Localisation in the EnKF

Pavel Sakov

Nansen Environmental and Remote Sensing Center, Norway
Outline

Introduction
 Reasoning
 Historical overview
 Some conventions

Non-adaptive localisation
 Two methods
 Covariance localisation
 Technique
 Possible inconsistency
 Local analysis
 Conclusions

Adaptive methods

Some properties
 Diffusivity

Conclusions
Reasoning

Two common reasons:

- “spurious covariances”
 \[\sigma \sim \frac{1}{m^{1/2}} \]
- ensemble rank versus model subspace dimension

\[
m_{\text{eff}} \approx m \frac{\Delta x_1}{\rho_1} \frac{\Delta x_2}{\rho_2} \ldots \frac{\Delta x_N}{\rho_N}
\]

Problems

- Q: what is the “price” paid for localisation?
 - dynamical ballance
 - optimality

- Note two different problems:
 1. Mean update ↔ local curve fitting
 2. Covariance update
Reasoning

Two common reasons:

▶ “spurious covariances”
 \[\sigma \sim \frac{1}{m^{1/2}} \]

▶ ensemble rank versus model subspace dimension

\[m_{\text{eff}} \approx m \frac{\Delta x_1}{\rho_1} \frac{\Delta x_2}{\rho_2} \ldots \frac{\Delta x_N}{\rho_N} \]

Problems

● Q: what is the “price” paid for localisation?
 ▶ dynamical balance
 ▶ optimality

● Note two different problems:
 1. Mean update ↔ local curve fitting
 2. Covariance update
Reasoning

Two common reasons:

- “spurious covariances”
 \[\sigma \sim \frac{1}{m^{1/2}} \]
- ensemble rank versus model subspace dimension
 \[m_{\text{eff}} \approx m \frac{\Delta x_1}{\rho_1} \frac{\Delta x_2}{\rho_2} \ldots \frac{\Delta x_N}{\rho_N} \]

Problems

- Q: what is the “price” paid for localisation?
 - dynamical balance
 - optimality

- Note two different problems:
 1. Mean update ↔ local curve fitting
 2. Covariance update
Reasoning

Two common reasons:

- “spurious covariances”
 \[\sigma \sim \frac{1}{m^{1/2}} \]
- ensemble rank versus model subspace dimension
 \[m_{\text{eff}} \approx m \frac{\Delta x_1}{\rho_1} \frac{\Delta x_2}{\rho_2} \ldots \frac{\Delta x_N}{\rho_N} \]

Problems

- Q: what is the “price” paid for localisation?
 - dynamical ballance
 - optimality

- Note two different problems:
 1. Mean update ↔ local curve fitting
 2. Covariance update
Historical overview

- Covariance localisation: Hamill and Whitaker (2001); Houtekamer and Mitchell (2001)
 - Local analysis: Evensen (2003); Anderson (2003); Ott et al. (2004)
 - Smooth tapering in parallel ESRFs: Hunt et al. (2007)
Historical overview

- Covariance localisation: Hamill and Whitaker (2001); Houtekamer and Mitchell (2001)
- Local analysis: Evensen (2003); Anderson (2003); Ott et al. (2004)
- Smooth tapering in parallel ESRFs: Hunt et al. (2007)
Historical overview

- Covariance localisation: Hamill and Whitaker (2001); Houtekamer and Mitchell (2001)
- Local analysis: Evensen (2003); Anderson (2003); Ott et al. (2004)
- Smooth tapering in parallel ESRFs: Hunt et al. (2007)
Historical overview

- Covariance localisation: Hamill and Whitaker (2001); Houtekamer and Mitchell (2001)
- Local analysis: Evensen (2003); Anderson (2003); Ott et al. (2004)
- Smooth tapering in parallel ESRFs: Hunt et al. (2007)
Some conventions

Indices

\((X)_i\) — \(i\)th column of \(X\)
\((X)_{i,:}\) — \(i\)th row of \(X\)
\((X)_{ij}\) — the element in \(i\)th row and \(j\)th column of \(X\)
\((x)_i\) — \(i\)th element of \(x\)

