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Random vector x = (x1, x2, …, xn)T = (xi) (e. g. pressure, temperature, abundance of given chemical
compound at n grid-points of a numerical model)

 Expectation E(x) ≡ [E(xi)] ;    centred vector    x’  ≡ x - E(x)

 Covariance  matrix

E(x’x’T) = [E(xi’xj’)]

dimension nxn, symmetric non-negative (strictly definite positive except if linear relationship holds between the
xi’‘ s with probability 1).

 Two random vectors
x = (x1, x2, …, xn)T

y = (y1, y2, …, yp)T

E(x’y’T) = E(xi’yj’)

        dimension nxp
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Random function ϕ(ξ) (field of pressure, temperature, abundance of given chemical compound, … ; ξ is now spatial
and/or temporal coordinate)

 Expectation E[ϕ(ξ)]  ; ϕ’(ξ) ≡ ϕ(ξ) - E[ϕ(ξ)]
 Variance      Var[ϕ(ξ)] = E{[ϕ’(ξ)]2}

 Covariance function

(ξ1, ξ2) →  Cϕ(ξ1, ξ2)  ≡  E[ϕ’(ξ1) ϕ’(ξ2)]

 Correlation function

Corϕ(ξ1, ξ2)  ≡  E[ϕ’(ξ1) ϕ’(ξ2)] / {Var[ϕ(ξ1)] Var[ϕ(ξ2)]}1/2
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Optimal Interpolation

Random field ϕ(ξ)
Observation network ξ1, ξ2, …, ξp
For one particular realization of the field, observations

yj = ϕ(ξj) + εj   ,  j = 1, …, p        ,                making up vector y = (yj)

Estimate x = ϕ(ξ) at given point ξ, in the form

 xa = α + Σj βj yj  = α + βTy , where β = (βj)

α and the βj’s being determined so as to minimize the expected quadratic estimation error
E[(x-xa)2]
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Optimal Interpolation (continued 1)
Solution

 xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)] 

i. e., β = [E(y’y’T)]-1 E(x’y’)
       α = E(x) - βTE(y)

Estimate is unbiased  E(x-xa) = 0

Minimized quadratic estimation error

E[(x-xa)2] = E(x’2) - E(x’y’T) [E(y’y’T)]-1 E(y’x’)

Estimation made in terms of deviations from expectations x’ and y’.
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Optimal Interpolation (continued 2)

 xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)]

 yj = ϕ(ξj) + εj

E(yj’yk’) = E[(ϕ’(ξj) + εj’)(ϕ’(ξk) + εk’)]

If observation errors εj are mutually uncorrelated, have common variance r, and are
uncorrelated with field ϕ, then

 E(yj’yk’) = Cϕ(ξj, ξk) + rδjk
and

  E(x’yj’) = Cϕ(ξ, ξj)
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Optimal Interpolation (continued 3)

 xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)]

Vector
µ = (µj) ≡ [E(y’y’T)]-1 [y - E(y)]

is independent of variable to be estimated

xa = E(x) + Σj µj  E(x’yj’) 

ϕa(ξ) = E[ϕ(ξ)] + Σj µj  E[ϕ’(ξ) yj’]
          = E[ϕ(ξ)] + Σj µj  Cϕ(ξ, ξj)

Correction made on background expectation is a linear combination of the p functions  E[ϕ’(ξ) yj’].
E[ϕ’(ξ) yj’] [ = Cϕ(ξ, ξj) ], considered as a function of estimation position ξ, is the representer
associated with observation yj.
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Optimal Interpolation (continued 4)

Univariate interpolation. Each physical field (e. g. temperature) determined from
observations of that field only.

Multivariate interpolation. Observations of different physical fields are used
simultaneously.  Requires specification of cross-covariances between various fields.

Cross-covariances between mass and velocity fields can simply be modelled on the
basis of geostrophic balance.

Cross-covariances between humidity and temperature (and other) fields still a problem.
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Optimal Interpolation (continued 5)

 xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)]                        (1)
E[(x-xa)2] = E(x’2) - E(x’y’T) [E(y’y’T)]-1 E(y’x’)     (2

If n-vector x to be estimated (e. g. meteorological at all grid-points of numerical model)

 xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)]     (3)

 Pa ≡ E[(x-xa)(x-xa)T] = E(x’x’T) - E(x’y’T) [E(y’y’T)]-1 E(y’x’T)    (4)

Eq. (3) says the same as eq. (1), but eq. (4) says more than eq. (2) in that it defines off-diagonal
entries of estimation error covariance matrix Pa.

If probability distributions are globally gaussian, eqs (3-4) achieve bayesian estimation, in the sense
that P(x | y) = N [xa, Pa].
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Best Linear Unbiased Estimate

State vector x, belonging to state space S (dimS = n), to be estimated.
Available data in the form of

 A ‘background’ estimate (e. g. forecast from the past), belonging to state
space, with dimension n
xb  =  x  + ζb

 An additional set of data (e. g. observations), belonging to observation space,
with dimension p
y  =  Hx + ε

H is known linear observation operator.

Assume probability distribution is known for  the couple (ζb, ε).
Assume E(ζb) = 0, E(ε) = 0 (not restrictive)
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Best Linear Unbiased Estimate (continuation 1)

xb  =  x  + ζb  (1)

y  =  Hx + ε  (2)

A probability distribution being known for the couple (ζb, ε), eqs (1-2) define
probability distribution for the couple (x, y), with

E(x) = xb ,  x’ = x - E(x) = - ζb

E(y) = Hxb ,  y’ = y - E(y) = y - Hxb = ε - Hζb

d ≡ y - Hxb is called the innovation vector.
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Best Linear Unbiased Estimate (continuation 2)

E(x’y’T) = E[-ζb(ε-Hζb)T] = -E(ζbεT) + E(ζbζbT)HT

E(y’y’T) = E[(ε-Hζb) (ε-Hζb)T] = HE(ζbζbT)HT + E(εεT) - E(εζbT) - E(ζbεT)

Assume E(ζbεT) = 0 (not mathematically restrictive)

and set E(ζbζbT) ≡ Pb (also often denoted B), E(εεT) ≡ R
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Best Linear Unbiased Estimate (continuation 3)

Apply formulæ for Optimal Interpolation

xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)
Pa = Pb

 - Pb
 HT

 [HPbHT 
 + R]-1 HPb

 xa is the Best Linear Unbiased Estimate (BLUE) of x from xb and y.

Equivalent set of formulæ

xa = xb + Pa
 HT

 R-1 (y - Hxb)
[Pa]-1 = [Pb]-1

 + HT
 R-1H

 Matrix K = Pb
 HT

 [HPbHT + R]-1 = Pa
 HT

 R-1 is gain matrix.

If probability distributions are globally gaussian, BLUE achieves bayesian estimation, in
the sense that P(x | xb, y) = N [xa, Pa].


