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Abstract

Assimilation of meteorological or oceanographical observations can be described as the process through
which all the available information is used in order to estimate as accurately as possible the state of the
atmospheric or oceanic flow. The available information essentially consists of the observations proper, and
of the physical laws which govern the evolution of the flow. The latter are available in practice under the
form of a numerical model. The existing assimilation algorithms can be described as either sequential or
variational. The links between these algorithms and the theory of statistical estimation are discussed. The
performances of present algorithms, and the perspectives for future development, are also briefly discussed.

1. Introduction

Implementation of Numerical Weather Prediction
(NWP) obviously requires the specification of ap-
propriate initial conditions. In the early stages of
Numerical Weather Prediction, forty years ago, ob-
servations were synchronous in time, and bore on
the same physical variables (geopotential, horizon-
tal winds) as those used in the prediction models
for describing the state of the atmospheric flow.
Long before the availability of computers, meteo-
rologists had been performing what was called the
analysis of the meteorological situation, which con-
sisted in correcting every day, with the new observa-
tions, the forecast from the previous day, available
under the form of meteorological maps. With the
advent of NWP, this task was devoted to the com-
puter. Two-dimensional interpolation algorithms
were defined by Bergthorsson and D66s (1955) and
Cressman (1959). These algorithms followed an ap-
proach which has remained essentially unchanged
to this day. Background fields defined at the grid-
points of the forecasting model are interpolated to
the observation locations. The differences between
observations and interpolated values are then inter-
polated back to grid-points in order to define cor-
rections to be applied to the first-guess. Eliassen
(1954) and Gandin (1963), giving a statistical ba-
sis to the analysis process, defined what has become
known in meteorology as optimal interpolation, built
on the statistical covariance functions of the meteo-
rological fields. After many improvements, and un-
der many variants, optimal interpolation is still to

(©1997, Meteorological Society of Japan

this day at the heart of most procedures for defining
initial conditions of numerical weather forecasts.
But specific problems also appeared very soon. It
was observed that, if appropriate precautions were
not taken, the early stages of forecasts produced
by non-filtered models, which do not impose an a
priori, time independent, relationship between the
mass and velocity fields, exhibited unrealistic high-
frequency motions, early identified as gravity wave
oscillations (Hinkelmann, 1951). This led to the
practice of initialization, performed after the anal-
ysis proper, and intended at producing “balanced”
initial conditions, which would not result in unre-
alistic oscillations. It was also recognized that the
requirement for balanced initial conditions could on
occasions be in contradiction with the requirement
that the initial conditions be close to the available
observations. At about the same time, the cele-
brated work of Lorenz (1963) showed that the at-
mosphere possesses the remarkable property of ex-
tremely high sensitivity to initial conditions. This,
in addition to marking the birth of the new discipline
of deterministic dissipative chaos, showed that de-
terministic prediction of the atmospheric circulation
was ineluctably limited in time. Meteorologists thus
learnt that all the efforts they could make were in a
sense doomed to failure, but also received an addi-
tional incentive for defining as accurately as possible
the initial conditions of numerical weather forecasts.
In the late sixties, the development of satellite ob-
serving systems, and the perspective that asynoptic
observations, performed more or less continuously
in time, would become more and more numerous in
the future, led to the notion that the dynamical evo-
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lution of the flow should be explicitly taken into ac-
count in the very definition of the initial conditions
of the forecast. The word assimilation was coined at
that time for denoting a process in which observa-
tions distributed in time are merged together with
a dynamical numerical model of the flow in order to
determine as accurately as possible the state of the
atmosphere.

Since then, continuous progress in theory, in effi-
ciency of numerical algorithms, as well as in avail-
able computing power, has led to a slow but steady
progress in the methods for assimilation. This
progress, together with improvements in the quality
of the NWP models themselves (and, to a lesser ex-
tent, with improvements in the observing system),
has significantly contributed to the continuous in-
crease observed in the last decades in the quality of
numerical weather forecasts. It is worth mentioning
that the proportion of resources allocated to assim-
ilation in the whole process of NWP has steadily
increased over time. At the beginning of NWP, the
computational cost of analysis was negligible in com-
parison to the cost of a 24-hour forecast. Now, the
cost of the computations required by the assimila-
tion (in addition to the cost of integrating the model
over the assimilation period) is typically the cost of
a 24-hour forecast. And major meteorological cen-
tres are considering to allocate daily, for a 24-hour
assimilation, the equivalent of a ten-day forecast or
more. This evolution has not resulted from a clearly
stated voluntary choice. With hindsight, it would be
more appropriately described as a progressive “nat-
ural selection” process, during which increase of the
proportion of resources allocated to assimilation re-
peatedly and consistently proved to be beneficial.

If there is no doubt in the minds of knowledgeable
people that improvements in assimilation methods
have significantly contributed over the years to the
improvements in the quality of numerical weather
forecasts, purely objective proofs of that fact are not
readily obtained, since all components of the whole
NWP process have been improving simultaneously.
An extremely interesting and instructive by-product
of assimilation has been presented by Salstein and
Rosen (1986) (see also, Oort, 1989). These authors
have compared the rate of rotation of the Earth, as
estimated from geodetic measurements, with the an-
gular momentum of the atmosphere with respect to
the Earth’s axis of rotation, as obtained from the
analyses produced by the US National Meteorologi-
cal Center. After subtraction of well identified tidal
components from the observed fluctuations of the
rate of rotation, the latter and the atmospheric an-
gular momentum are correlated, over periods of up
to a few years, to a remarkable high degree of accu-
racy. This shows that non-tidal short-term fluctu-
ations of the rotation of the Earth are essentially
due to exchanges of angular momentum between
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the atmosphere and the solid Earth (and that, at
least over short ranges, oceans play only a minor
role). Another extremely interesting and instructive
by-product of assimilation has been the identifica-
tion, by several authors (see, e.g., Vautard, 1990),
of weather regimes in which the atmospheric circula-
tion stabilizes over periods that can last for as long
as a few weeks.

These examples show that, if assimilation of ob-
servations originated from the needs of NWP, and
if the latter is still to this day the main incentive
for research and improvement in that domain, as-
similation has already proven to be useful for other
purposes than weather prediction. Several meteo-
rological centres are engaged in the reassimilation
of past observations with present computing means
and assimilation algorithms. These reassimilation
projects, which bear on periods as long as several
decades, will produce an homogeneous description of
the atmospheric circulation over long periods of time
(or at least as homogeneous a description as allowed
by the evolving, even if slowly evolving, observing
system). The long sequences of reassimilated states
thus obtained will be extremely useful for climato-
logical studies of many kinds. This is particularly
important at the present time of strong concern
about the possible impact of human activities on
climate, making it particularly desirable to detect
early and reliably any possible climate change. One
can mention a major difference between assimilation
intended at defining the initial conditions of a nu-
merical weather forecast, and a posteriori reassimi-
lation of past observations. In the former case, one
can of course use only observations performed be-
fore, or at the latest at, the time at which one wants
to estimate the state of the flow. In the case of reas-
similation, there is no reason to ignore observations
performed after estimation time, and it is certainly
desirable to use algorithms that are capable, in a
way or another, to carry the information contained
in the observations both forward and backward in
time.

Assimilation of observations is also rapidly devel-
oping in the field of dynamical oceanography. The
present state of development of numerical modelling
of the oceanic circulation is described in this vol-
ume by Anderson, and the present oceanograph-
ical observing system, together with expected fu-
ture developments, by Busalacchi. One basic diffi-
culty is that the quantity of available observations is,
relatively speaking, much smaller for oceanography
than for meteorology (Ghil and Malanotte-Rizzoli,
1991, taking into account the appropriate charac-
teristic spatial and temporal scales, have estimated
that the temporal deunsity of oceanographic observa-
tions has so far been four orders of magnitude less
than the density of atmospheric observations). This
malkes validation of oceanic models particularly diffi-

NII-Electronic Library Service



March 1997

cult, but also makes it particularly desirable to take
the best possible advantage of the available obser-
vations. Assimilation of oceanographic observations
is rather different from assimilation of atmospheric
observations in that the primary purpose of assimi-
lation of oceanographic observations is not (at least
up to now) to define the initial conditions of a fore-
cast, but more modestly to produce a reasonable
description of the state of the oceanic circulation.
The interest for assimilation of oceanographic ob-
servations has been strongly stimulated by the de-
velopment, either already effective or anticipated, of
new observing systems, in particular of satellite al-
timetry.

Still another domain in which there exists growing
interest for assimilation of observations is modelling
of the biosphere. Numerical modelling of the oceanic
or terrestrial biosphere, and of its interactions with
the atmosphere or the oceans, is rapidly progressing.
The full exploitation of models of the biosphere will
require appropriate assimilation of the various ob-
servations, in particular satellite observations, bear-
ing on the biosphere.

Stated in general terms, the purpose of assimila-
tion can be described as follows: using all the avail-
able information, determine as accurately as possi-
ble the state of the atmospheric or oceanic flow. De-
pending on one’s particular eventual goal, one may
wish to determine the state of the flow at a given
time, or alternatively the history of the flow over
a period of time. As for the available information,
it consists first of the observations proper. As de-
scribed in the contributions by Atlas and Busalacchi
in this volume, the observations vary significantly
in nature and accuracy, and have a highly irregular
temporal and spatial distribution. In particular, the
observations can be “direct”, in that they bear on
the same physical quantities to be used in the de-
sired description of the flow (typically, velocity, tem-
perature, plus humidity for the atmosphere or salin-
ity for the ocean). Or they can be “indirect”, i.e.
bearing on quantities that are more or less “compli-
cated” functions (usually some forms of integrals) of
the quantities chosen for describing the flow. Satel-
lite altimetric measurements of the ocean surface,
and satellite measurements of the infra-red thermal
flux emitted by the atmosphere, are examples of in-
direct measurements. Another example is provided
by acoustic tomographic measurements performed
in the ocean.