Matrix operations

\(A \circ B\) — Schur (Hadamard, element-wise) product of \(A\) and \(B\)

Localisation specific

\(\hat{A}\) — ensemble tapered around \(i\)th element
\(\hat{f}\) — taper function for the \(i\)th element
\(\hat{F}\) — taper matrix, \(\hat{F} = [\hat{f}, \hat{f} \ldots \hat{f}]\), \(\hat{A} = A \circ \hat{F}\)
\(\{\circ\}\) — \(H\) with all rows but \(o\)th zeroed

Convenience

\(\hat{A}\) — scaled ensemble anomalies: \(\hat{A} = \frac{1}{(m-1)^{1/2}} A\)
Non-adaptive localisation: the two methods

1. Covariance localisation (covariance filtering)
 Houtekamer and Mitchell (2001); Whitaker and Hamill (2002)

\[
P \rightarrow \rho \circ P
\]
Non-adaptive localisation: the two methods

1. Covariance localisation (covariance filtering)
 Houtekamer and Mitchell (2001); Whitaker and Hamill (2002)

\[\mathbf{P} \rightarrow \rho \circ \mathbf{P} \]

2. Local analysis
 (Evensen, 2003; Anderson, 2003; Ott et al., 2004; Hunt et al., 2007)

\[i : \mathbf{A} \rightarrow \hat{\mathbf{A}} \]
Covariance localisation: the technique

\[\mathbf{P} \rightarrow \rho \circ \mathbf{P} \]

\[\mathbf{K} = (\rho \circ \mathbf{P}^f)(\mathbf{H})^T \left[\mathbf{H}(\rho \circ \mathbf{P}^f)(\mathbf{H})^T + \mathbf{R} \right]^{-1} \]

\[(\rho \circ \mathbf{P}^f)(\mathbf{H})^T : \]

\[(\rho \circ \mathbf{P}^f)(\mathbf{H})^T \approx \sum_{o=1}^{p} \mathbf{A}^f \mathbf{H}^T \{o\} \mathbf{A}^f \]

\[\mathbf{H}(\rho \circ \mathbf{P}^f)(\mathbf{H})^T : \]

\[\mathbf{H}(\rho \circ \mathbf{P}^f)(\mathbf{H})^T \approx (\mathbf{H} \rho \mathbf{H}^T) \circ \left[(\mathbf{H} \mathbf{A}^f)(\mathbf{H} \mathbf{A}^f)^T \right] \]

CF and particular schemes:

- **EnKF**: \(\mathbf{A}^a = \mathbf{A}^f + \mathbf{K}(\mathbf{D} - \mathbf{H} \mathbf{A}^f) \) - OK
- **ESRF**: \(\mathbf{A}^a = (\mathbf{I} - \mathbf{K} \mathbf{H})^{1/2} \mathbf{A}^f \) - OK
- **ESRF**: \(\mathbf{A}^a = (\mathbf{I} + \mathbf{P}^T \mathbf{R}^{-1} \mathbf{H})^{-1/2} \mathbf{A}^f \) - OK
- **DEnKF**: \(\mathbf{A}^a = (\mathbf{I} - \frac{1}{2} \mathbf{K} \mathbf{H}) \mathbf{A}^f \) - OK
- **ETKF**: \(\mathbf{A}^a = \mathbf{A}^f \left[\mathbf{I} + (\mathbf{HA}^f)^T \mathbf{R}^{-1} (\mathbf{HA}) \right]^{-1/2} \) - NOT POSSIBLE
Covariance localisation: the technique

\[K = (\rho \circ P^f)(H)^T \left[H(\rho \circ P^f)(H)^T + R \right]^{-1} \]

\[(\rho \circ P^f)(H)^T : \]

\[(\rho \circ P^f)(H)^T \approx \sum_{i=1}^{p} \tilde{A}^f \{o\} \tilde{A}^f \]

\[H(\rho \circ P^f)(H)^T : \]

\[H(\rho \circ P^f)(H)^T \approx (\tilde{H} \rho \tilde{H}^T) \circ \left[(\tilde{H} \rho \tilde{H}^T) \right] \]

