Asynchronous data assimilation with the EnKF

Pavel Sakov

Nansen Environmental and Remote Sensing Center, Norway

Synchronous and asynchronous assimilation

Synchronous, or "3D" assimilation = observations are assumed to be taken at the assimilation time

Asynchronous, or "4D" assimilation = observations can be taken at time different than the assimilation time

Synchronous and asynchronous assimilation

Synchronous, or "3D" assimilation = observations are assumed to be taken at the assimilation time

Asynchronous, or "4D" assimilation = observations can be taken at time different than the assimilation time

- (a) Synchronous assimilation at each observation time
- (b) Synchronous assimilation; asynchronous observations are assumed to be synchronous
- (c) Asynchronous assimilation

0-order correction:

0-order correction:

0-order correction:

1-order correction:

Hx1

δvı Hx_1^f

x₁

0-order correction:

1-order correction:

0-order correction:

1-order correction:

Historical overview

Ensemble smoother (ES) (van Leeuwen and Evensen, 1996)

- Ensemble Kalman smoother (EnKS) (Evensen and van Leeuwen, 2000; Evensen, 2003, 2009)
- 4DEnKF (Hunt et al., 2004)
- ▶ 4D-LETKF (Hunt et al., 2007)

- Ensemble smoother (ES) (van Leeuwen and Evensen, 1996)
- Ensemble Kalman smoother (EnKS) (Evensen and van Leeuwen, 2000; Evensen, 2003, 2009)
- 4DEnKF (Hunt et al., 2004)
- 4D-LETKF (Hunt et al., 2007)

- Ensemble smoother (ES) (van Leeuwen and Evensen, 1996)
- Ensemble Kalman smoother (EnKS) (Evensen and van Leeuwen, 2000; Evensen, 2003, 2009)
- 4DEnKF (Hunt et al., 2004)
- 4D-LETKF (Hunt et al., 2007)

- Ensemble smoother (ES) (van Leeuwen and Evensen, 1996)
- Ensemble Kalman smoother (EnKS) (Evensen and van Leeuwen, 2000; Evensen, 2003, 2009)
- 4DEnKF (Hunt et al., 2004)
- 4D-LETKF (Hunt et al., 2007)

Let us assimilate observations at t_0

$$\delta \mathbf{x}_0 \equiv \mathbf{x}_0^a - \mathbf{x}_0^f = \mathbf{A}_0^f \mathbf{C}_0$$
$$\delta \mathbf{A}_0 \equiv \mathbf{A}_0^a - \mathbf{A}_0^f = \mathbf{A}_0^f \mathbf{T}_0$$

Let M_{01} be the tangent linear propagator along the forecast system trajectory between t_0 and t_1 :

$$\delta \mathbf{x}_{1} = \mathbf{M}_{01} \, \delta \mathbf{x}_{0} + O\left(\left\| \delta \mathbf{x}_{0} \right\|^{2} \right)$$

At t_1 the corrections become:

$$\begin{split} \delta \mathbf{x}_1 &\sim \mathbf{M}_{01} \, \delta \mathbf{x}_0 = \mathbf{M}_{01} \mathbf{A}_0^f \mathbf{c}_0 \sim \mathbf{A}_1^f \boxed{\mathbf{c}_0} \\ \delta \mathbf{A}_1 &\sim \mathbf{M}_{01} \, \delta \mathbf{A}_0 = \mathbf{M}_{01} \mathbf{A}_0^f \mathbf{T}_0 \sim \mathbf{A}_1^f \boxed{\mathbf{T}_0} \end{split}$$

Let us assimilate observations at t_0

$$\delta \mathbf{x}_0 \equiv \mathbf{x}_0^a - \mathbf{x}_0^f = \mathbf{A}_0^f \mathbf{C}_0$$
$$\delta \mathbf{A}_0 \equiv \mathbf{A}_0^a - \mathbf{A}_0^f = \mathbf{A}_0^f \mathbf{T}_0$$

Let M_{01} be the tangent linear propagator along the forecast system trajectory between t_0 and t_1 :

 $\delta \mathbf{x}_{1} = \mathbf{M}_{01} \, \delta \mathbf{x}_{0} + O\left(\| \delta \mathbf{x}_{0} \|^{2} \right)$

