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Formulation and historical overview

Covariance inflation, or ensemble inflation refers to artificial increase of uncertainty
in the state estimate. It is commonly applied as follows:

P← ρ2P, or

A← ρA

where ρ = 1 + δ.

I First use in the above form - probably in Anderson (2001)

I Has similarity with the “forgetting factor” used by Pham et al. (1998)

I Ott et al. (2004) use “enhanced ensemble inflation”

I Anderson (2007) introduces an adaptive algorithm

I Sacher and Bartello (2008) obtain theoretical inflation factor to compensate for
finite ensemble size in the traditional EnKF

I Evensen (2009) introduces another adaptive scheme to compensate for sampling
error
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Possible reasons

Possible reasons for the covariance inflation:

I rank deficiency of the ensemble

I nonlinearity

I spurious correlations

Generally: compensate for over-optimistic analysis that does not take into
account suboptimalities of the system

Alternative approach: try not to over-assimilate with a suboptimal system
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On tuning of a sub-optimal system

RMS error:
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Ensemble spread:
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For a system with perfect model: match ensemble spread and RMSE
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Conclusions

I Covariance inflation is an ad-hoc modification of the EnKF

I The inflation factor ρ is usually empirically selected

I It is often essential for preventing the (quick) filter collapse as well as for
the long-term stability of the system

I In practice, a small inflation can often have a substantial positive impact
on the performance of the system

experiments
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EnOI

EnOI = ensemble optimal interpolation (Evensen, 2003) - uses static ensemble
anomalies

P = α
1

m − 1
AAT

I Cost effective (integrating only one instance of the model)

I Robust (no danger of ensemble collapse)

I Better than OI (krigging): anisotropic covariance; multivariate

I A popular practical option for large-scale forecasting systems in
Oceanography

experiments
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Hybrid systems

I Hamill and Snyder (2000) - a hybrid EnKF-3DVar system

I Wang et al. (2007) - a hybrid EnKF-EnOI (“ETKF-OI”) system

Hybrid systems combine static and dynamic state error covariance matrices:

P = βPd + (1− β)Ps

Ensemble formulation:

A =
√

m − 1

"r
β

md − 1
Ad ,

r
α(1− β)

ms − 1
As

#
, so that

P =
1

m − 1
AAT

in 4DVar:

Lp
conc.= β(x− xf )T(Pf

b)−1(x− xf ) + (1− β)(x− xf )T(Pf
d)−1(x− xf )

(Pf )−1 conc.= β(Pf
b)−1 + (1− β)(Pf

d)−1
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Observation impact: DFS and SRF

DFS = “Degrees of Freedom of Signal”
(Rodgers, 2000; Cardinali et al., 2004)

DFS = tr(KH)

SRF = “Spread Reduction Factor”

SRF =
q

tr(HPf HTR−1)

tr(HPaHTR−1)
− 1
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(PilotTOPAZ reanalysis, 24 April 2008)



DFS and SRF for TSLA



DFS and SRF for SST



Some system design issues

I Assimilation strength:
model e-folding time τ ? assimilation cycle length T

I Constraining the model:
number of observations p ? degrees of freedom Dmod

I Ensemble rank:
dependence on localisation radius rloc
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