The second source of information to be used in
the assimilation consists of the dynamical model,
and more generally of the physical laws governing
the flow. These physical laws are fundamentally
the principles of conservation of mass, energy and
momentum, and a numerical model is nothing else
than a numerically usable (and approximate) state-
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ment of these principles. In addition to the contri-
bution by Anderson, relative to oceanic modelling,
the present state of development of numerical mod-
els of the atmospheric circulation is described in this
volume by Arakawa. It is clear that it must be possi-
ble to acquire some knowledge of the meteorological
or oceanographical fields from appropriate combi-
nation of the observations and of the physical laws
governing the flow. For instance, the time derivative
of the surface pressure is, under the hydrostatic ap-
proximation, the vertical integral of the divergence
of the horizontal wind. Observations of the sur-
face pressure performed at a given point at succes-
sive times therefore contain information on the wind
field. To mention another simple example, informa-
tion on the wind field can also be obtained from the
observed motion of tracers, such as humidity.

One could think that the observations on the one
hand, and the physical laws that govern the flow
on the other, together make up all the appropri-
ate information, and that there is no need to add
anything to these two basic sources of information.
This is certainly true in principle, but the practical
situation is somewhat different. It may be useful
for instance to explicitly introduce in the assimi-
lation climatological estimates of at least some of
the quantities to be determined, even if it is known
that climatological quantities are in the last instance
determined by the physical laws governing the flow
(and by the energy input to the system). A less obvi-
ous, but practically much more important example
is given by geostrophic balance. 1t is known that,
at least in middle latitudes, the atmospheric and
oceanic flows are in approximate geostrophic bal-
ance. It has already been mentioned that starting
a numerical weather forecast from initial conditions
which are not in appropriate balance will result in
the presence in the forecast, at least for some time,
of unrealistic high frequency motions. Geostrophic
balance must be a necessary consequence of the
physical laws governing the flow. But it is only an
asymptotic property, in the sense that any solution
of the relevant equations will asymptotically tend
to approximate geostrophic balance, but need not
be in geostrophic balance at the initial time. And
it is indeed observed that numerical models, pro-
vided they contain the nonlinearities associated with
fluid advection and a reasonable form of dissipation
(plus a reasonable form of energy forcing if they are
to be integrated over long periods) produce solu-
tions which tend to approximate geostrophic bal-
ance, even though the initial conditions may have
been non-geostrophic. But this property is not suf-
ficient by itself for ensuring geostrophic balance in
the fields produced by assimilation of meteorological
observations over a period of, say, 24 hours. Experi-
ence shows that it is necessary to explicitly introduce
in the assimilation process the information that the
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atmospheric flow is in approximate geostrophic bal-
ance.

Now, no information will ever be exact, whether it
comes from observations, physical laws (especially if
these physical laws are expressed in the form of a dis-
cretized numerical model) or from some other form
of knowledge. And thus, there always will be some
uncertainty on the result of the assimilation, origi-
nating from the uncertainty on the various sources
of information used in the assimilation. An ideal as-
similation system should therefore produce not only
an estimate of the state of the flow, but also an es-
timate of the associated uncertainty.

A first difficulty one encounters in assimilation
of meteorological observations is simply the numer-
ical dimension of the problem. The number of indi-
vidual scalar meteorological observations performed
over a 24-hour period is at present typically on the
order of 10°. As for the dimension of the largest
NWP models (i.e. the number of independent pa-
rameters defining in the models the state of the flow
at a given time), it is now in the range 106 — 107.
NWP models typically require one hour of elapsed
computer time for 24 hours of simulated time. As-
similation of meteorological observations is most of-
ten performed over periods of 24 hours, which is of
course the natural thing to do for meteorological ser-
vices issuing forecasts on a daily basis. In addition
to at least one 24-hour integration, the assimilation
algorithms which are at present considered as most
efficient essentially require the solution of one or sev-
eral linear systems of equations whose dimension is
either the number of observations or the dimension
of the model. Fitting the corresponding computa-
tional load within the narrow limits of operational
NWP imposes very strong constraints on assimila-
tion. These constraints are critical for the choice
and implementation of assimilation algorithms. An-
other difficulty arises from the nonlinear (actually
chaotic) character of the atmospheric and oceanic
flows. This imposes strong limits on assimilation,
just at it imposes limits on predictability. But it
must be mentioned that most of the work done so
far on assimilation has in effect been done within the
bounds of some appropriate local linear approxima-
tion (which will be described in some detail below),
so that the full effects of nonlinearity have not been
incorporated yet in assimilation.

The goal of determining as accurately as possi-
ble the state of the atmospheric or oceanic flow, to-
gether with the associated uncertainty, may seem
very ambitious. We shall here attempt to convince
the reader that it can be achieved, at least to a rea-
sonable degree of precision, by solving an appropri-
ate generalized least-squares minimization problem.
A basic reference on assimilation of meteorological
observations is a book by Daley (1991), which gives
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a comprehensive description of existing assimilation
methods. Bennett (1992), in the general context
of assimilation of oceanographic observations, de-
scribes mathematical techniques, with emphasis on
possibilities for the future. More specific aspects re-
lated to spatial interpolation have been studied in
detail by Thiébaux and Pedder (1987) and Wahba
(1990).

Before we come to the more technical aspects of
assimilation of meteorological and oceanographical
observations, it is worth mentioning that similar
problems are encountered in many fields of science
and engineering. Navigation of aircraft and space-
craft of various kinds, in which one wants to know at
any time, as accurately as possible, the position and
velocity of a vehicle “observed” through various in-
struments, is a form of assimilation of observations.
All forms of “signal filtering” are also essentially of
the same nature, and one basic tool of estimation
theory, Kalman filtering, which is used in assimi-
lation of meteorological and oceanographical obser-
vations, originated in electrical engineering. Many
“inverse problems” also present similarities with as-
similation of observations. In plasma physics, one
often wants to know the internal state of a physical
system from observations performed at its surface
(and also to control the system through action at its
surface). Solid Earth geophysics is another example.
Most of what is known on the internal structure of
the BEarth comes from inversion of signals (mostly
seismic signals) observed at its surface. All of these
examples lead to estimation problems, in which one
wants to infer the state of a physical system from
information which may be extremely heteregeneous
in origin, nature and accuracy, and which may be
related only very “indirectly” to the quantities to
be estimated. The interesting fact which we want
to stress here is that, in spite of the diversity of the
physical systems under consideration, the methods
used for solving these different problems are basi-
cally very similar, even though they often have been
developed independently. They are all stated, or
at least can be stated, in a probabilistic setting,
and aim in effect at determining some reasonable
approximation to the conditional probability distri-
bution function of the state of the system, given the
available information (see, e.g., Tarantola, 1987, or
Lorenc, 1986). The numerical algorithms are often
very similar, and are fundamentally independent of
the “equations” governing the physical system under
consideration. These equations are in effect data,
introduced in the estimation process in a way that
is not basically different from (and is in some cases
identical with) the way the observations proper are
themselves introduced. These basic similarities are
extremely instructive in that they show that estima-
tion procedures are essentially independent of the
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particular properties of the physical system under
consideration. But this does not mean of course
that significant differences do not exist. In particu-
lar, assimilation of meteorological and oceanograph-
ical observations seems to be unique in its extremely
large numerical dimensions.

2. Sequential and variational assimilation

From a purely algorithmic point of view (and in-
dependently of the underlying theory), assimilation
exists at present under two forms, sequential assim-
ilation and wvariational assimilation. In sequential
assimilation, which is the only form to have been
used so far in operational NWP, the assimilating
model is integrated over the time interval over which
the observations to be used are distributed. When-
ever the model time reaches an instant at which ob-
servations are available, the state predicted by the
model is used as a background which is “updated”,
or “corrected”, with the new observations. The in-
tegration of the model is then restarted from the
updated state, and the process is repeated until all
the available observations have been used. In oper-
ational NWP, the state obtained at the end of the
assimilation period is taken as the initial state for
the ensuing forecast. As already mentioned, the op-
eration which consists in correcting a background
at a given time with new observations is called an
analysis. Sequential assimilation is therefore an al-
ternative sequence of analyses performed at observa-
tion times, and of integrations of the model between
successive analyses. In all algorithms of sequential
assimilation that have been developed so far, there
is only one sweep of the model over the assimilation
period, so that each individual observation is used
once and only once.

One appealing feature of sequential assimilation
is the constant updating it performs on the state
predicted by the model : each new piece of observa-~
tion is used for correcting the latest estimate of the
state of the atmospheric flow. This feature makes
sequential assimilation well adapted to NWP. Nu-
merical forecasts are normally produced at the rate
of one forecast every day. In order to define the ini-
tial conditions of a new forecast at time ¢tg, it is very
natural, starting from the initial conditions of the
previous forecast at time to — 24 hr, to perform a
24-hr sequential assimilation. This approach is im-
plemented operationally in numerous NWP centres,
and has now been running continuously in some of
them for more than ten years without interruption
(but with constant improvement of both the model
and the assimilation algorithm itself).