At t_1 the corrections become:

$$\begin{split} \delta \mathbf{x}_1 &\sim \mathbf{M}_{01} \, \delta \mathbf{x}_0 = \mathbf{M}_{01} \mathbf{A}_0^f \mathbf{c}_0 &\sim \mathbf{A}_1^f \boxed{\mathbf{c}_0} \\ \delta \mathbf{A}_1 &\sim \mathbf{M}_{01} \, \delta \mathbf{A}_0 = \mathbf{M}_{01} \mathbf{A}_0^f \mathbf{T}_0 &\sim \mathbf{A}_1^f \boxed{\mathbf{T}_0} \end{split}$$

Let us assimilate observations at t_0

$$\delta \mathbf{x}_0 \equiv \mathbf{x}_0^a - \mathbf{x}_0^f = \mathbf{A}_0^f \mathbf{C}_0$$
$$\delta \mathbf{A}_0 \equiv \mathbf{A}_0^a - \mathbf{A}_0^f = \mathbf{A}_0^f \mathbf{T}_0$$

Let \mathbf{M}_{01} be the tangent linear propagator along the forecast system trajectory between t_0 and t_1 :

$$\delta \mathbf{x}_{1} = \mathbf{M}_{01} \, \delta \mathbf{x}_{0} + O\left(\| \delta \mathbf{x}_{0} \|^{2} \right)$$

At t_1 the corrections become:

$$\begin{split} \delta \mathbf{x}_1 &\sim \mathbf{M}_{01} \, \delta \mathbf{x}_0 = \mathbf{M}_{01} \mathbf{A}_0^f \mathbf{c}_0 \sim \mathbf{A}_1^f \mathbf{c}_0 \\ \delta \mathbf{A}_1 &\sim \mathbf{M}_{01} \, \delta \mathbf{A}_0 = \mathbf{M}_{01} \mathbf{A}_0^f \mathbf{T}_0 \sim \mathbf{A}_1^f \mathbf{T}_0 \end{split}$$

- If the evolution of the ensemble anomalies within the assimilation window is linear...
- ▶ Then the increment from (i) assimilating an observation at time t₀ and (ii) propagating it to time t₁
- Is the same as applying the transform coefficients used at time t_0 at time t_1
- ▶ These transform coefficients depend only on the ensemble forecast observations at the time of observation (*t*₀)
- ▶ So we can simply use the ensemble forecast observations from time t₀ for assimilating at t₁ with the same effect as assimilating at t₀
- Serial and parallel assimilation of non-correlated observations are equivalent
- So one can just do parallel assimilation of observations from different times with the assimilation window by using the combined ensemble observations collected at the time of observations

- If the evolution of the ensemble anomalies within the assimilation window is linear...
- ► Then the increment from (i) assimilating an observation at time t₀ and (ii) propagating it to time t₁
- Is the same as applying the transform coefficients used at time t_0 at time t_1
- ▶ These transform coefficients depend only on the ensemble forecast observations at the time of observation (*t*₀)
- ▶ So we can simply use the ensemble forecast observations from time t₀ for assimilating at t₁ with the same effect as assimilating at t₀
- Serial and parallel assimilation of non-correlated observations are equivalent
- So one can just do parallel assimilation of observations from different times with the assimilation window by using the combined ensemble observations collected at the time of observations

- If the evolution of the ensemble anomalies within the assimilation window is linear...
- ► Then the increment from (i) assimilating an observation at time t₀ and (ii) propagating it to time t₁
- Is the same as applying the transform coefficients used at time t_0 at time t_1
- ▶ These transform coefficients depend only on the ensemble forecast observations at the time of observation (*t*₀)
- ▶ So we can simply use the ensemble forecast observations from time *t*₀ for assimilating at *t*₁ with the same effect as assimilating at *t*₀
- Serial and parallel assimilation of non-correlated observations are equivalent
- So one can just do parallel assimilation of observations from different times with the assimilation window by using the combined ensemble observations collected at the time of observations

- If the evolution of the ensemble anomalies within the assimilation window is linear...
- Then the increment from (i) assimilating an observation at time t₀ and (ii) propagating it to time t₁
- ▶ Is the same as applying the transform coefficients used at time t₀ at time t₁
- ► These transform coefficients depend only on the ensemble forecast observations at the time of observation (t₀)
- ▶ So we can simply use the ensemble forecast observations from time t₀ for assimilating at t₁ with the same effect as assimilating at t₀
- Serial and parallel assimilation of non-correlated observations are equivalent
- So one can just do parallel assimilation of observations from different times with the assimilation window by using the combined ensemble observations collected at the time of observations

