out for the Penguin Effect

The challenge of climate change will be with us for
some time.

Can we maintain parallel streams: pure research to
apply in 2050, and applied research to improve the
modelling position we are in when we get there?

When selecting a thesis problem: do you suggest
something important, like understanding cloud
dynamics (better)?

Or to be the first person in the world to include the
penguin effect in a global model? (and thereby all
but assured a job at a rival modelling centre?)

(Similar effects plague economics and statistics)

THERE IS NO PENGUIN EFFECT -
(My prior on this effect is zero)
It is a joke regarding climate,

O oo UL SAAlY NOt career paths!

Climate Change and

the Environment Nordica 3 May 2011 © Leonard Smith



?What year did climate prediction move beyond understanding to quantitative forecasting?

The basic insight here is not new

" When in doubt, distrusting the indications, or inferences from
them (duly considered on purely scientific principles, and checked b
experience), the words  Uncertain,” or * Doubtful,” may be
Dr. Platzman without hesitation. Fitzroy, 1862

I may add to this another point mentioned bty Dr. Charney, a somewhat philesophical
comment concerning model experiments. I think that I agree with Dr. Charney 's suggestion
that machines are suitable for replacing model experiments. But [ think 1t 1s also necessary
it remember that there are in general two types of physical systems which one can think
of modeling. In one tvpe of system one has a fairly good understanding of the dynamieal
workingg of the svstem, involved. Under those conditions the machine modeling 1= not only

practical but probably 15 more economical in a long run. Typical examples of this kind, I
think, are problems where vou are concerned, let’s say, with wave action in harbors,
in general a whole class of engineering problems of that kind. But there is another class of
prioblem where we are still far from a good understanding of the dynamical properties of
the svstem. In Lhat case laboratory models, 1 think, are very effective and have a very
mmportant place in the scheme of things.

Because of the various simplifications of the model
deseribed above, it is not advisable to take too seriously

PROCEEDINGS the quantitative aspect of the results obtained in this

OF ; study. Nevertheless, it is hoped that this study not

THE INTERNATIONAL SYMPOSIUM only emphasizes some of the important mechanisms
ON NUMERICAL WEATHER which control the response of the climate to the change
PREDICTION IN TOKYO of carbon dioxide, but also identifies the various re-
NOVEMBER 713, 1060 , quirements that have to be satisfied for the study of

climate sensitivity with a general circulation model.

The Effects of Doubling the CO, Concentration on the Climate
of a General Circulation Model

SYUEURO MANABE AND Ricmarn T. WETHERALD

Granthin Rtk Ittt oo Geoplrysical Fluid Dynf:mics Lf@bora:m;’NOAA, f’ﬁncf:m Urniversity, Pringeton, N.J, 08340
Climate Ch ange and (Manuscript received 6 June 1974, in revised form 8 August 1974)
the Environment

Nordica 3 May 2011 © Leonard Smith
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_ Ensembles Members In - Predictive Distributions Out
(1) Ensemble Members to Model Distributions
K is the kernel, with parameters 0,0 (at /east)

_ RN :

neps

P.00= 3 K(:5)/Nep

ncIim ( )/
— z K N..
. clim
=1
Kernel & blend parameters are fit One would always dress (K) and blend
simultaneously to avoid adopting a wide (o) a finite ensemble, even with a
kernel to account for a small ensemble. perfect model and perfect IC ensemble.

Forecast busts and lucky strikes remain a major problem when the archive is small.

E'm_r::t'__(htﬂicle';:d” J Brocker, LA Smith (2008) From Ensemble Forecasts to
b Erh:riror':r-ngnt Predictive Distribution Functions Tellus A 60(4): 663.
' Nordica 3 May 2011
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_ Ensembles Members In - Predictive Distributions Qut
For a fixed ensemble size a decreases with time

And if o, ® 0, can there be any
operational justification for

P, running the prediction system.

