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Costly part in assimilation of meteorological and oceanographical
observations is to carry in time the uncertainty on the estimate if the state of
the flow. Kalman filter (KF) does it explicitly, by evolving an error covariance
matrix (standard KF) or an ensemble of points in state space (EnKF).
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Analysis of 500-hPa geopotential for 1 December 1989, 00:00 UTC (ECMWF, spectral
truncation T21, unit m. After F. Bouttier)
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Temporal evolution of the 500-hPa geopotential autocorrelation with respect to point
located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.
Contour interval 0.1. After F. Bouttier.
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Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Analysis increments in a 3D-Var corresponding to a height observation at the 250-
hPa pressure level (no temporal evolution of background error covariance matrix)

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414

Same as before, but at the end of a 24-hr 4D-Var
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Analysis increments in a 3D-Var corresponding to a u-component wind observation at the
1000-hPa pressure level (no temporal evolution of background error covariance matrix)

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Same as before, but at the end of a 24-hr 4D-Var

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414



ECMWF, Results on one FASTEX case (1997)
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Adjoint Method. Practical implementation

Code

Input variables u1, u2, …, un

*
*
*

a = b x c
*
*
*

J  = x1
2 + x2

2 + x3
2

Purpose. Determine partial derivatives of J with respect to u1, u2, …, un
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Adjoint Method. Practical implementation (2)

Input variables u1, u2, …, un

*
*
*

a = b x c
*
*
*

J  = x1
2 +  x2

2 +  x3
2

Last instruction

∂J/∂x1 = 2x1,  ∂J/∂x2 = 2x2 ,  ∂J/∂x3 = 2x3

 And then proceed backwards



13

Adjoint Method. Practical implementation (3)

Operation  a = b x c

Input  b, c  Output  a  but also b, c

 For clarity, we write

 a = b x c
 b’ = b
 c’ = c

∂J/∂a,  ∂J/∂b’,  ∂J/∂c’ available. We want to determine ∂J/∂b,  ∂J/∂c

 Chain rule

 ∂J/∂b = (∂J/∂a)(∂a/∂b) +  (∂J/∂b’)(∂b’/∂b) +  (∂J/∂c’)(∂c’/∂b)
               c                     1   0

 ∂J/∂b = (∂J/∂a) c +  ∂J/∂b’

 Similarly

∂J/∂c = (∂J/∂a) b +  ∂J/∂c’
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Adjoint Method is very powerful (actually, there is no competitor as far as
computing gradients with respect to a large number of variables is concerned).

But there is a price to pay for that efficiency. Larger memory requirements
and, especially necessity of developing, validating (and maintaining …)
adjoint codes.

Quasi-mechanical rules exist for writing adjoint codes. Nevertheless, writing
and validating an adjoint code can be a lengthy and tedious task. The best is
often to write the direct and adjoint codes in parallel.

Adjoint compilers exist, that automatically derive the adjoint of a given code.
But adjoints produced by those compilers are in general less efficient than
adjoints written by hand, and require careful validation. Adjoint compilers
nevertheless very useful for developing adjoints of very big codes, such as
NWP models.
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Errico and Vukicevic (NCAR, 1991)
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Errico and Vukicevic (NCAR, 1991)



17

Varitaional assimilation minimizes objective function

ξ ∈  S  → 

	
     J(ξ)  =  (1/2) (xb - ξ)T [Pb]-1 (xb - ξ) +  (1/2) (y - Hξ)T R-1 (y - Hξ)

  =         Jb      +      Jo

 (x1,  x2)  →  x1
T [Pb]-1 x2  and  (y1,  y2)  →  y1

T R-1 y2 define intrinsic (i.e.,
coordinate independent) scalar products in state and observation spaces
respectively, called the Mahalanobis scalar products associated with the
covariance matrices (tensors) Pb and R respectively.
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Tangent Linear Approximation

Data in the form of  background +additional ‘observations’

xb  =  x  + ζb  (1)
y  =  H(x) + ε  (2)

where operator H is nonlinear (includes model in the case of 4D-Var).

Data (1-2) are equivalent to

xb  =  x  + ζb  (3)
d ≡ y - H(xb) + ε  (4)  (innovation)

If background xb is sufficiently accurate such that

d = H(x) - H(xb) + ε  ≈ H’(x-xb) + ε 

where H’ is Jacobian of H at point xb,  then estimation problem is linear in terms of
deviation x-xb from background.
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H(x) - H(xb) ≈ H’(x-xb)

Tangent Linear Approximation, valid for large scale meteorology (scales > 100
km) up to ranges 24-48 hours.

Explicitly implemented in Extended Kalman Filter
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‘Incremental’ approach to Variational Assimilation

If you want to implement 4D-Var, do you have to to first develop the adjoint of the whole
model, and then take your chance ? Is there not a way to proceed more progressively ?