- If the evolution of the ensemble anomalies within the assimilation window is linear...
- Then the increment from (i) assimilating an observation at time t₀ and (ii) propagating it to time t₁
- ▶ Is the same as applying the transform coefficients used at time t₀ at time t₁
- ► These transform coefficients depend only on the ensemble forecast observations at the time of observation (t₀)
- So we can simply use the ensemble forecast observations from time t₀ for assimilating at t₁ with the same effect as assimilating at t₀
- Serial and parallel assimilation of non-correlated observations are equivalent
- So one can just do parallel assimilation of observations from different times with the assimilation window by using the combined ensemble observations collected at the time of observations

- If the evolution of the ensemble anomalies within the assimilation window is linear...
- Then the increment from (i) assimilating an observation at time t₀ and (ii) propagating it to time t₁
- Is the same as applying the transform coefficients used at time t_0 at time t_1
- ► These transform coefficients depend only on the ensemble forecast observations at the time of observation (t₀)
- So we can simply use the ensemble forecast observations from time t₀ for assimilating at t₁ with the same effect as assimilating at t₀
- Serial and parallel assimilation of non-correlated observations are equivalent
- So one can just do parallel assimilation of observations from different times with the assimilation window by using the combined ensemble observations collected at the time of observations

- If the evolution of the ensemble anomalies within the assimilation window is linear...
- Then the increment from (i) assimilating an observation at time t₀ and (ii) propagating it to time t₁
- ▶ Is the same as applying the transform coefficients used at time t₀ at time t₁
- ► These transform coefficients depend only on the ensemble forecast observations at the time of observation (t₀)
- So we can simply use the ensemble forecast observations from time t₀ for assimilating at t₁ with the same effect as assimilating at t₀
- Serial and parallel assimilation of non-correlated observations are equivalent
- So one can just do parallel assimilation of observations from different times with the assimilation window by using the combined ensemble observations collected at the time of observations

Parallel assimilation of asynchronous data with the EnKF

$$\mathsf{HE}^{f} = [(\mathsf{HE}_{1})^{\mathrm{T}} \dots (\mathsf{HE}_{k})^{\mathrm{T}}]^{\mathrm{T}}$$

or

$$\mathbf{s} = [\mathbf{s}_1^{\mathrm{T}} \dots \mathbf{s}_k^{\mathrm{T}}]^{\mathrm{T}}$$
$$\mathbf{S} = [\mathbf{S}_1^{\mathrm{T}} \dots \mathbf{S}_k^{\mathrm{T}}]^{\mathrm{T}}$$

EnKS

$$\mathbf{E}^{a} = \mathbf{E}^{f} \prod_{i=1}^{k} \mathbf{X}_{5}(t_{i}),$$

EnKS

$$\mathbf{E}^{a} = \mathbf{E}^{f} \prod_{i=1}^{k} \mathbf{X}_{5}(t_{i}),$$

4DEnKF

4DEnKF:

$\begin{array}{rcl} \mbox{H} \mathbf{x}_0 & \rightarrow & \mbox{H} \mathbf{E}_0 (\mathbf{E}_1^{\rm T} \mathbf{E}_1)^{-1} \mathbf{E}_1^{\rm T} \mathbf{x}_1, \\ \\ \mbox{H} \mathbf{A}_0 & \rightarrow & \mbox{H} \mathbf{E}_0 (\mathbf{E}_1^{\rm T} \mathbf{E}_1)^{-1} \mathbf{E}_1^{\rm T} \mathbf{A}_1, \end{array}$

What is $(E^T E)^{-1}E x$ doing? - It is a vector of coefficients of projection of x onto the range of E

 $(\mathbf{E}_1^{\mathrm{T}}\mathbf{E}_1)^{-1}\mathbf{E}_1^{\mathrm{T}}\mathbf{x}_1 = 1/m \quad \rightarrow \quad \mathbf{E}_0(\mathbf{E}_1^{\mathrm{T}}\mathbf{E}_1)^{-1}\mathbf{E}_1^{\mathrm{T}}\mathbf{x}_1 = \mathbf{x}_0$ $(\mathbf{E}_1^{\mathrm{T}}\mathbf{E}_1)^{-1}\mathbf{E}_1^{\mathrm{T}}\mathbf{A}_1 = \mathbf{I} - \mathbf{1}\mathbf{1}^{\mathrm{T}}/m \quad \rightarrow \quad \mathbf{E}_0(\mathbf{E}_1^{\mathrm{T}}\mathbf{E}_1)^{-1}\mathbf{E}_1^{\mathrm{T}}\mathbf{A}_1 = \mathbf{A}_0$