CF and particular schemes:

\begin{align*}
\text{EnKF:} & \quad A^a = A^f + K(D - HA^f) \quad \text{OK} \\
\text{ESRF:} & \quad A^a = (I - KH)^{1/2} A^f \quad \text{OK} \\
\text{ESRF:} & \quad A^a = (I + PH^T P^{-1} H)^{-1/2} A^f \quad \text{OK}
\end{align*}
Covariance localisation: the technique

\[P \rightarrow \rho \circ P \]

\[K = (\rho \circ P^f)(H)^T \left[H(\rho \circ P^f)(H)^T + R \right]^{-1} \]

\[(\rho \circ P^f)(H)^T : \]

\[\approx \sum_{o=1}^{p} A^f_i (H A^f)^T \]

\[H(\rho \circ P^f)(H)^T : \]

\[\approx (H \rho H^T) \circ \left[(H A^f)(H A^f)^T \right] \]

CF and particular schemes:

EnKF: \[A^a = A^f + K(D - H A^f) \] - OK

ESRF: \[A^a = (I - KH)^{1/2} A^f \] - OK

ESRF: \[A^a = (I + PH^T P^{-1} H)^{-1/2} A^f \] - OK
Covariance localisation: the technique

\[\mathbf{K} = (\rho \circ \mathbf{P}^f)(\mathbf{H})^T \left[\mathbf{H}(\rho \circ \mathbf{P}^f)(\mathbf{H})^T + \mathbf{R} \right]^{-1} \]

\[(\rho \circ \mathbf{P}^f)(\mathbf{H})^T : \]

\[(\rho \circ \mathbf{P}^f)(\mathbf{H})^T \approx \sum_{o=1}^{p} \mathbf{A}_o^f (\mathbf{H} \mathbf{A}_o^f)^T \]

\[\mathbf{H}(\rho \circ \mathbf{P}^f)(\mathbf{H})^T : \]

\[\mathbf{H}(\rho \circ \mathbf{P}^f)(\mathbf{H})^T \approx (\tilde{\mathbf{H}} \rho \tilde{\mathbf{H}}^T) \circ \left[(\mathbf{H} \mathbf{A}_o^f)(\mathbf{H} \mathbf{A}_o^f)^T \right] \]

CF and particular schemes:

- EnKF: \(\mathbf{A}_a = \mathbf{A}_f + \mathbf{K}(\mathbf{D} - \mathbf{H} \mathbf{A}_f) - \mathbf{OK} \)
- ESRF: \(\mathbf{A}_a = (\mathbf{I} - \mathbf{K} \mathbf{H})^{1/2} \mathbf{A}_f - \mathbf{OK} \)
- ESRF: \(\mathbf{A}_a = (\mathbf{I} + \mathbf{P}(\mathbf{R} - 1) \mathbf{H})^{-1/2} \mathbf{A}_f - \mathbf{OK} \)
- DEnKF: \(\mathbf{A}_a = (\mathbf{I} - \mathbf{K}^2 \mathbf{H}) \mathbf{A}_f - \mathbf{OK} \)
- ETKF: \(\mathbf{A}_a = \mathbf{A}_f \hat{\mathbf{I}} + (\mathbf{H} \mathbf{A}_f)^T \mathbf{R} - \mathbf{1}/2 - \mathbf{NOT POSSIBLE} \)
Covariance localisation: the technique

\[P \rightarrow \rho \circ P \]

\[K = (\rho \circ P^f)(H)^T \left[H(\rho \circ P^f)(H)^T + R \right]^{-1} \]

\[(\rho \circ P^f)(H)^T : \]
\[
(\rho \circ P^f)(H)^T \approx \sum_{\circ=1}^{P} \tilde{A}^f_{\circ} (H\tilde{A}^f)^T
\]

\[H(\rho \circ P^f)(H)^T : \]

\[
H(\rho \circ P^f)(H)^T \approx (\tilde{H} \rho \tilde{H}^T) \circ \left[(H\tilde{A}^f)(H\tilde{A}^f)^T \right]
\]

CF and particular schemes:

EnKF:
\[
A_a = A_f + K(D - HA_f) - OK
\]

ESRF:
\[
A_a = \left(I - KH \right)^{1/2} A_f - OK
\]

