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1 Introduction 
 

The expression variational assimilation designates a class of assimilation algorithms 

in which the fields to be estimated are explicitly determined as minimizers of a scalar 

function, called the objective function, that measures the misfit to the available data. 

In particular, four-dimensional variational assimilation, usually abbreviated as 4D-

Var, minimizes the misfit between a temporal sequence of model states and the 

observations that are available over a given assimilation window. As such, and 

contrary to the standard Kalman filter and, more generally, to sequential algorithms 

for assimilation, it propagates the information contained in the data both forward and 

backward in time. 

From a numerical point of view, variational algorithms require the minimization 

of a scalar function defined over a large dimensional space. That is possible in 

practice through the systematic use of the adjoint of the assimilating model. 

We first describe variational assimilation in the context of statistical linear 

estimation, which also underlies the theory of the Kalman filter (Section 2). This 

leads to the definition of a general form for the objective function to be minimized. 

Minimization methods and the adjoint approach for computing gradients, are then 

succinctly described (Section 3), as well as practical implementation of variational 

assimilation (Section 4). A number of problems, associated in particular with the 

strong non-linearity of the governing equations, are discussed (Section 5). The 

adjoint approach is further discussed, concerning in particular uses other than 

variational assimilation (Section 6). Conclusions follow in Section 7. 

A large part of what follows is derived in the framework of Bayesian and 

statistical estimation. E [ ] will denote statistical expectation, and N (a, C) the 

Gaussian probability distribution (either scalar or vector) with expectation a and 

covariance C. The superscript 
T 

will denote transposition. 

 

2 Variational assimilation in the context of statistical linear 

estimation 
 
For an elementary introduction, consider the following situation. One wants to 

determine an unknown scalar quantity x
t
 (i.e. true state) from two observations of the 

form 

   11  txz  (1a) 

   22  txz . (1b) 

 



 

 

In these expressions, 1 and 2 are observational errors, whose exact values are 

unknown, but whose statistical properties are known. More precisely, it is assumed 

that these errors are centred (E [1]=E [2]= 0), mutually uncorrelated (E [12] = 0), 

and have respective variances E [1
2
] = s1 and E [2

2
] = s2. We look for an estimate of 

x, of the form x
a
1z1 + 2z2, (1+2 = 1), with 1 and 2 chosen so as to minimize 

the statistical quadratic estimation error sE x
a
x

2
The answer is  
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i.e., each of the two measurements is weighted in inverse proportion to the variance 

of the error on that measurement. The corresponding quadratic estimation error, 

which minimizes s, and which we denote sa, is given by 
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The same estimate x
a
would be obtained by consideringz1 as a “background” 

estimate for x, and z2 as an “observation” (or the reverse), and then applying the 

standard formulas for the Kalman filter. 

The same estimate can also be obtained as the minimizer of the function 
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The meaning of this expression is clear. The squared deviation of x from either one 

of the two observations is weighted in inverse proportion of the variance of the error 

on that observation. Minimization of J(x) therefore imposes that x must fit either 

observation to within its own accuracy. This leads to the estimate given by Eqs. 2-3. 

Variational assimilation, as it is implemented at present in meteorological and 

oceanographical applications (see chapters Numerical Weather Prediction, 

Swinbank; Ocean Data Assimilation, Haines), minimizes a function which 

generalizes Eq. 4. In particular, in the linear case, and as in the elementary example 

above, it minimizes the statistical quadratic estimation error (on any component of 

the estimated fields individually), and is actually another algorithm for solving the 

same problem as the Kalman filter. 

Consider the following more general estimation problem. Estimate an unknown 

vector x
t
 (with components xi

t
, i =1,…, n), belonging to state space S, with 

dimension n, from a known data vector z (with components zj, j =1,…, m), belonging 

to data space D, with dimension m, of the form 

 

    t
xz  . (5) 



 

 

In Eq. 5, is a known linear operator from S into D, called the data operator, and 

represented by an mxn-matrix.  is a random vector in D, called the error vector. The 

problem is, therefore, to invert the operator , taking into account, as far as possible, 

the statistical properties of the error . The estimate of x
t
 is sought in the form of a 

linear (and a priori non-homogeneous) function of z, viz. 

