
Advanced assimilation methods.
Variational assimilation. Adjoint equations

Part 3

Olivier Talagrand
School Data Assimilation

Nordic Institute for Theoretical Physics (NORDITA)
Stockholm, Sweden

27 April 2011



2

Best Linear Unbiased Estimate

State vector x, belonging to state space S (dimS = n), to be estimated.
Available data in the form of

 A ‘background’ estimate (e. g. forecast from the past), belonging to state
space, with dimension n
xb  =  x  + ζb

 An additional set of data (e. g. observations), belonging to observation space,
with dimension p
y  =  Hx + ε

H is known linear observation operator.

Assume probability distribution is known for  the couple (ζb, ε).
Assume E(ζb) = 0, E(ε) = 0, E(ζbεT) = 0 (not restrictive)
Set E(ζbζbT) ≡ Pb (also often denoted B), E(εεT) ≡ R
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Then

xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)
Pa = Pb

 - Pb
 HT

 [HPbHT 
 + R]-1 HPb

 xa is the Best Linear Unbiased Estimate (BLUE) of x from xb and y.
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Blue xa minimizes objective function (also called cost function), defined on
state space

ξ ∈  S  → 

	

     J(ξ)  =  (1/2) (xb - ξ)T [Pb]-1 (xb - ξ) +  (1/2) (y - Hξ)T R-1 (y - Hξ)

  =         Jb      +      Jo

‘3D-Var’ 

used operationally in USA, Australia, China, …
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Approach can easily be extended to time dimension.

Suppose for instance available data consist of

- Background estimate at time 0
   x0

b  =  x0
  + ζ0

b  E(ζ0
bζ0

bT) = P0
b

- Observations at times k = 0, …, K
   yk = Hkxk + εk E(εkεj

T) = Rk

 - Model (supposed for the time being to be exact)
   xk+1 = Mkxk k = 0, …, K-1

Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear

Then objective function

ξ0 ∈  S  → 

J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]

subject to ξk+1 = Mkξk , k = 0, …, K-1
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J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]

  Background is not necessary, if observations are in sufficient number to
overdetermine the problem. Nor is strict linearity.

How to minimize objective function with respect to initial state u = ξ0 (u is
called the control variable of the problem) ?

Only practical method seems to be iterative minimization, each step of which
requires the explicit knowledge of the gradient

∇u J ≡  (∂J/∂ui)

of J with respect to u.
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How to numerically compute the gradient ∇u J ?

Direct perturbation, in order to obtain partial derivatives ∂J/∂ui by finite
differences ? That would require as many explicit computations of the
objective function J as there are components in u. Practically impossible.
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Adjoint Approach

Input vector u = (ui), dimu = n
Numerical process, implemented on computer (e. g. integration of numerical
model)

u → v = G(u)
	

 v = (vj) is output vector , dimv = m

	

 Perturbation δu = (δui) of input. Resulting first-order perturbation on v

	

 δvj = Σi (∂vj/∂ui) δui

	

 or, in matrix form
	

 δv  =  G’δu

	

 where G’≡ (∂vj/∂ui) is local matrix of partial derivatives, or jacobian matrix,
of G.
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Adjoint Approach (continued 1)

       δv  =  G’δu (D)

	

 Scalar function of output
J(v)  =  J[G(u)]

Gradient ∇u J of J with respect to input u?

‘Chain rule’

∂J/∂ui = Σj ∂J/∂vj (∂vj/∂ui)

  or

	

             ∇u J  =  G’T ∇v J  (A)
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Adjoint Approach (continued 2)

	

 G is the composition of a number of successive steps

G = GK ° … ° G2 ° G1

‘Chain rule’

G’ = GK’ … G2’ G1’

 Transpose
	



G’T = G1’T G2’T … GK
T

Transpose, or adjoint, computations are performed in reversed order of direct computations.

If G is nonlinear, local jacobian G’ depends on local value of input u. Any quantity that is an
argument of a nonlinear operation in the direct computation will be used gain in the adjoint
computation. It must be kept in memory from the direct computation (or else be recomputed again in
the course of the adjoint computation).

If everything is kept in memory, total operation count of adjoint computation is at most 4 times
operation count of direct computation (in practice about 2).
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Adjoint Approach (continued 3)

J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]
subject to ξk+1 = Mkξk , k = 0, …, K-1

Control variable  ξ0 = u

 Adjoint equation

 λK =        HK
T RK

-1 [HK ξK - yK]
…
…
 λk = Mk

Tλk+1 + Hk
T Rk

-1 [Hk ξk - yk]  k = K-1, …, 1
…
…
λ0 = M0

Tλ1      + H0
T R0

-1 [H0 ξ0 - y0]   +  [P0
b]-1 (ξ0 - x0

b)

∇u J  = λ0

Result of direct integration (ξk), which appears in quadratic terms in expression of
objective function, must be kept in memory from direct integration.
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Adjoint Approach (continued 4)

Nonlinearities ?

J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hk(ξk)]T Rk

-1 [yk - Hk(ξk)]

subject to ξk+1 = Mk(ξk) , k = 0, …, K-1

Control variable  ξ0 = u

Adjoint equation

 λK =        HK’T RK
-1 [HK(ξK) - yK]

 λk = Mk’Tλk+1 + Hk’T Rk
-1 [Hk(ξk) - yk]  k = K-1, …, 1

λ0 = M0’Tλ1      + H0’T R0
-1 [H0(ξ0) - y0]   +  [P0

b]-1 (ξ0 - x0
b)

∇u J  = λ0

Not heuristic (it gives the exact gradient ∇uJ), and really used as described here.
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Adjoint Approach (continued 5)

It works (Le Dimet, Courtier et al.) !

‘4D-Var’

Used operationally at European Centre for Medium-range Weather Forecasts
(ECMWF), Météo-France, Meteorological Office (UK), Canadian Meteorological
Centre (together with an ensemble Kalman filter), Japan Meteorological Agency