ESRF:
\[
A_a = \left(I + PH^T R^{-1} H \right)^{-1/2} A_f - OK
\]

DEnKF:
\[
A_a = \left(I - \frac{1}{2} KH \right) A_f - OK
\]

ETKF:
\[
A_a = A_f \hat{I} + (HA_f)^T R^{-1} (\tilde{H} - \hat{H}) - NOT POSSIBLE
\]
Covariance localisation: the technique

\[P \rightarrow \rho \circ P \]

\[K = (\rho \circ P^f)(H)^T [H(\rho \circ P^f)(H)^T + R]^{-1} \]

\[(\rho \circ P^f)(H)^T : \]

\[(\rho \circ P^f)(H)^T \approx \sum_{o=1}^{p} \hat{A}_f \{o\} f^T \]

\[H(\rho \circ P^f)(H)^T : \]

\[H(\rho \circ P^f)(H)^T \approx (\tilde{H} \rho \tilde{H}^T) \circ \left[(HA^f)(HA^f)^T \right] \]

CF and particular schemes:

- **EnKF**:
 \[A^a = A^f + K(D - HA^f) \]
 - OK

- **ESRF**:
 \[A^a = (I - KH)^{1/2} A^f \]
 - OK

- **ESRF**:
 \[A^a = (I + PH^T R^{-1} H)^{-1/2} A^f \]
 - OK

- **DEnKF**:
 \[A^a = (I - \frac{1}{2} KH) A^f \]
 - OK

- **ETKF**:
 \[A^a = A^f \left[I + (HA^f)^T R^{-1} (HA) \right]^{-1/2} \]
 - NOT POSSIBLE
Possible inconsistency

1D case, $n = 100$, $r_{loc} = 20$, Gaspari and Cohn (1999) taper function

Step taper function
Possible inconsistency

1D case, \(n = 100, \ r_{loc} = 20 \), Gaspari and Cohn (1999) taper function

\[\rho \text{ (non-periodic)} \quad \text{eig}(\rho) \quad \rho \text{ (periodic)} \quad \text{eig}(\rho) \]

2D case, \(n = 20 \times 20, \ r_{loc} = 5 \), Gaspari & Cohn taper function

\[\rho \text{ (non-periodic)} \quad \text{eig}(\rho) \quad \rho \text{ (periodic)} \quad \text{eig}(\rho) \]
Local analysis

\[i : \quad A \rightarrow \hat{A} \equiv A \circ [f \ldots f] \equiv A \circ \hat{f} \]

\[x^a = x^f + K(d - Hx^f) \quad \rightarrow \quad x^a_i = x^f_i + (K)_{i,:}(d - Hx^f)_i \]
\[A^a = A^f T \quad \rightarrow \quad (A^a)_{i,:) = (A^f)_{i,:} T \]

Equivalence of ensemble tapering and observation scaling:

\[\hat{K} = A(H\hat{A})^T [(H\hat{A})(H\hat{A})^T + R]^{-1} \]
\[= A(R^{-1/2}H\hat{A})^T [I + (R^{-1/2}H\hat{A})(R^{-1/2}H\hat{A})^T]^{-1} R^{-1/2} \]
\[\hat{T} = [I + (R^{-1/2}H\hat{A})^T(R^{-1/2}H\hat{A})]^{-1/2} \]
Local analysis

\[i : \ A \rightarrow \tilde{A} \equiv A \circ \tilde{f} \equiv A \circ \tilde{F} \]

\[x^a = x^f + K(d - Hx^f) \rightarrow x_i^a = x_i^f + (K)_i:(d - Hx_i^f) \]
\[A^a = A^f T \rightarrow (A^a)_i = (A^f)_i T \]

\[K = A\hat{H}A^T \left[(\hat{H}A)(\hat{H}A)^T + R \right]^{-1} \]
\[= A(R^{-1/2}HA)^T \left[I + (R^{-1/2}HA)(R^{-1/2}HA)^T \right]^{-1} R^{-1/2} \]
\[T = \left[I + (R^{-1/2}HA)^T(R^{-1/2}HA) \right]^{-1/2} \]