 

   Azax a , (6) 

 

where a is a vector of S, and A is a linear operator from D into S. a and A are to be 

determined under the following two conditions:  

(i) The estimate x
a
 is invariant in a change of origin in state space (for instance, if 

the unknown x
t
 contains temperatures, the result must be independent of whether 

those temperatures are expressed in degrees Celsius or in Kelvins); 

(ii) For any component xi
t
 of x

t
, the statistical expectation of the square of the 

corresponding estimation error t

i

a

i xx 
 
is minimized. 

 

The solution to this problem is given by  
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[i. e., A = (
T
S

-1
)

-1


T
S

-1 
and a = - A], where  E [] and S  E [()()

T
] are, 

respectively, the expectation and covariance matrix of the error . It is seen that A is 

a left-inverse of  (i.e., A= In, where In is the unit matrix of order n), with the 

consequence that the estimate x
a
 is unbiased, (E[x

a
-x

t
] = 0), and that the corres-

ponding estimation error has covariance  
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Condition (ii) above means that the trace of P
a
 is the minimum trace that can be 

obtained among all possible linear estimates of x. 

Equations 7-8 generalize Eqs. 2-3. The estimate x
a
 is called the Best Linear 

Unbiased Estimate (BLUE) of x from z (the term Best Linear Unbiased Estimator is 

also used). Its explicit determination requires the knowledge of (at most) the 

expectation and the covariance matrix S of the data error . 
Taking Eq. 7 at face value, the unambiguous definition of the BLUE requires the 

matrix S, and then the matrix 
T
S

-1
, to be invertible. The need for invertibility of S 

is only apparent (without going into full details, S is singular when some components 

of x are exactly observed; it then suffices to restrict the estimation to those 

components that are not exactly observed). The condition for invertibility of 
T
S

-1
, 

once S is invertible, is on the other hand real. It is equivalent to the condition that the 

null space of the data operator is restricted to the 0-vector 

 

   0x0x   (9) 



 

 

 

or, equivalently, that has rank equal to the dimension n of x. This means that the 

data vector z contains information, either directly or indirectly, on every component 

of x. The problem of determining x from z is overdetermined. This requires that m ≥ 

n. There must be at least as many scalar data in z as there are scalar parameters to be 

determined. We will set m = n+p. The condition given by Eq. 9 will be called the 

determinacy condition. 

The BLUE possesses a number of important properties. 

 As already mentioned, the operator A is a left-inverse of . This means that, if 

the data are exact (= 0 in Eq. 9), then so is the estimate x
a
; 

 The BLUE is invariant in a change of origin in either data or state space. It is also 

invariant in any invertible linear change of coordinates in either space. This 

means, for instance, that a profile of observed temperatures can be transformed, 

through the hydrostatic equation, into a profile of geopotential values without 

altering the estimated fields. It also means that the horizontal wind can be 

estimated in terms of geometrical coordinates, or in terms of its divergence and 

vorticity. The result will be the same. This condition of invariance also means 

that the BLUE is independent of the choice of a scalar product, either in state or 

data space. For instance, for any symmetric definite positive matrix C, the 

quantity (x
a
–x)

T
C(x

a
–x), which is one (among infinitely many) measure of the 

magnitude of the estimation error (x
a
–x), is minimized by the BLUE. The 

invariance of the BLUE in any invertible change of linear coordinates can also be 

expressed by saying that Eqs. 7-8 are more than vector-matrix equations. They 

are tensor equations, valid in any system of linear coordinates; 

 When the data error  is Gaussian, ~N (, S), the BLUE achieves Bayesian 

estimation, in the sense that the conditional probability distribution for the state 

vector x, given the data vector z, is the Gaussian distribution with expectation x
a
 

and covariance matrix P
a
, as given by Eqs. 7-8. In condensed notation,  

 P(xz) = N (x
a
, P

a
). 

 

It is easily verified that the BLUE x
a
 can be obtained as the minimizer of the 

following scalar function, defined over state space 
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This expression generalizes Eq. 4. Its significance is clear. For any vector xin state 

space, xis what the data operator would produce if it was applied on x. J(x) is 

then a measure of the magnitude of the discrepancy between xand the unbiased 

data vector z-. Through the inverse covariance matrix S
-1

, that measure possesses 

two notable properties. First, it weights the data according to their accuracy. Second, 

it is physically non-dimensional, making it possible to combine in a consistent way 

data of a different physical nature. 