F:Cli}\/\/_/\—\_\_\ M, =a, Py + (1-0))P;,

1 Even with a perfect model and
perfect ensemble, we expect 0. to
al 15| decrease with time for small n,
l Small =2 ngs << Ny,
0 L

E;’;:;”t'é‘éﬁ“f:;:;m ol J Brocker, LA Smith (2008) From Ensemble Forecasts to
b Emimnamgm Predictive Distribution Functions Tellus A 60(4): 663.
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Demonstrations of local skill against climatology
on EQUIP timescales (months).

lgnocancs relative to climatology
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The g-ball score is not “Proper”

IGN = -log(p(X)) Good(1952)
S(p(x), X) = p(2)2 dz — 2 p(X) ???? first

Ignorance and the proper linear score are proper scores, but
require first dressing and blending the ensemble.

The g-ball score is not proper, but when one method wins
decisively, it has the advantage of evaluating the ensemble
directly.

What other alternatives might you suggest?

J Brocker, LA Smith (2007) Scoring Probabilistic Forecasts: On the Importance
of Being Proper Weather and Forecasting 22 (2), 382-388
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_ How would YOU design a climate model?

Suppose a newly rich nation rang up your philosophy department
and asked for assistance in designing a new “Earth Systems” model
from scratch. A philosophically sound model.

How complicated/complex a model should you attempt?

How will you communicate your results?

You would still face some constraints, although money 1s no object!

You can use the best computer technology of 2011

You can use the best scientific understanding of 2011

You can provide uncertainty information, even PDFs.  (Numerate user)

You can provide information as far into the future as you can provide information.
Guidance 1s needed “quickly”, but the exact cost of delay 1s part of the project!

You are not constrained by:
*Legacy code
*Legacy domain specialists
*Blatant Political Interference
What are you constrained by?

Grantham Research Institute on
Climate Change and
the Environment Nordica 3 May 2011 © Leonard Smith



Why is this difficult in climate science?

Define Climate

See how models grow

Ask what 1s in the science already

Look at what an ensemble really does

Ask how to plug leaking probability mass!

[llustrate danger of post-processing for presentation.
Aiming for insight

Alternative paths forward

Grantham Research Institute on
Climate Change and
: the Environipient Nordica 3 May 2011 © Leonard Smith



See also Radio 4’'s GQT!

What is climate?

Climate is what you expect, Weather is what you get.

Robert Heinlein (1973)

The climate system is a complex, interactive system consisting
of the atmosphere, land surface, snow and ice, oceans and other
bodies of water, and living things. The atmospheric component of
the climate system most obviously characterises climate; climate
is often defined as ‘average weather. Climate is usually described
in terms of the mean and variability of temperature, precipitation

GLOSSARY
OF

METEOROLOGY

and wind over a period of time, ranging from months to millions
of vears (the classical period is 30 vears).

interval of time (usually several decades).

(I’s not just a number or two)

“All Climate is Local”

Grantham Research Institute on
Climate Change and
the Environment

Nordica 3 May 2011

A roport of Working Group | of the
Intergavernmaental Panel on Climate Change

Summary for Policymakers

climate—"The synthesis of the weather” (C. S, Durst) ; the long-term manifestations of
weather, however they may be expressed. More rigorously, the climate of a specified area

is represented by the sfafistical collective of ifs weather conditions during a specified

Climate is a distribution of multivariate time series!

And for policy and (most) decision support:

© Leonard Smith



Definition of
Climate
Changed!

This definition more
or less rules out
many physically
interesting “extreme
events” a priori.

Grantham Research Institute on
Climate Change and
the Environment

|3 Search Definitions
Dcase sensitive

AMERICAN oo
METEOROLOGICAL

SOCIETY
glossary

First Edition Preface Second Edition Preface Acknowledgments

* climate—The slowly varving aspects of the atmosphere-hydrosphere-land surface
systerm,

It is typically characterized in terms of suitable averages of the climate system
over periods of @ month or more, taking into consideration the wariability in time of these
averaged quantities, Climatic classifications include the spatial variation of these
tirme-averaged variables, Beqginning with the view of local climate as little more than the
annual course of long-term averages of surface temperature and precipitation, the
concept of climate has broadened and evolved in recent decades in response to the
increased understanding of the underlying processes that determine climate and its
variability, 5ee afso climate system, climatology, climate change, climatic classification.