- Equivalence of ensemble tapering and observation scaling:
Non-adaptive methods: conclusions

Covariance localisation:
- can only be applied to schemes formulated in state space
- can be inconsistent, depending on taper function
- can be formulated via either covariance filtering or tapering of ensemble anomalies
- computationally can be the most effective choice for intermediate systems experiment

Local analysis:
- can be used with any scheme
- is locally consistent
- can be formulated via either tapering of ensemble anomalies or scaling of observation error variance
- computationally can be relatively expensive, but is scalable as $O(n)$
Non-adaptive methods: conclusions

Covariance localisation:

- can only be applied to schemes formulated in state space
- can be inconsistent, depending on taper function
- can be formulated via either covariance filtering or tapering of ensemble anomalies
- computationally can be the most effective choice for intermediate systems

Local analysis:

- can be used with any scheme
- is locally consistent
- can be formulated via either tapering of ensemble anomalies or scaling of observation error variance
- computationally can be relatively expensive, but is scalable as $O(n)$
Non-adaptive methods: conclusions

Covariance localisation:
- can only be applied to schemes formulated in state space
- can be inconsistent, depending on taper function
- can be formulated via either covariance filtering or tapering of ensemble anomalies
- computationally can be the most effective choice for intermediate systems

Local analysis:
- can be used with any scheme
- is locally consistent
- can be formulated via either tapering of ensemble anomalies or scaling of observation error variance
- computationally can be relatively expensive, but is scalable as $O(n)$
Non-adaptive methods: conclusions

Covariance localisation:
- can only be applied to schemes formulated in state space
- can be inconsistent, depending on taper function
- can be formulated via either covariance filtering or tapering of ensemble anomalies
- computationally can be the most effective choice for intermediate systems

Local analysis:
- can be used with any scheme
- is locally consistent
- can be formulated via either tapering of ensemble anomalies or scaling of observation error variance
- computationally can be relatively expensive, but is scalable as $O(n)$
Non-adaptive methods: conclusions

Covariance localisation:
- can only be applied to schemes formulated in state space
- can be inconsistent, depending on taper function
- can be formulated via either covariance filtering or tapering of ensemble anomalies
- computationally can be the most effective choice for intermediate systems

Experiment

Local analysis:
- can be used with any scheme
- is locally consistent
- can be formulated via either tapering of ensemble anomalies or scaling of observation error variance
- computationally can be relatively expensive, but is scalable as $O(n)$
Non-adaptive methods: conclusions

Covariance localisation:
- can only be applied to schemes formulated in state space
- can be inconsistent, depending on taper function
- can be formulated via either covariance filtering or tapering of ensemble anomalies
- computationally can be the most effective choice for intermediate systems

Local analysis:
- can be used with any scheme
- is locally consistent
- can be formulated via either tapering of ensemble anomalies or scaling of observation error variance
- computationally can be relatively expensive, but is scalable as $O(n)$
Non-adaptive methods: conclusions

Covariance localisation:
- can only be applied to schemes formulated in state space
- can be inconsistent, depending on taper function
- can be formulated via either covariance filtering or tapering of ensemble anomalies
- computationally can be the most effective choice for intermediate systems

Local analysis:
- can be used with any scheme
- is locally consistent
 - can be formulated via either tapering of ensemble anomalies or scaling of observation error variance
 - computationally can be relatively expensive, but is scalable as $O(n)$
Non-adaptive methods: conclusions

Covariance localisation:
- can only be applied to schemes formulated in state space
- can be inconsistent, depending on taper function
- can be formulated via either covariance filtering or tapering of ensemble anomalies
- computationally can be the most effective choice for intermediate systems

Local analysis:
- can be used with any scheme
- is locally consistent
- can be formulated via either tapering of ensemble anomalies or scaling of observation error variance
- computationally can be relatively expensive, but is scalable as $O(n)$
Non-adaptive methods: conclusions

Covariance localisation:
- can only be applied to schemes formulated in state space
- can be inconsistent, depending on taper function
- can be formulated via either covariance filtering or tapering of ensemble anomalies
- computationally can be the most effective choice for intermediate systems

