The linear case. Best Linear Unbiased Estimation. Simple examples. Part 2

Olivier Talagrand
School *Data Assimilation*Nordic Institute for Theoretical Physics (NORDITA)
Stockholm, Sweden
26 April 2011

Random vector $\mathbf{x} = (x_1, x_2, ..., x_n)^T = (x_i)$ (e. g. pressure, temperature, abundance of given chemical compound at n grid-points of a numerical model)

- Expectation $E(x) = [E(x_i)]$; centred vector x' = x E(x)
- Covariance matrix

$$E(\mathbf{x}'\mathbf{x}'^{\mathrm{T}}) = [E(x_i'x_i')]$$

dimension nxn, symmetric non-negative (strictly definite positive except if linear relationship holds between the x_i ' s with probability 1).

Two random vectors

$$\mathbf{x} = (x_1, x_2, \dots, x_n)^{\mathrm{T}}$$

 $\mathbf{y} = (y_1, y_2, \dots, y_p)^{\mathrm{T}}$

$$E(\mathbf{x'y'^{\mathrm{T}}}) = E(x_i'y_i')$$

dimension *nxp*

Random function $\varphi(\xi)$ (field of pressure, temperature, abundance of given chemical compound, ...; ξ is now spatial and/or temporal coordinate)

- Expectation $E[\varphi(\xi)]$; $\varphi'(\xi) = \varphi(\xi) E[\varphi(\xi)]$
- Variance $Var[\varphi(\xi)] = E\{[\varphi'(\xi)]^2\}$
- Covariance function

$$(\xi_{1,} \xi_{2}) \rightarrow C_{\varphi}(\xi_{1,} \xi_{2}) = E[\varphi'(\xi_{1}) \varphi'(\xi_{2})]$$

Correlation function

$$Cor_{\varphi}(\xi_{1}, \xi_{2}) = E[\varphi'(\xi_{1}) \varphi'(\xi_{2})] / \{Var[\varphi(\xi_{1})] Var[\varphi(\xi_{2})]\}^{1/2}$$

.: Isolines for the auto-correlations of the 500 mb geopotential between the station in Hannover and surrounding stations.

From Bertoni and Lund (1963)

Isolines of the cross-correlation between the 500 mb geopotential in station 01 384 (R) and the surface pressure in surrounding stations.

After N. Gustafsson

Figure 5.1.1.4.1 Auto-correlation of errors in 12h numerical fore-casts of surface pressure in a reference station (Stockholm) and other stations.

Optimal Interpolation

Random field $\varphi(\xi)$

Observation network $\xi_1, \xi_2, ..., \xi_p$

For one particular realization of the field, observations

$$y_j = \varphi(\xi_j) + \varepsilon_j$$
, $j = 1, ..., p$ making up vector $\mathbf{y} = (y_j)$

Estimate $x = \varphi(\xi)$ at given point ξ , in the form

$$x^{a} = \alpha + \sum_{j} \beta_{j} y_{j} = \alpha + \beta^{T} y$$
, where $\beta = (\beta_{j})$

 α and the β_j 's being determined so as to minimize the expected quadratic estimation error $E[(x-x^a)^2]$

Optimal Interpolation (continued 1)

Solution

$$x^{a} = E(x) + E(x'y'^{T}) [E(y'y'^{T})]^{-1} [y - E(y)]$$

$$i. e., \qquad \beta = [E(y'y'^{T})]^{-1} E(x'y')$$

$$\alpha = E(x) - \beta^{T}E(y)$$

Estimate is unbiased $E(x-x^a) = 0$

Minimized quadratic estimation error

$$E[(x-x^a)^2] = E(x'^2) - E(x'y'^T) [E(y'y'^T)]^{-1} E(y'x')$$

Estimation made in terms of deviations from expectations x' and y'.

Optimal Interpolation (continued 2)

$$x^{a} = E(x) + E(x'y'^{T}) [E(y'y'^{T})]^{-1} [y - E(y)]$$

$$y_{j} = \varphi(\xi_{j}) + \varepsilon_{j}$$

$$E(y_{j}'y_{k}') = E[(\varphi'(\xi_{j}) + \varepsilon_{j}')(\varphi'(\xi_{k}) + \varepsilon_{k}')]$$

If observation errors ε_j are mutually uncorrelated, have common variance r, and are uncorrelated with field φ , then

$$E(y_j'y_k') = C_{\varphi}(\xi_{j,} \xi_k) + r\delta_{jk}$$

and

$$E(x'y_j') = C_{\varphi}(\xi, \xi_j)$$

Optimal Interpolation (continued 3)

$$x^{a} = E(x) + E(x'y'^{T}) [E(y'y'^{T})]^{-1} [y - E(y)]$$

Vector

$$\mu = (\mu_j) = [E(y'y'^{\mathsf{T}})]^{-1} [y - E(y)]$$

is independent of variable to be estimated

$$x^a = E(x) + \sum_j \mu_j E(x'y_j')$$

$$\varphi^{a}(\xi) = E[\varphi(\xi)] + \sum_{j} \mu_{j} E[\varphi'(\xi) y_{j}']$$
$$= E[\varphi(\xi)] + \sum_{j} \mu_{j} C_{\varphi}(\xi, \xi_{j})$$

Correction made on background expectation is a linear combination of the p functions $E[\varphi'(\xi)y_j']$. $E[\varphi'(\xi)y_j'] = C_{\varphi}(\xi, \xi_j)$, considered as a function of estimation position ξ , is the representer associated with observation y_j .