However, sequential assimilation also possesses a
serious drawback : because precisely of the sequen-
tial character of the assimilation, each individual
piece of observation influences the estimated state
of the flow only at later times, and not at previous
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times. There is propagation of the information con-
tained in the observations only from the past into
the future, and not from the future into the past.
As said in the Introduction, this is of no importance
in the case of weather prediction, where one nec-
essarily must at one stage run the model into the
future. But it certainly is a disadvantage in the case
of a posteriori reassimilation of past observations,
where it seems preferable to use algorithms capable
of carrying information both forward and backward
in time.

Variational assimilation, on the other hand, aims
at globally adjusting a model solution to all the
observations available over the assimilation period.
The adjustment being simultaneous, the adjusted
states at all times are influenced by all the observa-
tions over the assimilation period, thereby avoiding
the difficulty mentioned above. In presently exist-
ing algorithms for variational assimilation, one first
defines a scalar function which, for any model so-
lution over the assimilation interval, measures the
“distance”, or “misfit”, between that solution and
the available observations. That so-called objective
function (or cost function) will typically be a sum
of squared differences between the observations and
the corresponding model values, e.g.

J=3,0(y; - ¥%,)° (2.1)

where the y°,’s are the observations, the y; ’s are the
corresponding model values, and the «;’s are numer-
ical weights reflecting the accuracy of the various ob-
servations. One will then look for the model solution
that minimizes the objective function. Since a model
solution is uniquely defined by the corresponding ini-
tial conditions at the beginning of the assimilation
period, these initial conditions are taken as control
variables, i.e. as the variables with respect to which
the minimization is effectively performed. The min-
imizing initial state is obtained through an iterative
procedure, each step of which requires the explicit
knowledge of the local values of the set of partial
derivatives, or gradient vector, of the objective func-
tion with respect to the initial state. As will be ex-
plained below, this gradient can be determined, at
a non-prohibitive numerical cost, through use of the
adjoint equations of the assimilating model.

3. Least-squares statistical linear estimation.
Generalities

Most (but not all) assimilation algorithms that
have been used so far, either for research or for op-
erational purposes, and either of the sequential or
of the variational type, can be described as more or
less simplified forms of least-squares statistical linear
estimation. Many “nonlinear” applications corre-
spond in fact to cases which are very close, in some
sense, to linearity. Least-squares statistical linear
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estimation is a classical tool, whose basic principles
are very simple, even though practical implemen-
tation on large dimension systems can raise many
problems. We will first describe the basic princi-
ples of least-squares statistical linear estimation on
elementary examples, before going to present mete-
orological and oceanographical applications.

Let us consider the following simple estimation
problem. We want to determine some unknown
scalar quantity x* from two known measurements
z1 and z5 of the form

Z1 =Xt+<1

zo =x' + (2

(3.1a)
(3.1b)

where (; and (o are “observational” errors. These
errors are of course unknown, but we assume
that the statistical performances of the instruments
which have produced z; and zs are known. More
precisely, we assume that these instruments are un-
biased, i.e.

E(G)=E((2)=0

where E(.) denotes the statistical mean, and that
the statistical variances of ¢; and {» are known

E(G®) =012 E((?) = 05?

We assume in addition, for the sake of simplicity,
that the observation errors are uncorrelated

E(C1C2> =0

This will be the case if, for instance, the two observa-
tions have been obtained with different instruments.

We now want to estimate x* as a linear combina-
tion of the two observations z; and z,, viz.

(3.2a)

(3.2b)

(3.2¢)

x* = a1Z1 + aszo

(3.3)

where the weights a; and ay are to be determined.
We first want the estimate x* to be statistically un-
biased, i.e. to verify the condition E(x* —x*) = 0.
This will be verified if

ap+ag=1 (3.4)

We also want x*, among all unbiased estimates, to
minimize the statistical variance of the estimation
error, viz.

0? = E[(x* — x")?] (3.5)

The solution to this simple constrained minimiza-
tion problem (minimize 3.5 under constraint 3.4)
is easily found to correspond to weights a; and as
which are inversely proportional to the variances of
the corresponding observation errors, i.e.

a; = 022/(012 +09%) ax= o1?/(o1? + 0’22)
(3.6)

In addition, the corresponding minimum of the esti-
mation error variance o2 is given by the relationship
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1/0% =1/01% + 1/03> (3.7)

which has a simple interpretation : if one calls “pre-
cision” the inverse of an error variance, then the pre-
cision of the estimate x® is the sum of the precisions
of the observations.

The same estimate x* can be found through a dif-
ferent approach : an acceptable estimate of the exact
value x* must be close to the observations, at least
within the accuracy of the latter. For any value x,
the “distance” between x and the observations can
be measured by the following quadratic quantity

J(x) = (x —21)%/01% + (x — 22)?% /02 (3.8)

where the observational error variances 012 and o22
account for the accuracy of the observations. Now,
the value of x which minimizes J(x) is precisely the
estimate x* given by eqs (3.3-6). Minimization of
(3.8) therefore provides another way of determining
the estimate x®, based on a (very elementary) vari-
ational principle.

Formulze (3.3-6) generalize to the case of any
number m of observations z, = x*+{;(j = 1, ..., m).
The generalization is obvious if the observation er-
rors are uncorrelated. It is slighty less obvious, but
still elementary, when the errors are correlated. But
it is more realistic to consider observations which do
not necessarily bear on a quantity to be estimated.
Observations are rarely performed at the times and
spatial locations at which estimates are sought. In
addition, as already mentioned, many observations
are “indirect”, and do not bear on the physical quan-
tities to be estimated. For instance, satellite-borne
radiometers measure the radiative flux emitted by
the Earth to outer space at different wavelengths,
while what one basically wants are estimates of the
atmospheric temperature and humidity fields. The
measured fluxes are functions of these fields (and of
other quantities, such as cloud amount and top level
pressure, and surface emissivity) through the radia-
tive transfer equation. Indirect measurements will
become more and more numerous in the future, and
assimilation methods must allow for measurements
that are “complicated” functions of the physical pa-
rameters to be estimated. Statistical linear estima-
tion can accomodate such indirect measurements (of
course within the limits of linearity, which will be
discussed later) as we will now proceed to show.

We assume that what we now want to estimate is
a complete vector x*, with dimension n and compo-
nents x*,(i = 1, ...,n). That vector can be thought of
as consisting for instance of the values of one or sev-
eral meteorological fields (temperature, wind com-
ponents, humidity) at a given instant at the points
of a two- or three-dimensional regular array. But
the developments that follow are very general, and
independent of the physical nature or significance of
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the parameters to be estimated. The vector x* to
be estimated will be called the state vector, since it
will in general describe the state of a physical sys-
tem, such as the atmosphere or the ocean. As for
the available observations, they make up a vector z,
with dimension m and components z,(j =1, ...,m).
We assume that the vector z can be written under
the form

z=Tx"+¢ (3.9)

where I' is an m X n matrix which defines the link
between the parameters to be estimated and the ob-
served quantities. I' will be called the observation
matriz. If the observations bear on the physical
field to be estimated, but are performed at points in
space-time different from the points at which esti-
mates are sought, I' will represent some appropriate
space-time interpolation. If the observations bear
on “indirect” functions of the parameters to be esti-
mated, I" will represent an appropriate linearization
of the physical and /or statistical relationship linking
x* and z. In the simple example (3.1) (where n = 1,
m = 2), T is the matrix (1 1)7 (where the super-
script T denotes transposition). As for the m-vector
¢ in (3.9), its components are the errors affecting
the observations. This error vector is of course un-
known, but we will assume that it is statistically
unbiased, i.e.

E(()=0

and that the variances-covariances of its compo-
nents, making up the matrix E(¢¢7T), are known

E(¢T) =%

To sum up, the exactly known quantities in eq. (3.9)
are the observation vector z and the observation ma-
trix I', while the observation error vector is known
only through its statistical properties, and the vec-
tor x* to be estimated is totally unknown. In order
to estimate x*, we now proceed as in the example
(3.1) above, and look for an estimate x* which is a
linear function of z, i.e. is of the form

x* = Az

(3.10)

where A is an n X m matrix to be determined. We
want the estimate x® to be unbiased, i.e. to be such
that E(x® — x*) = 0. This condition is verified if

AT =1, (3.11)

where I, is the unit matrix of order n. In addition,
among all the matrices verifying (3.11), we want to
choose the one that minimizes the variance of the
norm of the estimation error, i.e. the matrix that
minimizes the trace (sum of the diagonal terms) of
the covariance matrix P® = E[(x*—x")(x*—x*)7] of
the estimation error. The solution to that problem
is
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A =Tz irtyt (3.12)

As for the corresponding matrix P?, it is equal to

P* = [Tx- 1! (3.13)
P? contains the variances and covariances of the es-
timation errors on all the components of x*. In par-
ticular, its diagonal terms are the variances of these

estimation errors.

Formulee (3.12-13) generalize formulee (3.6-7). As
in that previous example, there is a variational for-
mulation to the estimation of x*, which now corre-
sponds to minimizing the objective function

J(x) =[x —2z]TE7'x — 2] (3.14)

where x is an n-vector. The meaning of expres-
sion (3.14), which generalizes (3.8), should be clear:
for any x, the vector I'x — z is the difference vec-
tor between what would be observed if the vector
to be estimated was equal to x (and if the obser-
vations were perfect) and the actual observations z.
J(x) is the squared norm of that difference vector,
weighted so as to take into account, through 3¢,
the accuracies of the different observations (and also
the possible correlations between the various obser-
vation errors). The estimate x* is the value of x
for which that squared norm is minimum, i.e. the
value of x that would produce, if exactly observed,
the values closest to the actual observations.