Variational assimilation, as it exists at present in meteorology and oceanography, 

minimizes objective functions of the form of Eq. 10, with the only difference, to be 

discussed later, that moderately non-linear operators are used. What follows is a 



 

 

more detailed description of how variational assimilation is implemented in practice, 

and of the main results it produces. 

The first step in the minimization of a function such as that given by Eq. 10 is to 

remove the bias in the data by subtracting the error expectation  from the data 

vector. Unless specified otherwise, it will be assumed below that this has been done, 

and the expectation  will not appear any more explicitly in the equations. But it 

must be kept in mind that implementation of variational assimilation requires the 

prior knowledge, and subtraction from the data, of the error expectation, or bias. 

Failure to properly remove the bias in the data will, in general, result in the presence 

of residual biases in the estimated fields (chapter Bias Estimation. Ménard, discusses 

bias in data assimilation). 

When the determinacy condition (Eq. 9) is verified, the data vector z can always 

be transformed, through linear invertible operations, into two components of the 

following form. First, an explicit estimate of the true state vector x
t
, of form 

 

  btb xx , (11) 

 

where b
 is an error; second, an additional set of data, of the form 

 

   ot Hxy , (12) 

 

with dimension p = m-n. In this equation, H is a linear operator, represented by a pxn 

-matrix, and is an error. In addition, the transformations that lead to Eqs. 11-12 

can always be defined in such a way that the errors b
 and are uncorrelated 
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It is in the form of Eqs. 11-12 that data are most often available in meteorological 

and oceanographical applications. The component x
b
 is a prior, or background 

estimate of the unknown state vector x at a given time k (usually a recent forecast, or 

a climatological estimate). As for the additional vector y, it consists of observations 

depending on the state vector through the observation operator H. The uncorrelation 

hypothesis (Eq. 13), although certainly disputable, is often (if not always) made. 

Equations 11-12, together with Eq. 13, are also assumed in the standard Kalman 

filter. We stress here that Eqs. 11-13 are no more restrictive than, but exactly 

equivalent to, Eq. 5 together with the determinacy condition, Eq. 9. 

Introducing the covariance matrices of the errors b
 and 



   ])([,])([ TooTbbb  EE  RP , (14) 

 

Eqs. 7-8 take the following form, used in particular in the Kalman filter 
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 (15a) 

   bTbTbba
HPRHHPHPPP

1][  . (15b) 



 

 

 

We recall that the vector 

 

   b
Hxyd  , (16) 

 

is called the innovation vector, and that the matrix HP
b
H

T
 + R, the inverse of which 

appears in Eqs. 15a-b, is the covariance matrix of d 

 

   ][ TTb
ddRHHP E . (17) 

 

As for the objective function (Eq. 10), it takes under decomposition of Eqs. 11-12 

the following form 
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The meaning of this expression is clear. The first term on the right hand side of 

Eq. 18 is a measure of the deviation of xfrom the background, while the second term 

is a measure of the deviation from the observation. 

Several situations are encountered in the practice of meteorology and 

oceanography, which we are going to describe in some detail, giving more explicit 

expressions for the general form (Eq. 18) of the objective function. 

The simplest situation is when a background x
b
, of form given by Eq. 11, is 

available at some time k, together with observations, of form given by Eq. 12, that 

have been performed at the same time (or over a period of time short enough so that 

the flow can be considered stationary). Minimization of the objective function (Eq. 

18) will produce an estimate of the state of the flow at time t. One then speaks in that 

case of three-dimensional variational analysis, often abbreviated as 3D-Var. 

A different, more complex, situation is encountered when one wants to assimilate 

observations that are distributed over a period of time over which the evolution of the 

flow cannot be neglected. Let us assume observations are available at successive 

times k = 0, 1,…, K, of the form 

 

  o

k

t

kkk  xHy , (19) 

 

where t

kx  is the exact true state of the flow at time k, Hk is a linear observation 

operator, and o

k  an observational error with covariance matrix Rk. The 

observational errors are assumed to be uncorrelated in time. It is assumed in addition 

that the temporal evolution of the flow is described by the equation 

 

   k

t

kk

t

k  xMx 1 , (20) 

 

with known model linear operator Mk, and random model error k. 



