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   Why have meteorologists such difficulties in predicting the
weather with any certainty ? Why is it that showers and even
storms seem to come by chance, so that many people think it
is quite natural to pray for them, though they would consider
it ridiculous to ask for an eclipse by prayer ? […] a tenth of a
degree more or less at any given point, and the cyclone will
burst here and not there, and extend its ravages over districts
that it would otherwise have spared. If they had been aware
of this tenth of a degree, they could have known it
beforehand, but the observations were neither sufficiently
comprehensive nor sufficiently precise, and that is the reason
why it all seems due to the intervention of chance.

H. Poincaré, Science et Méthode, Paris, 1908
(translated Dover Publ., 1952)
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December 2007: Satellite data volumes used:
around 18 millions per day
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Value as of March 2010 : 25 millions per day



S. Louvel, Doctoral Dissertation, 1999
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E. Rémy, Doctoral Dissertation, 1999
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Physical laws governing the flow

 Conservation of mass
Dρ/Dt + ρ divU  =  0

 Conservation of energy
De/Dt - (p/ρ2) Dρ/Dt =  Q

 Conservation of momentum
DU/Dt + (1/ρ) gradp - g + 2 Ω ∧U =  F

 Equation of state
 f(p, ρ, e) =  0 (p/ρ = rT, e = CvT)

 Conservation of mass of secondary components (water in  the atmosphere, salt
in the ocean, chemical species, …)
Dq/Dt + q divU  = S

Physical laws available in practice in the form of a discretized (and necessarily
imperfect) numerical model
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Schéma de principe d’un modèle atmosphérique
(L. Fairhead /LMD-CNRS)
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European Centre for Medium-range Weather Forecasts
(ECMWF, Reading, UK)

Horizontal spherical harmonics triangular truncation T1279
(horizontal resolution ≈ 16 kilometres)

91 levels on the vertical (0 - 80 km)

Dimension of state vector n ≈ 1.5 109

Timestep  =  10 minutes



Extracted from Richardson et al., 2010, ECMWF Technical Memorandum 635
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Purpose of assimilation : reconstruct as accurately as possible the state of
the atmospheric or oceanic flow, using all available appropriate
information. The latter essentially consists of

 The observations proper, which vary in nature, resolution and
accuracy, and are distributed more or less regularly in space and time.

 The physical laws governing the evolution of the flow, available in
practice in the form of a discretized, and necessarily approximate,
numerical model.

 ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes.
Although they basically are necessary consequences of the physical laws which govern the
flow, these properties can usefully be explicitly introduced in the assimilation process.
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Assimilation is one of many ‘inverse problems’ encountered
in many fields of science and technology

• solid Earth geophysics

• plasma physics

• ‘nondestructive’ probing

• navigation (spacecraft, aircraft, ….)

• …

Solution most often (if not always) based on bayesian, or
probabilistic, estimation. ‘Equations’ are fundamentally the
same.
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Difficulties specific to assimilation of meteorological and
oceanographical observations :

- Very large numerical dimensions (n ≈ 107-109 parameters to
be estimated, p ≈ 2.107 observations per 24-hour period).
Difficulty aggravated in Numerical Weather Prediction by the
need for the forecast to be ready in time.

- Non-trivial underlying dynamics.
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Both observations and ‘model’ are affected with some uncertainty ⇒ uncertainty on the
estimate.

For some reason, uncertainty is conveniently described by probability distributions
(don’t know too well why, but it works).

Assimilation is a problem in bayesian estimation.