It must be stressed that the problem of mini-
mizing the statistical variance of the estimation er-
ror on x%, and of minimizing the objective func-
tion (3.14), are a priori distinctly different problems,
even though the fact that they lead to identical re-
sults is algebraically obvious in simple cases. In the
first problem, one minimizes a quantity defined on
the n-dimensional space of state vectors, while in the
second problem one minimizes a quantity defined on
the m-dimensional space of observations. It is cer-
tainly not a priori obvious that the solutions to these
two problems should always be identical.

The vector x* defined by Egs. (3.10-12) is called
the Best Linear Unbiased Estimate, or BLUE, of x*
from z. The theory leading to the BLUE is stan-
dard, and has been described here in order to stress
its generality, and also as an introduction to the var-
ious methods for assimilation which, although they
often do not explicitly refer to the theory of sta-
tistical linear estimation, can almost always be de-
scribed, as we have already said, as more or less
simplified applications of that theory. In addition
to the estimate x?, statistical linear estimation pro-
duces the covariance matrix P? of the corresponding
estimation error, thus fulfilling the goal assigned in
the Introduction to an ideal assimilation algorithm.
It can be noted that the matrix P* does not depend
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on the observation vector z, but only on the obser-
vation operator I' and on the matrix ¥, i.e. on the
nature and accuracy of the observations. In partic-
ular, the theory of statistical linear estimation can
be used for evaluating the performance of an hy-
pothetical observing system, defined by what that
system would observe and with which accuracy, but
independently of any actual observations.

Implementation of statistical linear estimation re-
quires, in addition to the knowledge of the matrices
I' and X, the fact that the observation error ¢ be
unbiased. Actually, if that error was biased, but the
bias was known, it would be sufficient to first sub-
tract the bias from the observation vector in order
to obtain a new, unbiased, observation vector. The
requirement that the bias is zero is therefore in ef-
fect only a requirement that the statistical mean of
the observation error is known.

To sum up the results obtained so far: before
one can implement statistical linear estimation, one
must know what has been observed, in terms of the
parameters to be estimated (this is expressed by the
observation matrix), and with which accuracy (this
is expressed by the mean and the covariance ma-
trix of the observation error vector). These require-
ments may seem extremely demanding, since there
will always be instruments, especially newly devel-
oped instruments, for which it will certainly be very
difficult to assign reliable values to the observational
errors. But at the same time, it is obvious that a
prerequisite for a rational use of a set of observations
is to know what has been observed, and with which
accuracy. It is therefore a good thing that the re-
quirement for knowledge of the nature and accuracy
of the observations comes out of the mathematics
of estimation theory. If the required information is
not available, one will then have to compensate for
it by as reasonable as possible hypotheses on the
observation matrix I' and the corresponding error
covariance matrix 3. One advantage of studying as-
similation in the perspective of general estimation
theory is that it forces one to explicitly formulate
hypotheses which are necessarily made in one way
or another.

The fact that the required knowledge on the error
vector is limited to the statistical moments of only
the first two orders is due to the fact that the esti-
mate x* has a priori been sought under the linear
form (3.10). The determination of the most general
least-variance estimate would require the knowledge
of the entire probability distribution function of the
observation error. However, in the case when the
error vector is Gaussian, the associated conditional
probability distribution function for x*t is also Gaus-
sian, with expectation defined defined by (3.10-12),
and covariance defined by (3.13). In the Gaussian
case, the BLUE therefore entirely solves the problem
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of determining the conditional probability distribu-
tion function for the state vector x*.

4. The sequential form of statistical linear es-
timation. Kalman filtering

Formulee (3.10, 12 and 13) assume a particu-
lar form, extremely useful in many applications,
when the “observation vector” z defined by Eq.
(3.9) can be decomposed into two components z =
(xPT,y°T)T, where xP is a prior estimate of the vec-
tor x%, or background estimate, and y° is an addi-
tional set of observations, with dimension p. The
background can be written as

xP =xb +¢P (4.1a)
where (P is the corresponding error, while y°, as-
sumed to be associated with a p x n observation
matrix H, can be written as

yo=Hx'+e (4.1b)
where € is the associated obervation error. Formulee
(4.1) are the analogue of (3.9), the dimension of the
observation vector being now m = n + p, the corre-
sponding observation matrix being I' = (In,HT)T7
and the corresponding observation error vector be-
ing ¢ = (¢T,e™)T. As for the covariance matrix of
the observation error, it is defined by

5 _ [B"¢T) E(¢eT) (4.2)
| E(e¢”T) E(ee") '
It is important to stress that the background x” need
not, and will normally not, consist of “observations”
in the strict sense of the word. The background
can for instance be an already known statistical or
“climatological” average of the vector x*, or it can
be any estimate of x*, obtained through whatever
means may have been available: theoretical devel-
opments, or integration of a NWP model. The only
important thing is that xP be numerically known,
together with the corresponding statistical covari-

ance of the error ¢P.

Formulae (3.12-13) can be applied on the above
quantities in order to obtain the corresponding
BLUE x® and the covariance matrix P* of the asso-
ciated estimation error. The results can be put into
forms which are extremely useful from both the the-
oretical and the numerical points of view. For sim-
plicity, we will assume that the errors ¢ and e are
statistically uncorrelated, so that the off-diagonal
terms in (4.2) are zero. The matrix E(¢P¢PT) will
be denoted PP, and the matrix E(eeT) will be de-
noted R. With these notations, Eqgs. (3.10 and 12)
and (3.13) can be put in the respective forms

x* = x* + PPHT[HPPHT 4 R]7(y° — Hx)
(4.3)

NII-Electronic Library Service



March 1997

and
P* = P> - PP"HY[HP"H" + R|"'HP"
(4.4)

Considering first Eq. (4.3), we see that it defines
the analysed state x* as the sum of the background
x" and of a correction term. The latter is propor-
tional to the vector y° — Hx®, i.e. to the difference
between the additional observation vector y° and
what the observation operator H would produce if
it was applied to the background x®. That differ-
ence is therefore essentially the lack of agreement
between the background and the new observations.
It is obvious that, if that difference happened to be
exactly equal to zero, i.e. if the background hap-
pened to agree perfectly with the new observations,
there would be no point in performing any correction
on the background. And, in the linear approach fol-
lowed here, the correction to be applied to the back-
ground naturally appears as a linear function of the
difference vector y° — Hx®. The corresponding ma-
trix K = PPHT[HPPHT +R] !, which is called the
gain matriz, is simply the matrix which, taking into
account the respective accuracies of the background
and of the observations, as defined by the covariance
matrices PP and R, produces the best estimate, in
the sense of the minimum of variance, of the state
vector x°.

The vector y° — Hx" is called the vector of resid-

uals, or the innovation vector. That second de-
nomination, which comes from general estimation
theory, is extremely suggestive, because the vector
y° — Hx" effectively describes all the new informa-
tion contained in the additional observation vector
y°.
Another remark can be made about Eq. (4.3). Its
numerical implementation requires the inversion of
the matrix HP°H™ + R, which is of dimension p.
The direct use of Eq. (3.12) requires (at least) the in-
version of the matrix I'TX 1T, which is of dimension
n. If p < n (which is usually the case in meteoro-
logical problems, where the number of observations
available at a given time is normally much smaller
than the dimension of the model state vector), use
of formula (4.3) is much more economical. Also, for-
mula (4.3) does not require the covariance matrix ¥
to be invertible, contrary to what Eq. (3.12) does
(at least apparently). If for instance, the additional
observations y° are perfect (R = 0), Eq. (4.3) can
still be used. It is interesting to mention that, in this
case of exact observations, the analysed state x* will
be exactly compatible with the observations, in the
sense that it will verify the equality Hx®* = y°.

As for Eq. (4.4), it too has a clear significance.
It defines the analysis error covariance matrix P?
as the background error covariance matrix P’ mi-
nus a correction matrix. The latter is symmetric,
with non-negative eigenvalues, which implies that
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the analysis error variance on any parameter is at
most equal to the corresponding background error
variance. The second term on the right-hand side
of Eq. (4.4) therefore represents the gain brought
about by the additional observations y° on the ac-
curacy with which the state vector x* is known.

We mention another expression for P?, directly
obtainable from (3.13)

(Pa)—l — (Pb)~1 + HTR—IH

This expression is generally not of much use for nu-
merical applications, but its analogy with (3.7) is
obvious: it also expresses that the “precision” of
the analysis is the sum of the precisions of the back-
ground on the one hand, and of the additional ob-
servations on the other.

Finally, the variational problem associated with
the estimation of x* from the background x® and
the additional observation vector y° is easily seen
from (3.14) to correspond to the minimization of
the objective function

J(x) = [x —x]T(P*) 7 x — x"] + [Hx — y°I*
xR7Hx — y°| (4.5)

where x is, as before, an n-vector. The objective
function is the sum of two terms, one measuring the
distance to the background xP, the other measuring
the distance to the additional observation vector y°.
These two terms are weighted by the inverse covari-
ance matrices of the corresponding errors.

