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Best Linear Unbiased Estimate
State vector x, belonging to state space S (dimS = n), to be estimated.
Available data in the form of

 A ‘background’ estimate, belonging to state space, with dimension
n

xb  =  x  + ζb

 An additional set of data (e. g. observations), belonging to observation
space, with dimension p

y  =  Hx + ε

H is known linear observation operator.
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Best Linear Unbiased Estimate (continuation 2)

Assume E(ζb) = 0, E(ε) = 0
Set d ≡ y - Hxb (innovation vector)

xa = xb - E(ζbdT) [E(ddT)]-1 (y - Hxb)
Pa =E(ζbζbT) - E(ζbdT) [E(ddT)]-1 E(dζbT)

 Assume E(ζbεT) = 0 (not restrictive). Set E(ζbζbT) = Pb (also often denoted B), E(εεT) = R

xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)
Pa = Pb

 - Pb
 HT

 [HPbHT + R]-1 HPb

 xa is the Best Linear Unbiased Estimate (BLUE) of x from xb and y.

If probability distributions are globally gaussian, BLUE achieves bayesian estimation, in the sense
that P(x | xb, y) = N [xa, Pa].

Determination of the BLUE requires (at least apparently) the a priori specification of the expectation
and covariance matrix, i. e. the statistical moments of orders 1 and 2,  of the errors. The expectation
is required for unbiasing the data in the first place.
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Questions

 Is it possible to objectively evaluate the quality of an
assimilation system ?

 Is it possible to objectively evaluate the first- and second-
order statistical moments of the data errors, whose
specification is required for determining the BLUE ?

 Is it possible to objectively determine whether an assimilation
system is optimal ?

 More generally, how to make the best of an assimilation
system ?



5

Objective validation

Objective validation is possible only by comparison with unbiased independent
observations, i. e. observations that have not been used in the asssimilation,
and that are affected with errors that are statistically independent of the errors
affecting the data used in the assimilation.

Amplitude of forecast error, if estimated against observations that are really
independent of observations used in assimilation, is an objective measure of
quality of assimilation.
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xb  =  x  + ζb 
y  =  Hx + ε   

The only combination of the data that is a function of only the error is the
innovation vector

d  =  y - Hxb  =  ε  - Hζb

Innovation is the only objective source of information on errors. Now innovation
is  a combination of background and observation errors, while determination
of the BLUE requires explicit knowledge of the statistics of both observation
and background errors.

xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)

Innovation alone will never be sufficient to determine the required statistics.
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With hypotheses made above

E(d) = 0      ;         E(ddT) = HPbHT + R

Possible to check statistical consistency between a priori assumed and
a posteriori observed statistics of innovation.

Consider assimilation scheme of the form

xa = xb + K(y - Hxb) (1)

with any (i. e. not necessarily optimal) gain matrix K.

 (1)  ⇔ if data are perfect, then so is the estimate xa.
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Data-minus-Analysis (DmA) difference

For given gain matrix K, one-to-one correspondance d ⇔ δ
It is exactly equivalent to compute statistics on either the innovation d or

on the DmA difference δ.
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After A. Lorenc



10

For perfectly consistent system (i. e., system that uses the exact error
statistics):

E(d) = 0 ( ⇔  E(δ) = 0)
Any systematic bias in either the innovation vector or the DmA difference

is the signature of an inappropriately taken into account bias in either
the background or the observation (or both).

      E[(xb-xa)(xb-xa)T]  =  Pb - Pa

      E[(y - Hxa)(y - Hxa)T]  =  R - HPaHT

A perfectly consistent analysis statistically fits the data to within their own
accuracy.

If new data are added to (removed from) an optimal analysis system, DmA
difference must increase (decrease).
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Assume inconsistency has been found between a priori assumed and a
posteriori observed statistics of innovation or DmA difference.