Local analysis:
- can be used with any scheme
- is locally consistent
- can be formulated via either tapering of ensemble anomalies or scaling of observation error variance
- computationally can be relatively expensive, but is scalable as $O(n)$
Non-adaptive methods: conclusions

Covariance localisation:
- can only be applied to schemes formulated in state space
- can be inconsistent, depending on taper function
- can be formulated via either covariance filtering or tapering of ensemble anomalies
- computationally can be the most effective choice for intermediate systems

Local analysis:
- can be used with any scheme
- is locally consistent
- can be formulated via either tapering of ensemble anomalies or scaling of observation error variance
- computationally can be relatively expensive, but is scalable as $O(n)$
Adaptive methods

Anderson (2007):
- split ensemble into N subensembles
- calculate gain matrices for each sub-ensemble
- calculate “regression confidence factor” α
- use $K_s \rightarrow \alpha \circ K_s$, $s = 1, \ldots, N$

Conclusions:
- does not require distance measure between observation and state vector element
- Consistent formulation
- Optimises for sub-ensemble

Bishop and Hodyss (2007, 2009):

Main idea:
$$P \rightarrow \rho \circ P, \quad \rho = \rho(C)$$

Conclusions:
- does not require distance measure between observation and state vector element
- a lot of tuning to play with; rather expensive
- physically intuitive but *ad hoc*
Adaptive methods

Anderson (2007):

- split ensemble into N subensembles
- calculate gain matrices for each sub-ensemble
- calculate “regression confidence factor” α

For each state vector element and each observation find the optimal regression coefficient (Kalman gain element) assuming that it is a random draw from the same distribution as K_s for each sub-ensemble $s = 1, \ldots, N$, and find α to minimise

$$J = \sum_{i=1}^{N} \sum_{j \neq i} (\alpha K_i - K_j)^2$$

Solution:

$$\alpha(i, o) = \max \left\{ \frac{(\sum_s K_s)^2}{\sum_s K_s^2} - 1 \middle| \frac{\sum_s K_s^2}{N - 1}, 0 \right\}$$

- use $K_s \rightarrow \alpha \circ K_s$, $s = 1, \ldots, N$

Conclusions:

- does not require distance measure between observation and state vector element
- Consistent formulation
- Optimises for sub-ensemble

Bishop and Hodyss (2007, 2009):

Main idea:
Adaptive methods

Anderson (2007):

- split ensemble into \(N \) subensembles
- calculate gain matrices for each sub-ensemble
- calculate “regression confidence factor” \(\alpha \)
- use \(K_s \rightarrow \alpha \circ K_s, \ s = 1, \ldots, N \)

Conclusions:

- does not require distance measure between observation and state vector element
- Consistent formulation
- Optimises for sub-ensemble

Bishop and Hodyss (2007, 2009):

Main idea:

\[P \rightarrow \rho \circ P, \quad \rho = \rho(C) \]

Conclusions:

- does not require distance measure between observation and state vector element
- a lot of tuning to play with; rather expensive
- physically intuitive but *ad hoc*
Adaptive methods

Anderson (2007):

- split ensemble into N subensembles
- calculate gain matrices for each sub-ensemble
- calculate “regression confidence factor” α
- use $K_s \rightarrow \alpha \circ K_s, \ s = 1, \ldots, N$

Conclusions:
- does not require distance measure between observation and state vector element
- Consistent formulation
- Optimises for sub-ensemble

Bishop and Hodyss (2007, 2009):

Main idea:

$$P \rightarrow \rho \circ P, \quad \rho = \rho(C)$$

Conclusions:
- does not require distance measure between observation and state vector element
- a lot of tuning to play with; rather expensive
- physically intuitive but ad hoc
Adaptive methods

Anderson (2007):

- split ensemble into N subensembles
- calculate gain matrices for each sub-ensemble
- calculate “regression confidence factor” α
- use $K_s \rightarrow \alpha \circ K_s$, $s = 1, \ldots, N$

Conclusions:
- does not require distance measure between observation and state vector element
- Consistent formulation
- Optimises for sub-ensemble

Bishop and Hodyss (2007, 2009):

