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Anderson (2007) introduces an adaptive algorithm
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Sacher and Bartello (2008) obtain theoretical inflation factor to compensate for
finite ensemble size in the traditional EnKF

> Evensen (2009) introduces another adaptive scheme to compensate for sampling
error
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Possible reasons

Possible reasons for the covariance inflation:
> rank deficiency of the ensemble
> nonlinearity

> spurious correlations

Generally: compensate for over-optimistic analysis that does not take into
account suboptimalities of the system

Alternative approach: try not to over-assimilate with a suboptimal system
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Hybrid systems

» Hamill and Snyder (2000) - a hybrid EnKF-3DVar system
» Wang et al. (2007) - a hybrid EnKF-EnOl (“ETKF-OI") system

Hybrid systems combine static and dynamic state error covariance matrices:
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Ensemble formulation:
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Observation impact: DFS and SRF

DFS = “Degrees of Freedom of Signal” SRF = “Spread Reduction Factor”
(Rodgers, 2000; Cardinali et al., 2004)

SRF — ,/E(HPTHTR-L) 4
DFS = tr(KH) tr(HPPHTR-1)

relative change in SVD spectrum
of ensemble anomalies

'SVD spectrum of ensemble anomalies

forecast
analysis

forecast

——— analysis

SRF =0.157




Total DFS and SRF

(PilotTOPAZ reanalysis, 24 April 2008)

Total DFS, 23/4/2008

Total SRF, 23/4/2008



DFS and SRF for TSLA
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DFS and SRF for SST
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