- What can be done ?

or, equivalently

- Which bounds does the knowledge of the statistics of innovation put
on the error statistics whose knowledge is required by the BLUE ?
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Data assumed to consist of a vector z, belonging to data space D (dimD =
m), in the form

z = Γx + ζ

where Γ is a known (mxn)-matrix, and ζ an unknown ‘error’

For instance

which corresponds to
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Look for estimated state vector xa of the form

xa = α + Az

subject to

 invariance in change of origin in state space     ⇒  AΓ = Im

 quadratic estimation error E[(xa
i - xi)2]  minimum for any component

xi.
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Solution

xa = (Γ T S-1Γ)-1 Γ T S-1 [z − µ]
Pa ≡ E[(xa - x) (xa - x )T] = (Γ T S-1Γ)-1

where      µ ≡ E(ζ) ,   S ≡ E(ζ’ζ’T) ,   ζ’ ≡  ζ −  µ

Requires (at least apparently) a priori explicit knowledge of Ε(ζ) and E(ζ’ζ’T)

Unambiguously defined iff rankΓ = n. Determinacy condition. Requires m ≥ n.
We shall set m = n + p.

Invariant in any invertible linear change of coordinates, either in data or state space.

In case ζ is gaussian, ζ = N [µ, S], BLUE achieves bayesian estimation in the sense
that P(x | z) = N [xa, Pa]
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If determinacy condition is verified, it is always possible to decompose data vector z into

xb  =  x  + ζb 
y  =  Hx + ε   

with     E(ζb) = 0   ; E(ε) = 0   ; E(εζbT) = 0

xa is the same estimate (BLUE) as before, viz.,

xa = xb + Pa
 HT

 R-1 (y - Hxb)
[Pa]-1 = [Pb]-1

 + HT
 R-1H

xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)
Pa = Pb

 - Pb
 HT

 [HPbHT + R]-1 HPb
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Variational form.

xa minimizes following scalar objective function, defined on state space S

J(ξ)  ≡  (1/2) [Γξ - (z-µ)]T S-1 [Γξ - (z-µ)]
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J(ξ)  ≡  (1/2) [Γξ - (z-µ)]T S-1 [Γξ - (z-µ)]

z-µ

Γxa

Γ(S)
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Minimizing J(ξ) amounts to

 unbias z

 project orthogonally onto space Γ(S) according to Mahalanobis S-metric

 take inverse through Γ (inverse unambiguously defined through determinacy
condition)
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Decompose data space D  into image space Γ(S) (index 1) and its S-orthogonal space ⊥Γ(S) (index 2)

Γ1  invertible

Assume

Then
xa = Γ1 

-1
 [z1 − µ1]
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xa = Γ1 
-1

 [z1 − µ1]

The probability distribution of the error 

xa - x =  Γ1 
-1

 [ζ1 − µ1]

depends on the probability distribution of ζ1.

On the other hand, the probability distribution of

 δ = (z-µ) - Γxa =

depends only on the probability distribution of ζ2.
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DmA difference, i. e. (z-µ) - Γxa, is in effect ‘rejected’ by the assimilation. Its
expectation and covariance are irrelevant for the assimilation.

Consequence. Any assimilation scheme (i. e., a priori subtracted bias and gain
matrix K) is compatible with any observed statistics of either DmA or
innovation. Not only is not consistency between a priori assumed and a
posteriori observed statistics of innovation (or DmA) sufficient for optimality
of an assimilation scheme, it is not even necessary.
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Example
z1 = x + ζ1
z2 = x + ζ2

Errors ζ1 and ζ2 assumed to be centred (E(ζ1) = E(ζ2) = 0),  to have same variance s and to be mutually
uncorrelated. Then

xa = (1/2) (z1 + z2)
with expected quadratic estimation error

E[(xa-x)2] = s/2

Innovation is difference z1 - z2. With above hypotheses, one expects to observe

E(z1 - z2) = 0 ;  E[(z1 - z2)2] = 2s

Assume one observes

E(z1 - z2) = b ;  E[(z1 - z2)2] = b2 + 2γ

Inconsistency if b≠0 and/or γ≠s
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Inconsistency can always be resolved by assuming that

E(ζ1) = -E(ζ2) = -b/2

E(ζ’1
2) = E(ζ’2

2) = (s+γ)/2
E(ζ’1ζ’2) = (s-γ)/2

This alters neither the BLUE xa, nor the corresponding quadratic estimation error E[(xa-x)2].
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Explanation. It is not necessary to know explicitly the complete expectation µ and
covariance matrix S in order to perform the assimilation. It is necessary to
know the projection of µ and S onto the subspace Γ(S). As for the subspace
that is S-orthogonal to Γ(S), it suffices to know what it is, but it is not
necessary to know the projection of µ and S onto it. A number of degrees of
freedom are therefore useless for the assimilation. The parameters determined
by the statistics of d are equal in number to those useless degrees of freedom,
to which any inconsistency between a priori and a posteriori statistics of the
innovation can always mathematically be attributed.