4DEnKF

4DEnKF:

$$\begin{array}{rcl} \mbox{H} x_0 \ \rightarrow \ \mbox{H} E_0(\mbox{E}_1^{\rm T} E_1)^{-1} \mbox{E}_1^{\rm T} x_1, \\ \\ \mbox{H} A_0 \ \rightarrow \ \mbox{H} E_0(\mbox{E}_1^{\rm T} E_1)^{-1} \mbox{E}_1^{\rm T} A_1, \end{array}$$

What is $(E^T E)^{-1}E x$ doing? - It is a vector of coefficients of projection of x onto the range of E

 $\begin{aligned} (\mathbf{E}_1^{\mathrm{T}}\mathbf{E}_1)^{-1}\mathbf{E}_1^{\mathrm{T}}\mathbf{x}_1 &= 1/m \quad \to \quad \mathbf{E}_0(\mathbf{E}_1^{\mathrm{T}}\mathbf{E}_1)^{-1}\mathbf{E}_1^{\mathrm{T}}\mathbf{x}_1 &= \mathbf{x}_0 \\ (\mathbf{E}_1^{\mathrm{T}}\mathbf{E}_1)^{-1}\mathbf{E}_1^{\mathrm{T}}\mathbf{A}_1 &= \mathbf{I} - \mathbf{1}\mathbf{1}^{\mathrm{T}}/m \quad \to \quad \mathbf{E}_0(\mathbf{E}_1^{\mathrm{T}}\mathbf{E}_1)^{-1}\mathbf{E}_1^{\mathrm{T}}\mathbf{A}_1 &= \mathbf{A}_0 \end{aligned}$

4DEnKF

4DEnKF:

$$\begin{array}{rcl} \mbox{H} x_0 & \rightarrow & \mbox{H} E_0(\mbox{E}_1^{\rm T} \mbox{E}_1)^{-1} \mbox{E}_1^{\rm T} x_1, \\ \\ \mbox{H} A_0 & \rightarrow & \mbox{H} E_0(\mbox{E}_1^{\rm T} \mbox{E}_1)^{-1} \mbox{E}_1^{\rm T} \mbox{A}_1, \end{array}$$

What is $({\bf E}^{\rm T}{\bf E})^{-1}{\bf E}\,x$ doing? - It is a vector of coefficients of projection of x onto the range of ${\bf E}$

$$\begin{aligned} (\mathbf{E}_1^{\mathrm{T}}\mathbf{E}_1)^{-1}\mathbf{E}_1^{\mathrm{T}}\mathbf{x}_1 &= 1/m \quad \rightarrow \quad \mathbf{E}_0(\mathbf{E}_1^{\mathrm{T}}\mathbf{E}_1)^{-1}\mathbf{E}_1^{\mathrm{T}}\mathbf{x}_1 &= \mathbf{x}_0 \\ (\mathbf{E}_1^{\mathrm{T}}\mathbf{E}_1)^{-1}\mathbf{E}_1^{\mathrm{T}}\mathbf{A}_1 &= \mathbf{I} - \mathbf{1}\mathbf{1}^{\mathrm{T}}/m \quad \rightarrow \quad \mathbf{E}_0(\mathbf{E}_1^{\mathrm{T}}\mathbf{E}_1)^{-1}\mathbf{E}_1^{\mathrm{T}}\mathbf{A}_1 &= \mathbf{A}_0 \end{aligned}$$

Recipe: use ensemble observations stored at observation times, as in "4D-LETKF" description (Hunt et al., 2007)

- This method is scheme-independent
- And it is compatible with localisation
- It is formally equivalent to the EnKS solution (Evensen and van Leeuwen, 2000)
- But it is better suited than the EnKS for assimilating observations from multiple times within the assimilation window
- No tangent linear or adjoint model required
- ▶ Do not use "4DEnKF" (Hunt et al., 2004)

- Recipe: use ensemble observations stored at observation times, as in "4D-LETKF" description (Hunt et al., 2007)
- This method is scheme-independent
- And it is compatible with localisation
- It is formally equivalent to the EnKS solution (Evensen and van Leeuwen, 2000)
- But it is better suited than the EnKS for assimilating observations from multiple times within the assimilation window
- No tangent linear or adjoint model required
- Do not use "4DEnKF" (Hunt et al., 2004)

