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Synchronous and asynchronous assimilation

Synchronous, or “3D” assimilation = observations are assumed to be taken at
the assimilation time

Asynchronous, or “4D” assimilation = observations can be taken at time
different than the assimilation time
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(a) Synchronous assimilation at each observation time

(b) Synchronous assimilation; asynchronous observations are assumed to be
synchronous

(c) Asynchronous assimilation
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Reasoning
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Historical overview

I Ensemble smoother (ES) (van Leeuwen and Evensen, 1996)

I Ensemble Kalman smoother (EnKS) (Evensen and van Leeuwen, 2000;
Evensen, 2003, 2009)

I 4DEnKF (Hunt et al., 2004)

I 4D-LETKF (Hunt et al., 2007)
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Evolution of corrections

Let us assimilate observations at t0

δx0 ≡ xa
0 − xf

0 = Af
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δA0 ≡ Aa
0 − Af

0 = Af
0 T0

Let M01 be the tangent linear propagator along the forecast system trajectory
between t0 and t1:

δx1 = M01 δx0 + O
“
‖δx0‖2

”
At t1 the corrections become:

δx1 ∼M01 δx0 = M01A
f
0c0 ∼ Af

1 c0

δA1 ∼M01 δA0 = M01A
f
0T0 ∼ Af

1 T0
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Evolution of corrections (2)

Therefore,

I If the evolution of the ensemble anomalies within the assimilation window
is linear...

I Then the increment from (i) assimilating an observation at time t0 and (ii)
propagating it to time t1

I Is the same as applying the transform coefficients used at time t0 at time t1

I These transform coefficients depend only on the ensemble forecast
observations at the time of observation (t0)

I So we can simply use the ensemble forecast observations from time t0 for
assimilating at t1 with the same effect as assimilating at t0

I Serial and parallel assimilation of non-correlated observations are
equivalent

I So one can just do parallel assimilation of observations from different
times with the assimilation window by using the combined ensemble
observations collected at the time of observations
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Parallel assimilation of asynchronous data with the EnKF

HEf = [(HE1)T . . . (HEk )T]T

or
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4DEnKF

4DEnKF:
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onto the range of E
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Conclusions

I Recipe: use ensemble observations stored at observation times, as in
“4D-LETKF” description (Hunt et al., 2007)

I This method is scheme-independent

I And it is compatible with localisation

I It is formally equivalent to the EnKS solution (Evensen and van Leeuwen,
2000)

I But it is better suited than the EnKS for assimilating observations from
multiple times within the assimilation window

I No tangent linear or adjoint model required

I Do not use “4DEnKF” (Hunt et al., 2004)
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Appendix: TLM and AM from ensemble clouds

By definition, tangent linear model (propagator) is the map Mk such as

δxk+1 = Mk δxk ,

and the adjoint model is its transposition.
It is easy to verify that for perturbation belonging to the subspace spanned by
ensemble anomalies

Mk = Ak+1

h
(Ak )TAk

i+

(Ak )T.

Accordingly,

(Mk )T = Ak

h
(Ak )TAk

i+

(Ak+1)T.
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