However, it may be that resolving the inconsistency in that way requires
conditions that are (independently) known to be very unlikely, if not simply
impossible. For instance, in the above example, consistency when γ≠s
requires  the errors ζ1 and ζ2 to be mutually correlated, which may be known to
be very unlikely.
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That result, which is purely mathematical, means that the specification of the error statistics
required by the assimilation must always be based, in the last resort, on external
hypotheses, i. e. on hypotheses that cannot be validated on the basis of the innovation
alone. Now, such knowledge always exists.

Problem. Identify hypotheses

 That will not be questioned (errors on observation perfomed a long distance apart
by radiosondes made by different manufacturers are uncorrelated)

 That sound reasonable, but may be questioned (observation and background errors
are uncorrelated)

 That are undoubtedly questionable (model errors are negligible)

Ideally, define a minimum set of hypotheses such that all remaining undetermined error
statistics can be objectively determined from observed statistics of innovation.
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Objective function

J(ξ)  ≡  (1/2) [Γξ - z]T S-1 [Γξ - z]

Jmin ≡ J(xa)  =  (1/2) [Γxa - z]T S-1 [Γxa - z]

          =  (1/2) dT [E(ddT)]-1 d

⇒      E(Jmin)  =  p/2 (p = dimy = dimd)

If p is large, a few realizations are sufficient for determining E(Jmin)
Often called χ2 criterion.

Remark. If in addition errors are gaussian Var(Jmin)  =  p/2
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Results for ECMWF (January 2003, n = 8 106)

- Operations (p = 1.4 106, has almost doubled since then)

2Jmin /p  =  0.40 - 0.45

Innovation is significantly smaller than implied by Pb and R (a residual bias in d would
make Jmin too large).

- Assimilation without satellite observations (p = 2 - 3 105)

2Jmin /p  =  1. - 1.05

Similar results obtained at other NWP centres (C. Fischer, W. Sadiki with Aladin model, T. Payne
at Meteorological Office, UK).

Probable explanation: error variance of satellite observations overestimated in order to
compensate for ignored spatial correlation.
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Informative content

Objective function
J(ξ)  =  Σk  Jk(ξ)

where

Jk(ξ)  ≡  (1/2) (Hkξ - yk)T Sk
-1 (Hkξ - yk)

with dimyk = mk

Accuracy of analysis
        Pa = (Γ T S-1Γ)-1

[Pa]-1  =   Σk  Hk
T Sk

-1 Hk

1 =   (1/n) Σk  tr(Pa Hk
T Sk

-1 Hk)
         =   (1/n) Σk  tr(Sk

–1/2 Hk Pa Hk
T Sk

–1/2)
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Informative content (continuation 1)

(1/n) Σk  tr(Sk
–1/2 Hk Pa Hk

T Sk
–1/2) = 1

I(yk) ≡ (1/n) tr(Sk
–1/2 Hk Pa Hk

T Sk
–1/2) is a measure of the relative contribution of subset of data yk to

overall accuracy of assimilation. Invariant in linear change of coordinates in data space ⇒ valid
for any subset of data.

In particular

I(xb) = (1/n) tr[Pa (Pb)-1]  = 1 - (1/n) tr(KH)
       I(y) = (1/n) tr(KH)

Rodgers, 2000, calls those quantities Degrees of Freedom for Signal, or for Noise, depending on whether considered
subset belongs to ‘observations’ or ‘background’.



Informative content of subsets of observations (Arpège Assimilation System,
Météo-France)

Chapnik et al., 2006, QJRMS, 132, 543-565



31Informative content per individual (scalar) observation (courtesy B. Chapnik)
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Objective function
J(ξ)  =  Σk  Jk(ξ)

where
Jk(ξ)  ≡  (1/2) (Hkξ - yk)T Sk

-1 (Hkξ - yk)
with dimyk = mk

For a perfectly consistent system

E[Jk(xa)]  =   (1/2) [mk   -  tr(Sk
–1/2 Hk Pa Hk

T Sk
–1/2)]

(in particular, E(Jmin)  =  p/2)

For same vector dimension mk, more informative data subsets lead at the minimum to smaller terms in
the objective function.
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Equality

E[Jk(xa)]  =   (1/2) [mk   -  tr(Sk
–1/2 Hk Pa Hk

T Sk
–1/2)] (1)

can be objectively checked.