- Recipe: use ensemble observations stored at observation times, as in "4D-LETKF" description (Hunt et al., 2007)
- This method is scheme-independent
- And it is compatible with localisation
- It is formally equivalent to the EnKS solution (Evensen and van Leeuwen, 2000)
- But it is better suited than the EnKS for assimilating observations from multiple times within the assimilation window
- No tangent linear or adjoint model required
- Do not use "4DEnKF" (Hunt et al., 2004)

- Recipe: use ensemble observations stored at observation times, as in "4D-LETKF" description (Hunt et al., 2007)
- This method is scheme-independent
- And it is compatible with localisation
- It is formally equivalent to the EnKS solution (Evensen and van Leeuwen, 2000)
- But it is better suited than the EnKS for assimilating observations from multiple times within the assimilation window
- No tangent linear or adjoint model required
- Do not use "4DEnKF" (Hunt et al., 2004)

- Recipe: use ensemble observations stored at observation times, as in "4D-LETKF" description (Hunt et al., 2007)
- This method is scheme-independent
- And it is compatible with localisation
- It is formally equivalent to the EnKS solution (Evensen and van Leeuwen, 2000)
- But it is better suited than the EnKS for assimilating observations from multiple times within the assimilation window
- No tangent linear or adjoint model required
- ▶ Do not use "4DEnKF" (Hunt et al., 2004)

- Recipe: use ensemble observations stored at observation times, as in "4D-LETKF" description (Hunt et al., 2007)
- This method is scheme-independent
- And it is compatible with localisation
- It is formally equivalent to the EnKS solution (Evensen and van Leeuwen, 2000)
- But it is better suited than the EnKS for assimilating observations from multiple times within the assimilation window
- No tangent linear or adjoint model required
- Do not use "4DEnKF" (Hunt et al., 2004)

- Recipe: use ensemble observations stored at observation times, as in "4D-LETKF" description (Hunt et al., 2007)
- This method is scheme-independent
- And it is compatible with localisation
- It is formally equivalent to the EnKS solution (Evensen and van Leeuwen, 2000)
- But it is better suited than the EnKS for assimilating observations from multiple times within the assimilation window
- No tangent linear or adjoint model required
- Do not use "4DEnKF" (Hunt et al., 2004)

Appendix: TLM and AM from ensemble clouds

By definition, tangent linear model (propagator) is the map \mathbf{M}_k such as

$$\delta \mathbf{x}_{k+1} = \mathbf{M}_k \, \delta \mathbf{x}_k,$$

and the adjoint model is its transposition.

It is easy to verify that for perturbation belonging to the subspace spanned by ensemble anomalies

$$\mathbf{M}_{k} = \mathbf{A}_{k+1} \left[(\mathbf{A}_{k})^{\mathrm{T}} \mathbf{A}_{k} \right]^{+} (\mathbf{A}_{k})^{\mathrm{T}}$$

Accordingly,

$$\left(\mathsf{M}_{k}\right)^{\mathrm{T}}=\mathsf{A}_{k}\left[\left(\mathsf{A}_{k}\right)^{\mathrm{T}}\mathsf{A}_{k}\right]^{+}\left(\mathsf{A}_{k+1}\right)^{\mathrm{T}}.$$

References

- Evensen, G., 2003: The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dynamics, 53, 343–367, doi:10.1007/s110236-003-0036-9.
- 2009: Data assimilation: the ensemble Kalman filter. Springer, Dordrecht, second edition, 307 pp.
- Evensen, G. and P. J. van Leeuwen, 2000: An ensemble Kalman smoother for nonlinear dynamics. Mon. Wea. Rev., 128, 1852-1867.
- Hunt, B. R., E. Kalnay, E. J. Kostelich, E. Ott, D. J. Patil, T. Sauer, I. Szunyogh, J. A. Yorke, and A. V. Zimin, 2004: Four-dimensional ensemble Kalman filtering. *Tellus*, 56A, 273–277.
- Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112–126.
- Sakov, P., G. Evensen, and L. Bertino, 2010: Asynchronous data assimilation with the EnKF. Tellus, 62A, 24-29.
- van Leeuwen, P. J. and G. Evensen, 1996: Data assimilation and inverse methods in terms of a probabilistic formulation. Mon. Wea. Rev., 124, 2898-2913.