Formule (4.3-4) express the most general form of
optimal interpolation, which, as already mentioned,
is at the heart of most of the operational analysis
techniques. It is most usually implemented in the
following way: a background xP produced by the as-
similating model for the analysis time is combined
with a vector of observations y° at the same time
through some approximate form of Eq. (4.3). The
integration of the model is then restarted from the
analyzed state x® until the next observation time, at
which a new analysis is performed. This forms the
basis of sequential assimilation, as it is implemented
at present, with many variants, in operational NWP.
Implementation of Eq. (4.3) requires the preliminary
knowledge of the covariance matrices P? and R of
the forecast and observation errors respectively. Re-
liable specification of those matrices, especially of
PP, raises a number of problems, which will not be
discussed here. Let us only mention that P" is usu-
ally modelled on the basis of a number of simple hy-
potheses on the shape and spatial extension of the
corresponding covariance functions. It is also com-
monly assumed that the forecast errors on geopoten-
tial and wind are geostrophically related in middle
and high latitudes, which allows unambiguous deter-
mination of all required covariances from the knowl-
edge of the covariance of geopotential forecast error
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only. A number of simplifications are also made in
order to reduce the computational cost of Eqgs. (4.3)
and especially (4.4). Indeed, exact implementation
of those formulae would be much too costly for op-
erational NWP. Concerning (4.3), its implementa-
tion requires at least solving omne linear system of
dimension p. In a typical meteorological situation,
p can be of the order of 10* — 105. This is much
too large for the constraints of operational NWP. In
order to reduce the corresponding cost, only obser-
vations located in the vicinity of a given model grid-
point are used when performing the analysis at that
point. That “selection” of observations is certainly
legitimate in the sense that observations performed
at a large distance of a given point must have a
small influence on the analysed fields at that point.
However, experience shows that it nevertheless in-
troduces spatial noise in the analysed fields, which
must be then filtered out by ad hoc smoothing. As
for Eq. (4.4), it is not implemented in its totality,
but only the diagonal terms of the matrix P?, i.e.
the variances of the analysis error, are usually com-
puted.

Experience also shows that, in spite of the
geostrophic link assumed between the wind and
geopotential forecast errors, the fields produced by
optimal interpolation are still contamined by unre-
alistic ageostrophic noise. This noise must be fil-
tered out through additional appropriate initializa-
tion procedures, already alluded to in the Introduc-
tion (for more information on this aspect, see Tem-
perton, 1988, and references therein).

Optimal interpolation, as implemented in present
operational NWP, produces results which are on the
whole quite satisfactory. Description of its perfor-
mances can be found in a number of articles or re-
ports. An article by Lorenc (1981), although it is
not very recent, contains a clear description of the
basic principles of operational optimal interpolation
and of the main properties of the results it produces.
Among recent developments, the National Meteoro-
logical Center (Washington, USA) has introduced
in operations an implementation of optimal inter-
polation, based not on Eq. (4.3), but on an iter-
ative minimization of the objective function (4.5)
(Parrish and Derber, 1992). The results show im-
provement of the quality of the analysis for a lower
computational cost. This is probably largely due
to the suppression of the need for selecting obser-
vations in the vicinity of each analysis point. In
addition, an appropriate definition of the matrix PP
eliminates the need for initialization. It therefore
appears that it is numerically more efficient to per-
form optimal interpolation, not by direct use of Eq.
(4.3) and explicit exact solution of one (or several)
linear system of equations, but by iterative (and ap-
proximate) minimization of the corresponding ob-
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jective function (4.5). At the time of writing, the
European Centre for Medium-range Weather Fore-
casts was also planning to introduce soon a similar
“three-dimensional variational analysis”.

But there is much more to formule (4.3-4) than
analysis at a given time, and those formula are at
the basis of the technique of Kalman filtering which,
in the linear context considered here, is the appro-
priate approach to sequential assimilation. Let us
first consider the following situation. A vector z of
observations, of the form (3.9), has been processed
through egs (3.10-12) and (3.13) in order to produce
the corresponding BLUE, which we will denote x2~,
together with the covariance matrix of the associ-
ated estimation error, which we will denote P*~. At
that stage, an additional vector of observations y°,
of the form (4.1b), becomes available, and one wants
to determine the BLUE x* of x* from the combined
observation vector v = (zT,y°T)T. Is it necessary to
restart the computations from the beginning, or is it
possible to take advantage of the computations that
have already been performed and have led to x2~
and P*77 It must be clear from the foregoing de-
velopments, and it is easy to verify that, if the obser-
vation error vector £ associated with y° is uncorre-
lated with the estimation error vector x*~ —x*, then
the BLUE x* and the associated covariance matrix
of estimation error are given by formulee (4.3) and
(4.4), x* and PP being replaced by x*~ and P>~
respectively. There is no need therefore for restart-
ing the computations from the original z, and one
can take advantage of the already performed com-
putations. In particular, if the dimension p of the
additional observation vector y° is small in compar-
ison to the dimension n of x*, the numerical gain
of using formulee (4.3-4) rather than restarting the
entire computations is obvious.

Formulee (4.3-4) therefore provide a way for con-
stantly updating with new observations the latest
estimate of the state of the system under observa-
tion. If the errors associated with the successive ob-
servations are mutually uncorrelated, the estimate
obtained at any stage of the process will always be
the BLUE of x* from the observations already in-
troduced into the process, and there will be no loss
in the accuracy of the estimate resulting from the
sequential character of the procedure.

In the case of assimilation of observations, an ad-
ditional complication comes from the fact that the
observations to be assimilated are distributed over
a time period over which the state of the system is
itself evolving. In order to take the temporal dimen-
sion into account, and in agreement with the linear
approach followed so far, we consider a system whose
state evolves in time according to the linear equation

X' k1 = Mx'g + 1, (4.6)
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where x%; denotes the state of the system at time
k, while M is a known transition matriz express-
ing the time variation of the state vector between
times k and k& + 1. As for the term 7y, it represents
contributions to the temporal variations of the state
vector which are not represented by the transition
matrix. One can consider that the transition matrix
is the numerical model available for performing the
assimilation, while the term 7, represents the accu-
mulated effect, on the variation of the state vector
between times k& and k + 1, of the various processes
not represented by M. The term n;, will accordingly
be called the model error. It will be considered as an
unbiased random vector, uncorrelated in time, with
known covariance matrix Q

E(mn™) = Qb

where 6y; is the classical Kronecker symbol (in order
to keep notations simple, we do not allow for an
explicit time dependence of M and Q; introducing
such a dependence is straightforward, and would not
modify the essence of what is to follow).

We assume in addition that observations of the
general form (4.1b) are available at the successive
instants £k =0,1,...,N:

(4.7)

y°r = HxX'k + & (4.8)

The corresponding observation errors £ are sup-
posed as before to be unbiased, to be uncorrelated in
time and have covariance matrix R (with again no
explicit time dependence for H and R). This leads
to the expression

E(EkQT) = R(Skl

In addition, the model and observation errors are
supposed to be mutually uncorrelated

E(exm™) =0

We now assume that the BLUE x*; of the state
x%; of the system at time k from all observations up
to time k has been determined, together with the
covariance matrix P?j of the corresponding estima-
tion error. The BLUE of the state of the system at
time k + 1 from all observations up to time & can be
shown to be equal to

ka+]_ = ank (49)

As for the covariance matrix of the corresponding
estimation error xPy, — x%x41, it is equal to
PP = E[(x k1= X k1) (X 1= X g 41) 7]
= E[(Mx"—Mx"} — 1) (Mx®*—Mx" ;)" ]
= E{[M(x*—x")— 03] [M(x*e—x"% )~ 1] }
=MP*,MT+Q (4.10)

where the various non-correlation hypotheses have
been used. The first term on the last line represents
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the error at time &k + 1 resulting from the error at
time k, while the second term is the contribution of
the model error 7;, between times k and k + 1.

At this stage, it is easy to introduce the obser-
vation vector y°, ., at time k + 1: one simply has

to use formula (4.3-4), x* and PP being replaced
by xbk+1 and Pbk+1 respectively, and y° being re-
placed by y°; ;. This leads to the BLUE x*j; of
the state of the system at time k + 1, from all the
observations up to, and including, time k + 1

X1 = X k41 + PP
X HT{HPbk+1HT + R]—l(y0k+1 - bek+1)
(4.11)

and to the covariance matrix of the corresponding
estimation error, viz.

b b
Pt1 =P kp1 - Prpr

x HI[HP®, . H" + R|'HP®,,,  (4.12)

The sequential process defined by Egs. (4.9) to
(4.12) is called Kalman filtering (Kalman, 1960). At
any stage, Kalman filtering produces the BLUE of
the state of the system under observation, using all
observations up to estimation time. It also produces
the covariance matrix of the corresponding estima-
tion error.

Kalman filtering has been applied to many differ-
ent problems. A general description of the theory of
Kalman filtering and of its properties can be found
in, e.g., Jazwinski (1970). In the case of assimilation
of meteorological or oceanographical observations,
one can see that, if one accepts the linear hypothe-
ses which underlie Egs. (4.6) and (4.8), Kalman fil-
tering fulfills the goal assigned in the Introdution to
an ideal assimilation system : namely, to use all the
available information in order to produce the most
accurate possible description of the state of the flow,
together with the uncertainty resulting from the un-
certainties on the various sources of information. In
the present case, the available information counsists,
not only of the observations y°; (Eq. 4.8), but also
of the model (4.9) (and of the initial estimate x°y
from which the whole process must be started). As
for the associated uncertainties, they are defined by
the covariance matrices R and Q (and the initial co-
variance matrix Pbo). Kalman filtering consistently
combines all these elements in order to produce the
BLUE (4.11) and the associated covariance matrix
(4.12).