Determine the conditional probability distribution for the state of the system,
knowing everything we know (unambiguously defined if a prior probability distribution is defined; see
Tarantola, 2005).
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Bayesian Estimation

Determine conditional probability distribution of the state of the system,
given the probability distribution of the uncertainty on the data

z1 = x + ζ1  ζ1 = N [0, s1]

 density function p1(ζ) ∝ exp[ - (ζ2)/2s1]

z2 = x + ζ2  ζ2 = N [0, s2]

 density function p2(ζ) ∝ exp[ - (ζ2)/2s2]

	

 ζ1 and ζ2 mutually independent

What is the conditional probability P(x = ξ | z1, z2) that x be equal to
some value ξ ?
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z1 = x + ζ1 density function p1(ζ) ∝ exp[ - (ζ2)/2s1
2]

z2 = x + ζ2  density function p2(ζ) ∝ exp[ - (ζ2)/2s2
2]

x = ξ   ⇔  ζ1 = z1-ξ  and ζ2 = z2 -ξ

	

 P(x = ξ | z1, z2) ∝  p1(z1-ξ) p2(z2 -ξ)
        ∝  exp[ - (ξ -xa)2/2s]

where 1/s = 1/s1 + 1/s2 , xa = s (z1/s1
 + z2/s2)

Conditional probability distribution of x, given z1 and z2 :N [xa, s]
s < (s1, s2) independent of z1 and z2
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z1 = x + ζ1
z2 = x + ζ2

Same as before, but ζ1 and ζ2 are now distributed according to exponential law with
parameter a, i. e.

p (ζ) ∝ exp[-|ζ |/a]   ;    Var(ζ) = 2a2

Conditional probability density function is now uniform over interval [z1, z2],
exponential with parameter a/2 outside that interval

E(x | z1, z2)  = (z1+z2)/2

Var(x | z1, z2) = a2 (2δ3/3 + δ2 + δ +1/2) / (1 + 2δ), with δ =  ⏐z1-z2⏐/(2a)
Increases from a2/2 to ∞ as δ increases from 0 to ∞. Can be larger than variance 2a2

of original errors (probability 0.08)

(Entropy -∫plnp always decreases in bayesian estimation)
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Bayesian estimation

State vector x, belonging to state space S (dimS = n), to be estimated.

Data vector z, belonging to data space D (dimD = m), available.

 z = F(x, ζ)  (1)

where ζ is a random element representing the uncertainty on the
data (or, more precisely, on the link between the data and the
unknown state vector).

For example

z = Γx + ζ
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Probability that x = ξ for given ξ ?

x = ξ    ⇒   z = F(ξ, ζ)

P(x = ξ | z) = P[z = F(ξ, ζ)] / ∫ξ’ P[z = F(ξ’, ζ)]

Unambiguously defined iff, for any ζ, there is at most one x such that (1) is
verified.

⇔   data contain information, either directly or indirectly, on any component of x.
Determinacy condition.
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Bayesian estimation is however impossible in its general theoretical form
in meteorological or oceanographical practice because

• It is impossible to explicitly describe a probability distribution in a space
with dimension even as low as n ≈ 103, not to speak of the dimension  n ≈
107-9 of present Numerical Weather Prediction models.

• Probability distribution of errors on data very poorly known (model errors
in particular).
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One has to restrict oneself to a much more modest goal. Two
approaches exist at present

 Obtain some ‘central’ estimate of the conditional probability
distribution (expectation, mode, …), plus some estimate of the
corresponding spread (standard deviations and a number of
correlations).

 Produce an ensemble of estimates which are meant to sample the
conditional probability distribution (dimension N ≈ O(10-100)).
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Proportion of resources devoted to assimilation in
Numerical Weather Prediction has steadily increased over
time.

At present at ECMWF, the cost of 24 hours of assimilation
is half the global cost of the 10-day forecast (i. e.,
including the ensemble forecast).
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Sequential Assimilation

• Assimilating model is integrated over period of time over which observations
are available. Whenever model time reaches an instant at which observations
are available, state predicted by the model is updated with new observations.

Variational Assimilation

• Assimilating model is globally adjusted to observations distributed over
observation period. Achieved by minimization of an appropriate objective
function measuring misfit between data and sequence of model states to be
estimated.