Optimal Interpolation (continued 4)

Univariate interpolation. Each physical field (e. g. temperature) determined from observations of that field only.

Multivariate interpolation. Observations of different physical fields are used simultaneously. Requires specification of cross-covariances between various fields.

Cross-covariances between mass and velocity fields can simply be modelled on the basis of geostrophic balance.

Cross-covariances between humidity and temperature (and other) fields still a problem.

After N. Gustafsson

After A. Lorenc

Optimal Interpolation (continued 5)

$$x^{a} = E(x) + E(x'y'^{T}) [E(y'y'^{T})]^{-1} [y - E(y)]$$
(1)

$$E[(x-x^{a})^{2}] = E(x'^{2}) - E(x'y'^{T}) [E(y'y'^{T})]^{-1} E(y'x')$$
(2)

If n-vector x to be estimated (e. g. meteorological at all grid-points of numerical model)

$$x^{a} = E(x) + E(x'y'^{T}) [E(y'y'^{T})]^{-1} [y - E(y)]$$
(3)

$$P^{a} = E[(x-x^{a})(x-x^{a})^{T}] = E(x'x'^{T}) - E(x'y'^{T}) [E(y'y'^{T})]^{-1} E(y'x'^{T})$$
(4)

Eq. (3) says the same as eq. (1), but eq. (4) says more than eq. (2) in that it defines off-diagonal entries of estimation error covariance matrix P^a .

If probability distributions are *globally* gaussian, eqs (3-4) achieve bayesian estimation, in the sense that $P(x \mid y) = \mathcal{N}[x^a, P^a]$.

Best Linear Unbiased Estimate

State vector x, belonging to state space $S(\dim S = n)$, to be estimated. Available data in the form of

A 'background' estimate (e. g. forecast from the past), belonging to state space, with dimension n

$$x^b = x + \zeta^b$$

• An additional set of data (e. g. observations), belonging to observation space, with dimension p

$$y = Hx + \varepsilon$$

H is known linear *observation operator*.

Assume probability distribution is known for the couple (ζ^b, ε) .

Assume $E(\zeta^b) = 0$, $E(\varepsilon) = 0$ (not restrictive)

Best Linear Unbiased Estimate (continuation 1)

$$x^b = x + \zeta^b \tag{1}$$

$$y = Hx + \varepsilon \tag{2}$$

A probability distribution being known for the couple (ξ^b, ε) , eqs (1-2) define probability distribution for the couple (x, y), with

$$E(x) = x^b$$
, $x' = x - E(x) = -\zeta^b$

$$E(y) = Hx^b$$
, $y' = y - E(y) = y - Hx^b = \varepsilon - H\zeta^b$

 $d = y - Hx^b$ is called the *innovation vector*.

Best Linear Unbiased Estimate (continuation 2)

$$E(x'y'^{\mathsf{T}}) = E[-\zeta^{b}(\varepsilon - H\zeta^{b})^{\mathsf{T}}] = -E(\zeta^{b}\varepsilon^{\mathsf{T}}) + E(\zeta^{b}\zeta^{b\mathsf{T}})H^{\mathsf{T}}$$

$$E(y'y'^{\mathsf{T}}) = E[(\varepsilon - H\zeta^{b})(\varepsilon - H\zeta^{b})^{\mathsf{T}}] = HE(\zeta^{b}\zeta^{b\mathsf{T}})H^{\mathsf{T}} + E(\varepsilon\varepsilon^{\mathsf{T}}) - E(\xi^{b}\varepsilon^{\mathsf{T}}) - E(\zeta^{b}\varepsilon^{\mathsf{T}})$$

Assume $E(\zeta^b \varepsilon^T) = 0$ (not mathematically restrictive)

and set $E(\zeta^b \zeta^{b_T}) = P^b$ (also often denoted B), $E(\varepsilon \varepsilon^T) = R$

Best Linear Unbiased Estimate (continuation 3)

Apply formulæ for Optimal Interpolation

$$x^{a} = x^{b} + P^{b} H^{T} [HP^{b}H^{T} + R]^{-1} (y - Hx^{b})$$

 $P^{a} = P^{b} - P^{b} H^{T} [HP^{b}H^{T} + R]^{-1} HP^{b}$

 x^a is the Best Linear Unbiased Estimate (BLUE) of x from x^b and y.

Equivalent set of formulæ

$$x^{a} = x^{b} + P^{a} H^{T} R^{-1} (y - Hx^{b})$$

 $[P^{a}]^{-1} = [P^{b}]^{-1} + H^{T} R^{-1} H$

Matrix $K = P^b H^T [HP^bH^T + R]^{-1} = P^a H^T R^{-1}$ is gain matrix.

If probability distributions are *globally* gaussian, *BLUE* achieves bayesian estimation, in the sense that $P(x \mid x^b, y) = \mathcal{N}[x^a, P^a]$.