Main idea:

$$P \rightarrow \rho \circ P, \quad \rho = \rho(C)$$

Conclusions:
- does not require distance measure between observation and state vector element
- a lot of tuning to play with; rather expensive
- physically intuitive but ad hoc
Adaptive methods

Anderson (2007):

- split ensemble into N subensembles
- calculate gain matrices for each sub-ensemble
- calculate “regression confidence factor” α
- use $K_s \rightarrow \alpha \circ K_s$, $s = 1, \ldots, N$

Conclusions:
- does not require distance measure between observation and state vector element
- Consistent formulation
- Optimises for sub-ensemble

Bishop and Hodyss (2007, 2009):

Main idea:

$$P \rightarrow \rho \circ P, \quad \rho = \rho(C)$$

Conclusions:
- does not require distance measure between observation and state vector element
- a lot of tuning to play with; rather expensive
- physically intuitive but *ad hoc*
Diffusivity

Example: LA model (Oke et al., 2007)

- $n = 1000$, $m = 20$, $r_{loc} = 100$, 51 modes, $L = 100$
Conclusions

- Localisation in the EnKF is an ad-hoc modification of the analysis scheme.
- One must use localisation if the ensemble size is smaller than the model subspace dimension.
- Localisation makes the analysis schemes suboptimal and therefore inconsistent (sometimes - strongly) in regard to estimation of posterior covariance.
- Localisation makes it possible to recover the modal structure from observations even with a rank-deficient ensemble experiment.
- There are two main non-adaptive localisation schemes.
- These schemes are mainly equivalent and should be chosen by algorithmic convenience.
Conclusions

- Localisation in the EnKF is an ad-hoc modification of the analysis scheme.
- One must use localisation if the ensemble size is smaller than the model subspace dimension.
- Localisation makes the analysis schemes suboptimal and therefore inconsistent (sometimes - strongly) in regard to estimation of posterior covariance.
- Localisation makes it possible to recover the modal structure from observations even with a rank-deficient ensemble experiment.
- There are two main non-adaptive localisation schemes.
- These schemes are mainly equivalent and should be chosen by algorithmic convenience.
Conclusions

- Localisation in the EnKF is an *ad-hoc* modification of the analysis scheme.
- One **must** use localisation if the ensemble size is smaller than the model subspace dimension.
- Localisation makes the analysis schemes *suboptimal* and therefore inconsistent (sometimes - strongly) in regard to estimation of posterior covariance.
- Localisation makes it possible to recover the modal structure from observations even with a rank-deficient ensemble experiment.
- There are two main non-adaptive localisation schemes.
- These schemes are mainly equivalent and should be chosen by algorithmic convenience.
Conclusions

- Localisation in the EnKF is an ad-hoc modification of the analysis scheme.
- One must use localisation if the ensemble size is smaller than the model subspace dimension.
- Localisation makes the analysis schemes suboptimal and therefore inconsistent (sometimes - strongly) in regard to estimation of posterior covariance.
- Localisation makes it possible to recover the modal structure from observations even with a rank-deficient ensemble experiment.
- There are two main non-adaptive localisation schemes.
- These schemes are mainly equivalent and should be chosen by algorithmic convenience.
Conclusions

- Localisation in the EnKF is an ad-hoc modification of the analysis scheme.
- One must use localisation if the ensemble size is smaller than the model subspace dimension.
- Localisation makes the analysis schemes suboptimal and therefore inconsistent (sometimes - strongly) in regard to estimation of posterior covariance.
- Localisation makes it possible to recover the modal structure from observations even with a rank-deficient ensemble experiment.
- There are two main non-adaptive localisation schemes.
 - These schemes are mainly equivalent and should be chosen by algorithmic convenience.
Localisation in the EnKF is an ad-hoc modification of the analysis scheme. One must use localisation if the ensemble size is smaller than the model subspace dimension. Localisation makes the analysis schemes suboptimal and therefore inconsistent (sometimes - strongly) in regard to estimation of posterior covariance. Localisation makes it possible to recover the modal structure from observations even with a rank-deficient ensemble. There are two main non-adaptive localisation schemes. These schemes are mainly equivalent and should be chosen by algorithmic convenience.