Model  ξk+1 = Mk(ξk) , k = 0, …, K-1

First-order perturbation to solution  {ξk}

 δξk+1 = Mk’ δξk  ,  where is Jacobian of Mk at point ξk

Adjoint equation

 λK =        HK’T RK
-1 [HK(ξK) - yK]

…
λk = Mk’Tλk+1 + Hk’T Rk

-1 [Hk(ξk) - yk]  k = K-1, …, 1
…
 λ0 = M0’Tλ1      + H0’T R0

-1 [H0(ξ0) - y0]   +  [P0
b]-1 (ξ0 - x0

b)
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‘Incremental’ approach to Variational Assimilation (continuation 1)

Simplify adjoint ? That is not the solution. Gradient will be erroneous, and minimization
will fail.

Solution : simplify simultaneously, and consistently, both the direct perturbation dynamics
and the associated adjoint.

Basic dynamics  ξk+1 = Mk(ξk) , k = 0, …, K-1

Perturbation dynamics

 δξk+1 = Gk (δξk) ,  where Gk is appropriately simplified form of Mk’

Adjoint equation

 λK =        HK’T RK
-1 [HK(ξK) - yK]

…
 λk = Gk’Tλk+1 + Hk’T Rk

-1 [Hk(ξk) - yk]  k = K-1, …, 1
…
 λ0 = G0’Tλ1      + H0’T R0

-1 [H0(ξ0) - y0]   +  [P0
b]-1 (ξ0 - x0

b)
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‘Incremental’ approach to Variational Assimilation (continuation 2)

Incremental approach generally (systematically ?) implemented in weather centres where
4D-Var is used for operational assimilation (ECMWF, Météo-France, UK Met Office,
…).

Can be made iterative, with increasing complexity in Gk (inner and outer loops).

Largely heuristic.
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Strong nonlinearities can result in existence of multiple minima for objective
function.

Quasi-Static Variational Assimilation (Swanson et al., Luong, Järvinen
et al.)

Progressively extend length of assimilation window, each new minimization
being started from the result of the previous one, so as to keep track of the
absolute minimum.
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Swanson, Vautard and Pires, 1998, Tellus, 50A, 369-390
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Time-correlated Errors

Example of time-correlated observation errors

z1 = x + ζ1

z2 = x + ζ2

E(ζ1) = E(ζ2) = 0   ;  E(ζ1
2) = E(ζ2

2) = s    ;     E(ζ1ζ2) = 0

BLUE of x from z1 and z2 gives equal weights to z1 and z2.

Additional observation then becomes available

z3 = x + ζ3
E(ζ3) = 0    ;    E(ζ3

2) = s    ;    E(ζ1ζ3) = cs    ;    E(ζ2ζ3) = 0

 BLUE of x from (z1, z2, z3) has weights in the proportion (1, 1+c, 1)
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Time-correlated Errors (continuation 1)

Example of time-correlated model errors

Evolution equation
` xk+1 = xk + ηk  E(ηk

2) = q

Observations
yk = xk + εk ,  k = 0, 1, 2 E(εk

2) = r, errors uncorrelated in time

Sequential assimilation. Weights given to y0 and y1 in analysis at time 1 are in the
ratio r/(r+q). That ratio will be conserved in sequential assimilation. All right if model
errors are uncorrelated in time.

Assume  E(η0η1) = cq
 Weights given to y0 and y1 in estimation of x2 are in the ratio

! 

! 

" =
r # qc

r + q + qc
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Time-correlated Errors (continuation 2)

Moral. If data errors are correlated in time, it is not possible to discard observations as they
are used while preserving optimality of the estimation process. In particular, if model error
is correlated in time, all observations are liable to be reweighted  as assimilation proceeds.

Variational assimilation can take time-correlated errors into account.

Example of time-correlated observation errors. Global covariance matrix

R = (Rkk’ = E(εkεk’
T))

Objective function

ξ0 ∈  S   → 

J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σkk’[yk - Hkξk]T [R -1]kk’ [yk’ - Hk’ξk’]

where [R -1]kk’ is the kk’-subblock of global inverse matrix R -1.

Similar approach for time-correlated model error.

! 
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Time-correlated Errors (continuation 3)

Time correlation of observational error has been introduced by ECMWF (Järvinen et al.,
1999) in variational assimilation of high-frequency surface pressure observations
(correlation originates in that case in representativeness error).

Identification and quantification of temporal correlation of errors, especially model errors ?