*+ vyariahility —Mathermatically, same as spread.

* spread—1. (Also called variability ) The general departure of individual values from
central tendency.
Spread is reflected geometrically in the probability curve as the width of the
reqgion aver which the probability density is appreciable, 5ee scatter, variance, 2. Popular
contraction for dewpoint spread,

* central tendency—In statistics, the general level, characteristic, or typical value that is
representative of the majority of cases,
Armong several accepted measures of central tendency emploved in data
reduction, the rost comron are the arithmetic mean (simple average), the median, and
the mode.

http://amsglossary.allenpress.com/glossary/search?id=climatel

Nordica 3 May 2011 © Leonard Smith



What do you include in your big model?

Climate Science must do this, taking care to avoid “over-parameterizationing”

Atmosphere Atmosphere Atmosphere
Ocean & sea-ice J Ocean & sea-ice) Ocean & sea-ice

Sulphate Sulphate Sulphate

5 aerosol aerosol aerosol
Merely Include? on-sulphate

Or realistically simulate? aerosol

Carbon cycle Carbon cycle

I r Sulphur Non-sulphate
il
mode
development

Strengthening colours cycle model
denote improvements cycle model
in models




Fel.

What will your big model add?

CLIMATIC LAWS

NINETY GENERALIZATIONS WITH NUMEROUS COROLLARIES
AS TO THE GEOGRAPHIC DISTRIBUTION OF

TEMFERATURE, WIND, MOISTURE, ETC.

A SUMMARY OF CLIMATE

BY

STEPHEN SARGENT VISHER, Ph.D.

Awmer. Melerd, Soc, Hayal Geog, 5o, Atkoc, Amcr, Gemgrs, eto,

Aasocinte Professor of Geography, Indinon University

oHio U
. L_IK"-Hp‘R

NEW YORK
JOHN WILEY & SONS, INc
Lowvpon CHAMAN & HALL, Liviren

144

Grantham Research Institute on
Climate Change and
the Environment

1924

Moro :11'rnrnq]1h-r‘.r:|r' (0, would mean o some-
what preater retention of heat and thus more water yapor accompanied

by a further inerease in heat retention.  Huntington*® reports evidence

26 OLIMATIC LAWE

of a changp in storminess and in the location of gorm tracks, and points
out that heat retention would alter with storminess,

sather Climate Change Science Services Media Learning Invent About us Search Met Office

me * Climate change * Guide

What you can do

s and events ¢ The UK faces hotter, drier sumrmmers and warrner, wetter winters as a result of clirmate change, Cooling your home without air
conditioning and being prepared for a flood are just two of the ways to get ready.

iate change

B ' Why should | make changes?

Writhin this century average summer temperatures in the UK are expected to rise
between three and four degrees. Heatwaves, torrential rain and floods are likely to
become more common; summers will get drier and winters wetter,

ou can help to tackle clirmate change by saving water and energy, and reducing your

carbon footprint,

climate change ]

There are also many things you can do at home to be ready for changes in the

?Confidence?
?Insight?
?Numbers per Postcode?

http://www.metoffice.gov.uk/climatechange/guide/what/

Nordica 3 May 2011 © Leonard Smith



_ Another problem | cannot solve: Area 51 issues.
Ensembles yield diversity info within the model!...

(a) Frequency Distribution of All Independent Simulations

222_"'|"'|"'| R T T T U [T I [ S o e T . B [ T T T 22
2 C
8 - 20
" C
5 18 18
° T
S 16 16
€ e ———m———t——
{5 — - " : L
8 \,
2 54 s . . : 12
© O o '\\‘- .
§ ‘IO—---I.-.l...l...l...l...|...|....|...|...|. " ) b . X ‘ = 10
= 2 4 6 B8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44
Calibration Phaose Control Phase Doyble CO2 Phase
Year of simulation
0.0 1.5 3.0 4.5 6.0
Percent of simulations per 0.1 degrees §
What are these?
Grantham Research Institute on

Climate Change and

the Environment Nordica 3 May 2011 © Leonard Smith



IS8 | caking Probability

I am running a large ensemble under one model which can only be
adequate under certain general conditions.
(Like the linear approximation to ¢T%, changes in sea ice)

As I extrapolate to 2100, 20% of my models first venture into some
known-to-be-unphysical regions, and then crash.