The application of Kalman filtering to assimila-
tion of meteorological and oceanographical obser-
vations has been studied by a number of authors,
in particular Ghil and collaborators (see, e.g., Ghil,
1989, or Ghil and Malanotte-Rizzoli, 1991). Exper-
iments performed with various linear systems have
produced convincing results as to the capability of
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the method for effectively extracting the information
contained in the observations and the model. One
major difficulty with Kalman filtering in the con-
text of assimilation of meteorological and oceano-
graphical observations is its numerical cost. Writ-
ing the first term on the last line of Eq. (4.10) under
the form M(MP?;)T shows that the corresponding
computations require two successive matrix multi-
plications by M. Now, the multiplication of one
vector by M corresponds to one integration of the
model between times k and k + 1 (Eq. 4.9). Imple-
mentation of Eq. (4.10) therefore requires 2n inte-
grations of the model, where n is, as above, the di-
mension of the state vector of the model. With val-
ues of n on the order of 10 — 107, this goes largely
beyond the possibilities of assimilation for opera-
tional NWP, or even of a posteriori assimilation.
In operational NWP, the computation (4.10) is re-
placed by a simple multiplication of the variances of
the analysis errors by an a priori specified coefficient
(typically, 1.5 for a 6hr-forecast), the associated cor-
relations being modelled independently, as already
mentioned above. The corresponding numerical cost
is negligible, but that procedure amounts to ignoring
the influence of the particular meteorological situa-
tion under consideration, and especially of the par-
ticular instabilities that may develop, on the evo-
lution of the forecast error. This certainly is one
of the major weaknesses of present operational as-
similation methods, which, in the perspective taken
here, can be described as degraded but economical
forms of Kalman filtering. Comparisons of the re-
sults produced by variational assimilation and by al-
gorithms similar to operational algorithms (Rabier
et al., 1993) suggest that a more accurate descrip-
tion of the evolution of forecast error might substan-
tially improve the quality of assimilations.

Now, the correlation between forecast errors at
points located a large distance apart must be neg-
ligible, and a large proportion of the entries of co-
variance maftrices such as P?; must have zero or
negligible values. This should allow to reduce the
cost of computation (4.10). In addition, it is known
that the most rapidly amplifying modes in the evolu-
tion of the forecast error are geostrophic modes (see,
e.g., Lacarra and Talagrand, 1988), so that it should
be possible to restrict computation (4.10) to a sub-
set of all the model modes. These ideas have been
exploited by several authors (see, e.g., Cohn and
Parrish, 1991, Dee, 1991, or Bouttier, 1994) in or-
der to reduce the cost of computation (4.10). Much
active research is now being done on the problem of
defining algorithms for describing the temporal evo-
lution of the forecast error that are both economical
enough for practical implementation, and accurate
enough for improving on present operational meth-
ods of sequential assimilation.
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5. The variational form of statistical linear
estimation

We will now restrict ourselves to the case where
the model is supposed to be perfect, i.e. mp = 0 in
Eq. (4.6), so that the exact evolution of the flow
reduces to

th+1 = ].V.[Xt]c (5.1)
The variational form (3.14) of the estimation prob-
lem defined by Egs. (4.8) and (5.1) leads to the ob-

jective function

J(x) = ZoskSN[ka — y%] TR Hxy — y°]

(5.2)
where x = (x;)7T is a sequence of model states at
successive times, linked by the model equation (5.1).
J(x) is the sum of the model-minus-observations
squared differences, weighted by the inverse of the
observation error covariance matrices. Minimizing
the objective function (5.2) under the constraint
(5.1) will produce at any time k the BLUE of the real
state x*;, of the system at time k, from all the avail-
able observations, i.e. from observations performed
before, at, and after time k. In particular, the state
at the end of the assimilation period will be the same
as the state produced by Kalman filtering (under the
assumption of an exact model, i.e. under the condi-
tion that Q = 0 in Eq. 4.10). The variational form
of statistical estimation therefore provides a way to
globally adjust a model to observations distributed
in time.

But we can also note that the assumption of lin-
earity, necessary to establish the link with the the-
ory of statistical linear estimation and with Kalman
filtering, is by no means necessary for a variational
problem of type (5.1-2). One can very well con-
sider the problem of minimizing an objective func-
tion of the form (5.2), under a constraint of the form
(5.1), where the matrices M and H are replaced by
nonlinear operators. Indeed, numerical models of
the atmospheric or oceanic flows are nonlinear, and
many observations are nonlinearly related to the at-
mospheric or oceanic variables one wants to esti-
mate. For an already mentioned example, infrared
radiances measured by satellites are related to the
temperature and humidity profiles of the emitting
atmospheric columns through the radiative trans-
fer equation, which is strongly nonlinear. We will
therefore drop for the time being the hypothesis of
linearity (only to come back to it later in order to
show that it is often justified in some sense) and
consider the problem of minimizing a nonlinear ob-
jective function (5.2) (i.e. an objective function with
nonlinear observation operators) under a nonlinear
constraint of the form (5.1). In order to stress that
we are now dealing with nonlinear operators, we will

NII-Electronic Library Service



March 1997

use the notations M and H instead of M and H re-
spectively.

There basically exist two methods for solving a
constrained minimization problem. The principle of
the first method is obvious, and consists in reduc-
ing the constraint, i.e. in eliminating some of the
constrained variables so as to transform the prob-
lem into an unconstrained problem. In the present
case, one can note that a model solution (5.1) is
uniquely defined by the specification of the corre-
sponding initial condition xg. The objective func-
tion J can therefore be considered as a function of
xg only, upon which no constraint is imposed, so
that one is led to a problem of unconstrained min-
imization with respect to xg. The second method,
whose principle is much less obvious, consists in as-
sociating unknown coefficients, called Lagrange mul-
tipliers, with the constraints of the problem, and to
form the corresponding Lagrangian. In the present
case, there are N constraints (5.1), each of which of
dimension n, and the set A of Lagrange multipliers
consists of N vectors Ag(k =0,1,..., N —1), each of
dimension n. The associated Lagrangian reads

L(x,A) = J(x) + Zl<k<NAkT[Xk+1 — Mxg]

A well-known theorem then says that the minima of
the constrained minimization problem (5.1-2) cor-
respond to the stationary points of the Lagrangian
L(x,A), considered as a function of the independent
variables x and A.

The method of adjoint equations, which is a clas-
sical tool of control theory (Lions, 1971), seems to
be by far the most efficient way for numerically solv-
ing the minimization problem (5.1-2). Interestingly
enough, the method of adjoint equations can be de-
rived by either reducing the constraint (5.1) so as to
use only the initial state x¢ as independent variable
(see, e.g., Le Dimet and Talagrand, 1986, or Tala-
grand and Courtier, 1987), or alternatively by us-
ing the technique of Lagrange multipliers (see, e.g.,
Thacker and Long, 1988). Assuming for instance
that we want to solve problem (5.1-2) as a problem
of unconstrained minimization with respect to the
initial state xgq, it is necessary, in order to even start
solving the problem, to be able to relate the vari-
ations of the initial state x¢ to the corresponding
variations of the objective function J. For a given
initial state, these variations are related through the
local vector of partial derivatives, or gradient vector,
of the objective function with respect to the com-
ponents of the initial state. In particular, if one is
able to numerically compute the gradient for a given
initial state, it will be possible to feed that gradi-
ent into a standard minimization algorithm which
will determine the minimizing initial state through
successive iterations. In most situations, it will of
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course be impossible to establish explicit analytical
expressions for the gradient. It is possible to nu-
merically (and approximately) determine the gradi-
ent through explicit finite perturbations of the ini-
tial state, but this would be much too costly for
practical implementation : it would require to com-
pute the objective function, i.e. to effectively in-
tegrate the model over the assimilation period, as
many times as there are independent components in
the initial state. The method of adjoint equations
provides a way for computing the gradient at a nu-
merical cost which is at most a few times the cost
of one computation of the distance function. The
principle of the method is extremely simple. Let us
consider a computer code (or part of a code) which,
starting from some input vector u with components
u, (i = 1,...,q9), produces an output vector v with
components v;(j = 1,...,7). The process can be
described by the equation

v = G(u) (5.3)

where G stands for all the computations that lead
from u to v. For a given perturbation du on the
input, the resulting perturbation év on the output
is equal to first order to

v =_G'6u (5.4)

where G’ is the matrix of local partial derivatives,
or jacobian matriz, of the components of v with re-
spect to the components of u. Eq. (5.4) is called the
tangent linear equation to (5.3). Let now J(v) be a
scalar function of the output v. The gradient of J
with respect to u is given by the chain rule

A i: ov, 83

a— e ’L=1,,q

or, in transparent matrix notation

VuJ = GTVyJ (5.5)

where, as before, the superscript T denotes transpo-
sition.

The adjoint method is based on a systematic use
of formula (5.5). More precisely, let us suppose that
the process G is the composition of a number of
more elementary processes, namely

G = G.o0...0G20G

the jacobian G’ will be product of the elementary

jacobians
G = G)y...Ga'Gy’

and the transpose G'T will be the product of the
elementary transposes, taken in reversed order

G =G/TG"..Gu'T
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This shows that, in order to numerically determine
the gradient VyJ with respect to the input u, it is
sufficient to proceed backwards through the direct
computations and, at every step, to perform the cor-
responding transpose, or adjoint computations. The
total cost of one adjoint computation (5.5) will gen-
erally be of the same order of magnitude as the cost
of one direct computation (5.3). (It can be shown,
see e.g., Morgenstern, 1984, that the total operation
count of one adjoint computation can be reduced to
at most 4 times the total operation count of the cor-
responding direct computation, this ratio being re-
duced to 2 if one considers only multiplications and
divisions). This is of course much more economical
than direct perturbations of the input vector.