! 
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4D-Var is now used operationally at ECMWF, Météo-
France, Meteorological Office (UK), Canadian
Meteorological Service (together with an ensemble
assimilation system), Japan Meteorological Agency

Model error is ignored

Strong Constraint Variational Assimilation
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Weak constraint variational assimilation allows for errors in the assimilating
model

	
 Data
- Background estimate at time 0

  x0
b  =  x0

  + ζ0
b  E(ζ0

bζ0
bT) = P0

b

- Observations at times k = 0, …, K

   yk = Hkxk + εk E(εkεk
T) = Rk

 - Model

  xk+1 = Mkxk + ηk  E(ηkηk
T) = Qk k = 0, …, K-1

Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear
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Then objective function

(ξ0, ξ1, ..., ξK) → 
   

J(ξ0, ξ1, ..., ξK)

= (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0)

    + (1/2) Σk=0,…,K[yk - Hkξk]T Rk
-1 [yk - Hkξk]

    + (1/2) Σk=0,…,K-1[ξk+1 - Mkξk]T Qk
-1 [ξk+1 - Mkξk]

 Can include nonlinear Mk and/or Hk.
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Dual Algorithm for Variational Assimilation (aka Physical Space Analysis
System, PSAS, pronounced ‘peezaz’, developed at Data Assimilation Office,
NASA, Greenbelt)

xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)

xa = xb + Pb
 HT

 Λ-1 d = xb + Pb
 HT

 m

where Λ ≡ HPbHT + R, d ≡ y - Hxb and m ≡ Λ-1 d maximises

µ  →  K(µ) = -(1/2) µT Λ µ + dTµ

Maximisation is performed in (dual of) observation space.
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Dual Algorithm for Variational Assimilation (continuation 2)

Extends to time dimension, and to weak-constraint case, by defining state vector as

x ≡ (x0
T, x1

T
 , …, xK

T)T

or, equivalently, but more conveniently, as

x ≡ (x0
T, η0

T
 , …, ηK-1

T)T

where, as before

ηk =  xk+1 - Mkxk   , k = 0, …, K-1

The background for x0 is x0
b, the background for ηk is 0. Complete background is

xb = (x0
bT, 0T

 , …,  0T)T

It is associated with error covariance matrix

 Pb = diag(P0
b, Q0 , …, QK-1)
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Dual Algorithm for Variational Assimilation (continuation 3)

For any state vector ξ = (ξ 0T, υ0
T

 , …, υK-1
T)T, the observation operator H

ξ  → Hξ = (u0
T, …, uK

T)T

is defined by the sequence of operations

u0 = H0ξ 0

then for k = 0, …, K-1

ξk+1 = Mkξk + υk
uk+1  = Hk+1 ξk+1

The observation error covariance matrix is equal to

 R = diag(R0, …,  RK)
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Dual Algorithm for Variational Assimilation (continuation 4)

Maximization of dual objective function

µ  →  K(µ) = -(1/2) µT Λ µ + dTµ

requires explicit repeated computations of its gradient

∇µ K  = - Λµ + d = - (HPbHT + R)µ + d

Starting from µ = (µ0
T, …, µΚ

T)T belonging to (dual) of observation space, this requires 5 successive steps

- Step 1. Multiplication by HT. This is done by applying the transpose of the process defined above, viz.,

Set χΚ = 0
Then, for k = K-1, …, 0

         νk  = χk+1  +  Hk+1
T

 µk+1
χk  =  Mk

T
 νk

 Finally           λ0  = χ0  +  H0
T

 µ0

The output of this step, which includes a backward integration of the adjoint model, is the vector
(λ0

T, ν0
T

 , …, νK-1
T)T
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Dual Algorithm for Variational Assimilation (continuation 5)

- Step 2. Multiplication by Pb. This reduces to

ξ 0 = P0
b λ0

υk = Qkνk  ,  k = 0, …, K-1

- Step 3. Multiplication by H. Apply process defined above to vector (ξ 0T, υ0
T

 , …, υK-
1
T)T, thereby producing vector (u0

T, …, uK
T)T.

- Step 4. Add vector Rµ, i. e. compute
 ϕ0  = ξ0 + R0 µ0

ϕk  = υk-1 + Rk µk  ,  k = 1, …, K

- Step 5. Change sign of vector ϕ = (ϕ0
T, …, ϕΚT)T , and add vector d = y - Hxb,
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Dual Algorithm for Variational Assimilation (continuation 6)

The model error covariance matrix Qk is present in the algorithm only in its direct
(not inverse form). Dual algorithm remains regular in the limit of vanishing model
error. Can be used for both strong- and weak-constraint assimilation.

No significant increase of computing cost in comparison with standard strong-
constraint variational assimilation (Louvel)
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Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999



Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999
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Dual Algorithm for Variational Assimilation (continuation)

Requires

 Explicit background (not much of a problem)

 Exact linearity (much more of a problem). Definition of iterative nonlinear
procedures is being studied (Auroux, …)
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Auroux, Doctoral Dissertation, Université de Nice-Sophia Antipolis, Nice, 2003
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Conclusion on Variational Assimilation

Pros
 Carries information both forward and backward in time (important for reassimilation of past
data. Kalman smoother also does it).

Can take into account temporal statistical dependence (Järvinen et al.)
Does not require explicit computation of temporal evolution of estimation error
Very well adapted to some specific problems (e. g., identification of tracer sources)

Cons
 Does not readily provide estimate of estimation error

Requires development and maintenance of adjoint codes.

• Dual approach seems most promising (see also, Fisher, ECMWF). But still
needs further development for application in non exactly linear caes.

• Is ensemble variational assimilation possible ? Probably yes. But also needs
development.