How do I account for this probability mass when speaking to a
policy maker?

Can model diversity be connected to uncertainty in the future?
How?

Grantham Research Institute on
Climate Change and
the Environment Nordica 3 May 2011 © Leonard Smith
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with expectations from climate models (pink band). Flgure {

http://www.ipcc.ch/publications and data/ar4/wgl/en/figure-spm-4.html

http://www.globalchange.qgov/images/cir/pdf/20page-highlights-brochure.pdf

Statistical post-processing: These are anomalies, not temperatures.
Parameterization of cloud formation is a bit of a distraction when
we are missing two kilometre tall walls of rock...

Grantham Research Institute on
Climate Change and
the Environment Nordica 3 May 2011 © Leonard Smith



_ Perhaps we might aim for Insight and

not numbers when the model is wrong?

Policy-making tracks actions by people to impacts on people: our models
are but a small piece of that chain.

Communicating plausible outcomes and the limits of our understanding
are more valuable than model-based probabilities, when the model is
wrong. And, of course: all models are wrong.

Scientific Speculation can be of great value to policy makers, given with
all the qualifications required to make the scientist comfortable.

(How did we get comfortable NOT doing this with model-based
speculation?)

Grantham Research Institute on
Climate Change and
the Environment Nordica 3 May 2011 © Leonard Smith



_ Other Questions

Nonlinearity
Signal and Noise; Natural variability and climate.

What is the model? Equations+code+compiler+machine?
Which perfect parameterizations could we not drive well -> timescale

Accuracy: Evolution (chaos), Driving Feedbacks (known), Feedbacks (unknown)
Policy Targets: “A 50% chance of less than 2 degree warming
Can we get necessary, never sufficient, tests of model relevance?

Extrapolation: there is no “out of sample” test.

Grantham Research Institute on
Climate Change and
the Environment Nordica 3 May 2011 © Leonard Smith



..looks too good

..can sell newspapers

..1s required for important decisions
..statistical post-processing 1s obscure
..1s sold on in-sample tests

..1s applied to extrapolation

..1s nonlinear and evaluated with RMS
..looks too good to be true

..the one who made it thinks 1t might be

A model might be dangerous if it...

Grantham Research Institute on
Climate Change and
the Environment Nordica 3 May 2011 © Leonard Smith
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Watch out for the Penguin Effect
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_Credibility and Obfuscation (ESPN)

If you examine how meteorologists promoted weather forecasting in
the 60’s, 1t was based on aiding understanding and guidance.
Platzman (1962)
If you examine how meteorologists promoted climate modelling in the
80’s, 1t was based on aiding understanding and guidance.
Manabe & Wetherall (1975) &c

NWP became decision-relevant only after it aided, then surpassed
statistical forecasting, in real time.

By construction, Climate prediction cannot demonstrate skill out-of-
sample! But if it fails 1n fair tests against statistical methods 1in-sample,
it might be well advised to return to “aiding understanding.”

Grantharn Research Institute
Climate Change and
the Environment

@atyear‘did climate prediction move beyond understanding to quantitative forecasting?

Nordica 3 May 2011 © Leonard Smith



Overview(1)

Climate GCMs are large nonlinear models.

Robustness of warming to model structure is a plus.

It is a nonsense to assume anomalies are informative for local details

(if the laws of physics respected such transformations,
we would not need such big nonlinear models: water freezes at...)

Is it not a nonsense to assume such models can be scientifically
informative on time scales where local feedbacks are nontrivial?

Presenting anomalies in such misleading ways begs misinterpretation.
(not to mention risking our credibility)

So what are we to do given such large systematic errors?