Chapnik et al. (2004, 2005). Multiply each observation error covariance matrix Sk by a coefficient αk
such that (1) is verified simultaneously for all observation types.

System of equations fot the αk‘s solved iteratively.
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Chapnik et al., 2006,
QJRMS, 132,
543-565
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Informative content (continuation 2)

I(yk) ≡ (1/n) tr(Sk
–1/2 Hk Pa Hk

T Sk
–1/2)

Two subsets of data z1 and z2

If errors affecting z1 and z2 are uncorrelated, then I(z1 ∪ z2)  =  I(z1) + I(z2)

If errors are correlated I(z1 ∪ z2) ≠  I(z1) + I(z2)
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Informative content (continuation 3)

Example 1
z1 = x + ζ1
z2 = x + ζ2

Errors ζ1 and ζ2 assumed to centred, to have same variance and correlation coefficient  c.

I(z1)  =   I(z2)  =  (1/2) (1 + c)

Example 2

State vector x evolving in time according to

x2  =  α x1

Observations are performed at times 1 and 2. Observation errors are assumed centred, uncorrelated
and with same variance. Information contents are then in ratio (1/α , α). For an unstable system (α
>1), later observation contains more information (and the opposite for  a stable system).
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Informative content (continuation 4)

Subset u1 of analyzed fields, dimu1 = n1. Define relative contribution of subset yk of data to
accuracy of u1?

u2 : component of x orthogonal to u1 with respect to Mahalanobis norm associated with Pa

(analysis errors on u1 and u2 are uncorrelated).

x = (u1
T, u2

T)T. In basis (u1, u2)

Pa =
Pa

1 0
0 Pa
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Informative content (continuation 5)

Observation operator Hk decomposes into

Hk  =  (Hk1, Hk2)

and expression of estimation error covariance matrix into

[Pa
1]-1  =   Σk  Hk1

T Sk
-1 Hk1

[Pa
2]-1  =   Σk  Hk2

T Sk
-1 Hk2

Same development as before shows that the quantity

(1/n1) tr(Sk
–1/2 Hk1 Pa

1
 Hk1

T Sk
–1/2)

is a measure of the relative contribution of subset yk of data to analysis of subset u1 of state vector.

But can it be computed in practice for large dimension systems (requires the explicit decomposition
x = (u1

T, u2
T)T) ?
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Other possible diagnostics (Desroziers et al., 2006)

For a consistent system, with uncorrelation between background and observation
errors

 E[H(xa-xb)(y-Hxb) T]  = E[H(xa-xb)dT]  = HPbHT

E[(y-Hxa)(y-Hxb)T]  = E[(y-Hxa)dT]  = R
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Optimality

Equation

xa = xb - E(ζbdT) [E(ddT)]-1 (y - Hxb)

means that estimation error x -xa is uncorrelated with innovation y - Hxb (if it was not, it
would be possible to improve on xa by statistical linear estimation).

Independent unbiased observation

v  =  Cx + γ

Fit to analysis  v - Cxa =  C(x - xa) + γ

E[(v - Cxa) dT] = CE[(x - xa) dT] + E(γ dT)

First term is 0 if analysis is optimal, second is 0 if observation v is independent from
previous data.

Daley (1992)
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Conclusions

 Absolute evaluation of analysis schemes, and comparison between different schemes

Can be evaluated only against independent unbiased data (independence and unbiasedness
cannot be objectively checked). Fundamental, but not much to say.

 Determination of required statistics

Impossible to achieve in  a purely objective way. Will always require physical knowledge,
educated guess, interaction with instrumentalists and modelers, and the like.

Inconsistencies in specification of statistics can be objectively diagnosed, and can help in
improving assimilation.

For given error statistics, possible to quantify relative contribution of each subset of data to
analysis of each subset of state vector.

        (and also Generalized Cross-Validation, Adaptive Filtering)

 Optimality of analysis schemes

Optimality in the sense of least error variance can be objectively checked against independent
unbiased data.