In the case of the determination of the gradient of
the (nonlinear) objective function (5.2) with respect
to the initial state xo of the (nonlinear) assimilat-
ing model (5.1), the adjoint computations reduce to
integrating the equation (see, e.g., Talagrand and
Courtier, 1987)

§'xp = M'Télxk+1 + HITR_I[HXk -y%l (5.6)

backwards in time, starting from the “final” state
§xny1 = 0. In this equation, M’ and H’ are the
jacobians of the respective nonlinear model and ob-
servation operators M and H. The gradient of the
objective function with respect to the initial state
X is equal to 26'xg.

It is seen that the basic model solution x; under
consideration explicitly appears in the adjoint equa-
tion (5.6) in the quantity Hxj — y°,, which, except
for its sign, is the innovation vector of Egs. (4.3)
and (4.11). This means that the basic solution will
have to be computed, and kept in memory, before
the adjoint integration can be performed. In the
general case of nonlinear operators M and H, the
basic solution will also be necessary for determining
the jacobians M’ and H’. Saving the basic solu-
tion in memory may entail large core requirements,
which constitute one important feature of the ad-
joint method.

The method of adjoint equations for performing
variational assimilation of meteorological observa-
tions seems to have been first suggested by Penenko
and Obraztsov (1976), who applied it to a simple,
small-dimensional linear problem. Since then, a
large number of experiments have been performed
on (usually nonlinear) models of increasing complex-
ity and dimensions, and with various types of obser-
vations. Experiments have been performed on both
meteorological and oceanographical examples (for
meteorological applications see, e.g., Lewis and Der-
ber, 1985, Talagrand and Courtier, 1987, Derber,
1987, Courtier and Talagrand, 1987, 1990, Lorenc,
1988, Thépaut and Courtier, 1991, Navon et al.,
1991, Rabier and Courtier, 1992; for oceanographi-
cal applications see, e.g., Thacker and Long, 1988,
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Sheinbaum and Anderson, 1990a and b, Greiner and
Perigaud, 1994). The first general conclusion that
can be drawn from these experiments is that vari-
ational assimilation works in that it is capable of
minimizing the objective function. Also, and con-
trary to what happens in sequential assimilation,
there is propagation of information, as should be,
both forward and backward in time. However, when
the objective function contains only terms measur-
ing the misfit between individual observations and
model values, the minimization solution tends to
contain unrealistic “noise”, often under the form of
small-scale oscillations and /or of ageostrophic grav-
ity waves. The minimizing solution is physically re-
alistic only if appropriate terms, measuring the en-
ergy contained in the small scales of the flow, or
its ageostrophy, are added to the objective function
(see, e.g., Courtier and Talagrand, 1990, Thépaut
and Courtier, 1991). Indeed, the need for adding
terms intended at avoiding unrealistic oscillations
in the estimated fields is by no means restricted
to meteorological or oceanographical applications,
but is almost universal in problems where fields
are estimated through a variational method. Such
terms are often called “smoothing”, “penalizing” or
still “regularizing” terms. But it must be stressed
that the need for appropriate smoothing is not re-
stricted to variational methods. It is also present
in statistical estimation when implemented through
Kalman filtering which, as already said, must lead
to the same final result as variational algorithms.
In present operational optimal interpolation, the re-
quirement for appropriate smoothing is satisfied on
the one hand through the presence of the back-
ground xP, which defines what the analyzed field
must be in data-void areas, and on the other hand
through the “initialization” process, which filters
out unrealistic gravity wave oscillations.

The most recent experiments of variational as-
similation of meteorological observations have been
performed with multilevel primitive equation mod-
els similar, but not identical yet, to the models used
in NWP (Thépaut et al., 1993). The remaining dif-
ferences lie in the resolution, which is still coarser in
variational assimilation experiments (typically one
order of magnitude less points in the horizontal than
in operational models), and in the representation of
many “physical” processes, such as convection and
water phase changes, which are still absent from
variational assimilation. These recent experiments
confirm the results previously obtained, and show
in particular that variational assimilation, because
it explicitly uses the evolution equations of the sys-
tem, is able to propagate the information contained
in the observations much more accurately than op-
erational optimal interpolation.

Variational assimilation, like Kalman filtering, is
therefore able to assimilate observations in a way
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that is exactly consistent with the dynamics of the
system, as described by the model equations. But,
as in the case of Kalman filtering, and in spite of
the fact that the adjoint equations are by far the
most efficient way for computing the gradient of the
objective function, the computational price to be
paid is heavy : in addition to the necessity of stor-
ing in memory the model solution produced by the
direct integration which must be performed before
each adjoint integration, minimization of the objec-
tive function typically requires from 10 to 30 itera-
tions of the minimization algorithm. Each iteration
itself requires one integration of the model over the
assimilation period, followed by one adjoint integra-
tion. The cost of one adjoint integration is about
twice the cost of one direct integration, so that one
minimization typically requires the equivalent of be-
tween 30 and 100 integrations of the model over the
assimilation period. This is of course very costly,
but it now seems it will be possible to operationally
implement in the coming years simplified forms of
variational assimilation, in which the assimilation
will be performed at a somewhat lower resolution
than the full NWP model (Courtier et al., 1994).

The present situation as concerns assimilation
methods is therefore rather clear. In addition to the
relatively simple, rather ad hoc, but economical and
basically satisfactory operational algorithms, there
exist two broad classes of algorithms that are ca-
pable, in the general framework of statistical linear
estimation, of consistently extracting the informa-
tion contained in the observations on the one hand
and in the physical laws expressed by the assimilat-
ing model on the other : Kalman filtering and vari-
ational assimilation. In order to implement these
algorithms, one must express the observations un-
der the general form (3.9), i.e. one must know what
has been measured, in terms of the parameters to
be estimated, and with which accuracy. Now, exact
implementation of either of these two classes of algo-
rithms is numerically costly, and a large part of the
research being done at present on assimilation is in
effect directed at determining the most cost-efficient
simplications that can be made on them. This task
may indeed be with us for a long time : no end is
foreseen to the increase in the power of computers
and to the deep modifications in their structures, nor
to the development of new observing systems and of
more realistic models. Changes in any of these as-
pects may radically modify any conclusion one may
have reached as to the most efficient way to perform
assimilation.

We will now briefly comment on the relative
advantages and disadvantages of Kalman filtering
and variational assimilation. As already mentioned,
both algorithms will lead to the same final state at
the end of the assimilation period in the case of lin-
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ear observations (i.e. of a linear observation operator
H) and of a perfect (i.e. n = 0) linear model (5.1).
A basic difference between the two algorithms is
that Kalman filtering carries information only from
the past into the future, while variational assimila-
tion carries information in both time directions. On
the other hand, variational assimilation, contrary to
Kalman filtering, does not take into account the fact
that the assimilating model, like the observations,
will never be perfect and will always contain errors.
But it must also be said that these differences are
only true of these algorithms as they have been de-
scribed here and as they have been most usually
implemented so far in meteorological and oceano-
graphical applications. As concerns Kalman filter-
ing, there exists a procedure, called Kalman smooth-
ing (see, e.g., Anderson, 1979), which allows, once a
first pass has been performed over the assimilation
period, to proceed backward in time so as to obtain,
at any intermediate time k, the BLUE of the state of
the system at time k from all available observations,
performed before, at or after time k. We will not de-
scribe here the theory of Kalman smoothing, which
is related to the theory of adjoint equations, and will
only refer to Gaspar and Wunsch (1989) as a simple
but instructive example of an application of Kalman
smoothing to an oceanographical problem. And, as
concerns variational assimilation, it can incorporate
model errors: it suffices to impose the model equa-
tion (5.1) not as a constraint to be exactly satis-
fied by the sequence xj; of assimilated states, but
(to use the vocabulary introduced by Sasaki, 1970)
as a “weak constraint” to be satisfied only approxi-
mately. This can be done by modifying the objective
function (5.2) to

Jx) = IHxe =y TR Hx) — y°]

+Zogk<N[x’“+1 - Mxk]TQ—l[ka — Mxg]
(57)

where Q is, as in (4.7) the covariance matrix of the
model error. The meaning of the second sum on
the right-hand-side of (5.7) must be clear : it sim-
ply expresses that the difference xz; — Mx; must
not be considered as exactly zero, as it would be if
the model was exact, but equal to zero only within
the uncertainty defined by the matrix Q. Accord-
ingly, the sequence of states must be considered
as unconstrained, and the minimization of J must
be performed with respect to the entire sequence
x = (x;T)T. It is not difficult to see from the vari-
ational form (3.14) of statistical linear estimation,
that the sequence of states minimizing (5.7) is made
up of the BLUEs, at all times k, of the state of the
system, from all observations over the entire assim-
ilation period. It results in particular that mini-
mization of (5.7) must lead to the same sequence
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of assimilated states as Kalman filtering, followed
by Kalman smoothing. For additional information
on weak constraint variational assimilation, see Ben-
nett (1992) and Bennett et al. (1993).