1) Aim for insight, not numbers.
2) Quantify the probability of model irrelevance (with lead time).
3) Demonstrate that they can, in fact, shadow the obs. (after projection)

Grantham Research Institute on
Climate II'_h;!.rIL_:U and
. the Environment Nordica 3 May 2011 © Leonard Smith



Are Projections -
= n u i e Search Definitions
just Predictions? A R SEER [ cace sensitive

TOCIETY . . -
SOCIETY First Edition Preface Second Edition Preface Acknowledaoments
glLOSEBALY

All predictions are
conditioned on something(s);
if we ran2011 models in 2050

. . *+ climate prediction—The prediction of various aspects of the climate of a region during
WOUId they adm|t ShadOW|ng sorme future period of time.
. Climate predictions are generally in the form of probabilities of anomalies of
traJeCtoreS? climate variables {e.g., temperature, precipitation}, with lead times up to several

seasons (see climate anomaly). The term “clirmate projection” rather than *climate
prediction® is now commonly used for longer- range predictions that have a higher
deqgree of uncertainty and a lesser degree of specificity, Far example, this term is often
used for *predictions” of climate change that depend on uncertain consequences of
anthropogenic influences such as land use and the burning of fossil fuels,

Hadley Centre
for Climate Predictions and Research

http://www.metoffice.gov.uk/publications/HCTN/HCTN 20.pdf

Grantham Research Institute on
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EQUIP

As we move to smaller spatial scales, when, where and at what
lead-times will simulation models lose their relative skill?

As more and more statistical models are tested, how do we
quantify the statistical significance of the n!" model?
(What level of performance can we expect in real time?)

Good experimental design 1s required (1.e. specifying the order
of locations examined) if statistical significance 1s to be assigned
to local predictions.

(Scanning the globe for regions of skill is a nonsense)

Grantham Research Institute on
Climate Change and
the Environment Nordica 3 May 2011 © Leonard Smith
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WCRP CMIP3 Multi-Model Data
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What do we do given such systematic errors?

Global Mean Anual Temperature Anomaly (w.rt 1900-1950), 20th century
14 T T T T T T T T T
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te change detection, and forecasting (1937)

THE ARTIFICIAL PRODUCTION OF CARBON DIOXIDE
AND ITS INFLUENCE ON TEMPERATURE

By G, 5. CALLENDAR
(Steam technologist to the British Electrical and Allied Industries
Research Association.)
(Communicated by Dr. G. M. B. Deopsox, F.R.S5.)
[Manuscript receilved Moy 19, 1957—rend February 16, 1958.)

The radiation absorption coeflicients of carbon dioxide and water
vapour are used to show the effect of carbon dioxide on ** sky radia-
tion." From this the increase in mean temperature, due to the
artificial production of carbon dioxide, is estimated to be at the rate
of 0'003°C. per year at the present time,

" It is well known that the gas carbon dioxide has certain strong
absorption bands in the infra-red region of the spectrum, and when
this fact was discovered some 70 years ago it soon led to specula-
tion on the effect which changes in the amount of the gas in the air
could have on the temperature of the earth’s surface. In view of
the much larger quantities and absorbing power of atmospheric
water vapour it was concluded that the effect of carbon dioxide was
probably negligible, although certain experts, notably Svante
Arrhenius and T. C. Chamberlin, dissented from this view.

In the following paper I hope to show that such influence is not
only possible, but is actually occurring at the present time.

That would be 1937
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_ Objection has been taken to such forecasts, because they cannot be
always exactly ¢ —for all places in one district. It is, however,

. cav | y = aprehensive expressions, in
UK: severe weather Warning: .. s.dgments from the

Rainfall ” Pressure || cloud " Warnings | " their immediate ?iﬂiﬂity,
Weather || Wind || Temperature || uv ‘ Early wa be T'El'y useful, as Wﬁll as’

Latest/recent El"ﬁ'iﬂﬁ Uﬂiﬂfﬂl"ﬂl&i
Forecast Sun 12 AUWI t be thpeEI En'n’
[sun [ Mon [ Tue [ Wed | Thu bable cannot be otherwise
ALL WARNINGS: Sun 12 to Thu 16 ay bound to act in accord-
. & | ent.
Bl merely cautionary

~tere over these islands,—
an reaion80Ty, or interfering arbi-

1
ns may be incorrect—our

These ar¢ the signs afforded to man,

If warning

1 i8 the real deficiency.

— Fitzroy, 1862 |
No flash \

These are

Risk of
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