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Random vector x = (x,, X,, ..., x,)T = (x)) (e. g. pressure, temperature, abundance of given chemical
compound at n grid-points of a numerical model)

=  Expectation E(x) = [E(x,)] ; centred vector x’ =x- E(x)
= Covariance matrix
Ex'x™) = [E(x))]

dimension nxn, symmetric non-negative (strictly definite positive except if linear relationship holds between the
x;”¢ s with probability 1).

=  Two random vectors
_ T
X =(X;,%y,...,X,)
_ T
y - (yl’y2’ ""yp)

E@'y™) = Exy))

dimension nxp



Random function ¢(&) (field of pressure, temperature, abundance of given chemical compound, ... ; § is now spatial
and/or temporal coordinate)

= Expectation E[¢(5)] ; @'(&) = @(&) - E[¢(8)]
= Vaiance  Vai@p(9)] = E{[¢ (5}

= Covariance function

(&1’ &2) - C¢(§1’ &2) = E[QO’(&l) qp’(&z)]

= Correlation function

Cor (&, &) = El@'(§) ¢ (&) {Varlg(&)] Varlp(E) 1317



.: Isolines for the auto-correlations of the 500 mb
geopotential between the station in Hannover and

surrounding stations.
From Bertoni and Lund (1963)

After N. Gustafsson
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: Isolines of the cross-correlation between the 500 mb

geopotential in station 01 384 (R) and the surface
pressure in surrounding stations.
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Figure 4.2.4.3: Iooiino. for the auto-cortelatit':n of the 500 mb

After N. Gustafsson

u-wind component (dashed line) and the auto-
correlation of the 500 mb v-wind component (full
line). The "star" indicates the position of the re-
ference station. (Prom Buel (1972).



Figure 5.1.1.4.1 Auto-correlation of errors in 12h numerical fore-
casts of surface pressure in a reference station
(Stockhplm) and other stations. .

After N. Gustafsson



Optimal Interpolation

Random field ¢(&)

Observation network &, &, ..., Ep
For one particular realization of the field, observations

yj=90(§j)+sj ,j=1,...,p , makingupvectoryz(yj)

Estimate x = ¢(&) at given point &, in the form
xt=0a+Z By =a+ By , where = ()

o and the /J’J.’s being determined so as to minimize the expected quadratic estimation error
E[(x-x%)?]



Optimal Interpolation (continued 1)

Solution
x*=Ex)+EX'y D [EQy D! [y-EQY)]

ie. B=[EQy’y DI E(x’y’")
o = E(x) - BTE(y)

Estimate is unbiased FE(x-x%) =0
Minimized quadratic estimation error
E[(x-x)*] = E(x?) - E(x’y’™") [E(y’y DI E(y’x”’)

Estimation made in terms of deviations from expectations x” and y’.



Optimal Interpolation (continued 2)

x*=Ex)+EX'y D [EQy D! [y-EQY)]
Vi = @S) + g

E;y) = EI(@ (E) + )¢ (&) + &)]

If observation errors g are mutually uncorrelated, have common variance r, and are
uncorrelated with field ¢, then

EQy;'y) = Ctp(gj, &) + réjk
and
E(x'y;) = Cy& &)



Optimal Interpolation (continued 3)

xt=E@) + Ex’y ) [EQ’y D] [y - EQ)]

Vector

=) =EQy DI [y-Ey]
is independent of variable to be estimated
X4 = E(x) + Z; 4 E(xy;’)

7= Elg(®)] + =, u, EL@'() ;']
= E[QO(&)] + z_,' U, C(p(g’ &,)
Correction made on background expectation is a linear combination of the p functions E[¢’(§)y,’].

El@’(§) y'11=C (p(& &l.) ], considered as a function of estimation position &, is the representer
associated with observation y;.
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Optimal Interpolation (continued 4)

Univariate interpolation. Each physical field (e. g. temperature) determined from
observations of that field only.

Multivariate 1interpolation. Observations of different physical fields are used
simultaneously. Requires specification of cross-covariances between various fields.

Cross-covariances between mass and velocity fields can simply be modelled on the
basis of geostrophic balance.

Cross-covariances between humidity and temperature (and other) fields still a problem.
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4.: Schematic illustration of correlation functions
and cross-correlatit_:n functions for multi-variate
analysis derived by the geostrophic assumption.

After N. Gustafsson
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Optimal Interpolation (continued 5)

xt=E@) + Ex’y ) [EQ’y D] [y - EQ)] (1)
E[(x-x)?] = E(x™) - E(’y™™) [EQy D] E(y'x”) (2

If n-vector x to be estimated (e. g. meteorological at all grid-points of numerical model)

x¢ = E(x) + E('y™ [EQ'y D] [y - )] (3)
Pe = E[(x-x9)(x-x)"] = E'x’™) - @'y [EQy DI EG'x') (4)

Eq. (3) says the same as eq. (1), but eq. (4) says more than eq. (2) in that it defines off-diagonal
entries of estimation error covariance matrix P,

If probability distributions are globally gaussian, eqs (3-4) achieve bayesian estimation, in the sense
that P(x | y) = A\[x4, P9].
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Best Linear Unbiased Estimate

State vector x, belonging to state space S (dim.S'= n), to be estimated.
Available data in the form of

" A ‘background’ estimate (e. g. forecast from the past), belonging to state
space, with dimension n

xb = x+ &

= An additional set of data (e. g. observations), belonging to observation space,
with dimension p

y = Hx+¢

H is known linear observation operator.

Assume probability distribution is known for the couple (&7, ¢).
Assume E(£?) =0, E(e) = 0 (not restrictive)
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Best Linear Unbiased Estimate (continuation 1)

xt = x+ & (1)
y = Hx+ ¢ (2)

A probability distribution being known for the couple (&, €), eqs (1-2) define
probability distribution for the couple (x, y), with

Ex)y=xt, x’ =x-E(x)=-8
E(y)=Hx", y’=y-E(y)=y-Hx"=¢-HE

d = y - Hx? is called the innovation vector.
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Best Linear Unbiased Estimate (continuation 2)

E(x’y’™) = E[-C(e-HE)"] = -E(L€) + E(Z°EMHT

E(y’y’™) = E[(e-HE) (e-HE)"| = HE(EPE")H™ + E(e€™) - E(e8T) - E(&PeT)

Assume E(£P¢") = 0 (not mathematically restrictive)

and set E(&PEP) = PP (also often denoted B), E(e€™) = R
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Best Linear Unbiased Estimate (continuation 3)

Apply formula for Optimal Interpolation

x¢ = x>+ PPHY [HP’HT + R]"! (y - Hx?)
P = Pb- P> HT[HPPH" + R]" HP?

x“ is the Best Linear Unbiased Estimate (BLUE) of x from x? and y.
Equivalent set of formulae

x¢=x+P*H'R! (y - Hx)
[P = [P + HTRH

Matrix K = PP HT [HP’H" + R]"' = P* HT R'! is gain matrix.
If probability distributions are globally gaussian, BLUE achieves bayesian estimation, in

the sense that P(x | x?,y) = Mx“, P4].
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