Another difference between Kalman filtering and
variational assimilation is that the former produces,
in addition to the BLUE of the state of the sys-
tem, the covariance matrix of the corresponding es-
timation error, while the latter produces only the
BLUE. In this sense, only Kalman filtering fulfills
the goal assigned to an ideal assimilation system in
the Introduction. This of course is obtained at the
already mentioned much higher cost of Kalman fil-
tering. Now, it is easy to verify from eq. (3.13) and
(3.14) that the covariance matrix of the estimation
error is the inverse of the hessian (matrix of second
derivatives) of the objective function. The question
thererefore arises whether the inverse hessian can
be computed in variational assimilation, at least to
a sufficient degree of accuracy, at a lower cost than
in Kalman filtering. Indeed, some minimization al-
gorithms, of the so-called quasi-Newton type (see,
e.g., Gill et al., 1982), do compute an approximate
inverse hessian in the course of the minimization.
The problem of the determination of the estimation
error in variational assimilation is the subject of ac-
tive research (Fisher, pers. com.).

To conclude with the theoretical and methodolog-
ical aspects of assimilation, we will discuss a point
which we have so far left in some obscurity, namely
the validity of the linear hypothesis which underlies
the theory of Kalman filtering and which, although
not necessary for variational assimilation, gives it a
special significance and facilitates the understand-
ing and analysis of the results it produces. Not
only are the equations governing the atmospheric
and oceanic flows strongly nonlinear, but their non-
linearity is at the origin of one of the most impor-
tant properties of these flows, namely their chaotic
character. This character imposes stringent limits
on the predictability of these flows, and one can
legitimately wonder whether a linear hypothesis is
legitimate in the context of assimilation. Consid-
ering first the equations for Kalman filtering, let
us assume that the model and observation opera-
tors are nonlinear, and accordingly denoted M and
H respectively. If the difference x*; — x%; is small
enough, the quantity Mx?®; — Mx®; (second line of
Eq. 4.10) can be approximated by M’'(x®; — x%;),
where M’ is the jacobian matrix of the operator M,
taken at point x*;. Eq. (4.10) accordingly becomes

PPrii = MP,MT+Q (5.8)
Similarly, if the difference x'yy; — xPx41 is small
enough so that the innovation vector y°,,, —
HxP 1 = Hx% 1 — HxPj 1 +ep1 can be approx-
imated by H'(x%%x4+; — xP4y1) + €ry1, calculations
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show that Eqs. (4.11) and (4.12) can be respectively
replaced by

X1 = ka+1
+Pbk+1H/T [HIPbk+1H,T + R]fl

(y0k+1 - Hka+1) (5.9)
and
P%1 =Py
—Pbk+1H,T [HIPbk+1H/T + R}_l
H'P®,, (5.10)

In these equations, H has been replaced by the jaco-
bian H’, except in the expression for the innovation
vector. The algorithm defined by eqs (5.8 to 10),
to which the nonlinear analogue to (4.9) must be
added, is called extended Kalman filtering (see, e.g.,
Jazwinski, 1970). It is valid whenever the differences
between the real and estimated states of the system
are small enough to allow local linearizations as just
described.

A similar argument holds for variational assimila-
tion. For a linear model and linear observation oper-
ators, the objective function (5.2) will be a quadratic
function of the initial state xg. For a nonlinear
model or a nonlinear observation operator, the ob-
jective function will not be quadratic, but will re-
main approximately quadratic in a neighbourhood
of its minimum. If the initial uncertainty on the
state of the system (defined for example by the point
from which the minimization process is initiated) is
small enough to ensure that, at any stage of the
assimilation, the estimated state of the system will
always lie within that neighbourhood, the theoret-
ical nonlinearity of the objective function will have
no practical effect. In particular, the minimizing
solution will be the BLUE of the state of the flow.

The linear hypothesis made previously, and the
associated logic of statistical linear estimation, in-
cluding in particular the equivalence between se-
quential and variational assimilation, will therefore
be valid if the differences between the real and esti-
mated states of the system are always small enough
to allow the local linearizations described above.
The validity of this so-called tangent linear approxi-
mation has been checked systematically in a number
of situations. For instance, Lacarra and Talagrand
(1988) have shown on a barotropic model that, for
realistic amplitudes of the error on the initial state
of the flow, a linear approximation for the evolu-
tion of the forecast error is valid up to about 48 or
72 hours. Similarly, Thépaut and Moll (1990) have
shown that, within the uncertainty existing in prac-
tice on the atmospheric profiles of temperature and
humidity, the tangent linear hypothesis is valid for
the radiance observations performed by the TIROS
Operational Vertical Sounder (TOVS) carried by the
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satellites of the NOAA series. In addition, many re-
sults have indirectly confirmed the validity of the
tangent linear hypothesis. This means that sequen-
tial or variational assimilation can confidently be ex-
pected to produce reasonable estimates of the state
of the flow. But it certainly does not mean that
there do not remain problems. There must exist
limitations to the validity of the tangent linear hy-
pothesis, due for instance to the presence, in the
physically most realistic models, of processes capa-
ble of inducing sharp variations in the model fields.
These limitations have so far not been clearly iden-
tified, and research on fully nonlinear assimilation is
only starting (see, e.g., Miller et al., 1994, or Pires
et al., 1996). But there is also no doubt that much
development work remains to be done within the
context of statistical linear estimation.

These considerations apply primarily to the at-
mosphere. Concerning the ocean, Evensen (1992,
1994) has shown strong evidence that the tangent
linear approximation may not always be valid, essen-
tially because the temporal density of observations
is too low. In the context of sequential assimilation,
Evensen suggests the use of an “Ensemble Kalman
filtering”, in which the temporal evolution of the es-
timation error covariance matrix is computed, not
through a formula of form (4.10), but through an
ensemble of forecasts performed with the fully non-
linear model.

6. Assimilation of “indirect” observations

It has been shown above that, in order to imple-
ment statistical estimation, it is necessary to know,
for each individual observation, what has been mea-
sured, and with which accuracy. A rather general
practice so far, when dealing with “indirect” satel-
lite observations, has been to first “invert” them to
“geophysical variables”, such as for instance temper-
atures and humidities, and then to use the inverted
fields as observations in the assimilation algorithm.
This is commonly done, for instance, for radiance
observations, which are inverted to produce esti-
mates of the atmospheric temperature and humidity
profiles. Now, such a preliminary inversion is by no
means necessary. It does not avoid the basic need for
the definition of an appropriate observation opera-
tor and for the specification of the associated obser-
vation error. And it usually requires a background
which itself depends on the other available observa-
tions. This leads to interdependence of the errors as-
sociated with the various “observations” used in the
assimilation. The problems raised by such an inter-
dependence can be solved in the context of statistical
estimation, but it certainly seems preferable to avoid
them in the first place. For these reasons, and also in
order to define a systematic approach to be followed
for any type of observations, the tendency is now
to avoid as much as possible preliminary processing
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of the observations before the assimilation, and to
introduce raw observations in the assimilation algo-
rithm with an appropriate observation operator. In
the case of radiance measurements, the associated
problems have been studied, among others, by Eyre
(1989a and b) and Thépaut and Moll (1990). Several
meteorological services are taking steps to directly
incorporate radiance measurements in their opera-
tional assimilation algorithms. The same general
trend is followed for all types of measurements : for
instance, radial winds measured by Doppler effect
either from ground-based radars or from satellite-
borne lidars can be assimilated through an observa-
tion operator which reduces to the computation of
the wind component along the appropriate direction
(see respectively, e.g., Sun et al., 1991, and Courtier
et al., 1992). It is presumably the same approach
which will be followed for the assimilation of obser-
vations made by future observing systems.

7. Conclusions

Our primary purpose in these notes was to de-
scribe the principles that lie at the basis of assimi-
lation of observations. These principles are those of
statistical linear estimation, and it has been shown
that they lead to a generalised least-squares ap-
proach, amounting to minimizing a measure of the
difference between the available observations and
the state to be estimated. The word “observations”
must be taken here in a very broad sense, to in-
clude all information available in quantitative form,
and in particular the equations governing the assim-
ilating model. Two classes of algorithms, sequential
and variational assimilation, can be used for actu-
ally performing the required computations. Both
algorithms are costly, and neither of them can be
considered at the present stage as intrinsically supe-
rior.

Whatever the algorithm used, it is necessary to
specify, for each individual piece of information used
in the assimilation, the relationship of that particu-
lar piece of information with the variables to be es-
timated, and the accuracy of that relationship. This
amounts to expressing the available information un-
der the general form (3.9), where the matrix I' must
in the most general case be replaced by a nonlinear
operator I'. The latter expresses the relationship be-
tween the available information and the variables to
be estimated. As for the corresponding accuracy, it
is defined, in the basically linear approach described
here, by the first and second order statistical mo-
ments of the error ¢ (mean E({) and covariances
S = E(¢CT)). Any assimilation algorithm requires
hypotheses, either explicit or implicit, on what I’
and the statistical moments of { are.

This leads us to our final remark. Estimating I’
and the statistical moments of ( is by itself an es-
timation problem, a priori no easier than estimat-
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ing the state of the atmospheric flow at a given
time. One difference is that those quantities can
be estimated by appropriate statistical accumula-
tion. And, as concerns I', the physics of the mea-
surement process is of course also fundamental. It
has been repeatedly mentioned in these notes that
statistical estimation, in addition to the BLUE of
the state of the sytem, produces the covariances of
the associated estimation errors. These covariances
depend on T and ¥ (Eq. 3.13). Any disagreement
between the predicted analysis-minus-observations
differences and the a posteriori effectively observed
differences must therefore be due to inaccurate es-
timation of E(({) and/or X, and must be usable for
improving the corresponding estimates. As for the
observation operator I', it is in principle possible to
determine it as the statistical minimizer of the in-
novation vector. Work along these lines of adaptive
filtering has been done by Daley (1992), Dee (1993),
Hoang Hong et al. (1995) and Blanchet (pers. com.).
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