 

 

Assume in addition that a background x0
b
, with error covariance matrix P0

b
, and 

error uncorrelated with the observational errors in Eq. 19, is available at time k = 0. 

If the model error is ignored, any initial condition x0 at time k = 0 defines a model 

solution 

   1,,01  Kkkkk xMx . (21) 

 

The objective function 
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which is of the general form given by Eq. 10, measures the distance between the 

model solution (Eq. 21) and the data. Minimization of J(x0) will define the initial 

condition of the model solution that fits the data most closely. Following a 

terminology first introduced by Sasaki (1970a, b, c), this is called strong constraint 

four-dimensional variational assimilation, often abbreviated as strong constraint 4D-

Var. The words “strong constraint” stress the fact that the model identified by Eq. 21 

must be exactly verified by the sequence of estimated state vectors. 

If the model error is taken into account, Eq. 20 defines an additional set of 

“noisy” data. We assume the model error k in Eq. 20 to have covariance matrix Qk, 

to be uncorrelated in time and to be uncorrelated with observation and background 

errors. Equation 10 then gives the following expression for the objective function 

defining the BLUE of the sequence of states {xk , k = 0,…,K} 
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 (23) 

 

The objective function is now a function of the whole sequence of states            

{xk , k=0,…,K}. Minimization of an objective function of the form given by Eq. 23, 

where the model equations are present as noisy data to be fitted by the analysed 

fields like any other data, is called, again according to the terminology introduced by 

Sasaki (1970a, b, c), weak constraint four-dimensional variational assimilation, 

abbreviated as weak constraint 4D-Var. 

Equations 22-23, with appropriate redefinition of the state and observation 

spaces, are particular cases of Eq. 10. Another type of variational algorithm can be 

defined from Eq. 15a, which can be written as 

 

   wHPxx
Tbba  , (24) 

where the vector w  [HP
b
H

T
 + R]

–1
 d minimizes the objective function 
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2
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This function is defined on the dual of the observation space, which has dimension p. 

Minimization of Eq. 25 corresponds to the dual approach to variational assimilation, 

by opposition to the primal approach, given by Eq. 18. The dual approach is also 

known as defining the Physical Space Assimilation System (PSAS, pronounced 

“pizzazz”; the word Physical is historical). Just as Eqs. 18, 22-23 are particular forms 

of Eq. 10, the dual approach can be used in any of the situations corresponding to 

those three equations. Depending on the conditions of the problem, and especially on 

the relative dimension of the state and observation space, it may be more 

advantageous to use the primal or the dual approach. A significant difference is that 

the dual approach uses the error covariance matrices P
b 

and R in their direct forms, 

while the primal approach requires their inverses. Another difference is that the dual 

approach requires an explicit background x
b
, while the primal approach can be 

implemented, in the general form given by Eq. 10, without an explicit background (it 

only requires the determinacy condition, Eq. 9). 

All forms of variational assimilation given by Eqs. 18, 22-23 and 25 have been 

used, or at least extensively studied, for assimilation of meteorological and 

oceanographical observations. The theory of the BLUE requires the data operators 

( H and Mk in the above notations) to be linear. In practice, this condition is rarely 

verified. In particular, variational assimilation of form given by Eq. 22 or Eq. 23 is 

almost always implemented with a non-linear model. From a heuristic point of view, 

it is clear that, if the non-linearity is in a sense sufficiently small, variational 

assimilation, even if it does not solve a clearly identified estimation problem, is 

likely to produce useful results (this point will be further discussed in Section 5 

below). The dual approach, on the other hand, explicitly uses the transpose 

observation operator H
T
, and requires exact linearity.  

 

3 Minimization methods. The adjoint approach 
 

3.1. Gradient methods for minimization 

 
Variational assimilation aims at minimizing an objective function of one of the forms 

defined in the previous section. The objective functions we will consider can be 

exactly quadratic or not. We will make a slight change of notation, and will 

systematically denote by x, and will call control variable, the argument of the 

function to be minimized; in Eq. 23, the control variable is the whole sequence x0, 

…, xK, while it is  in Eq. 25. The control variable belongs to the control space, 

whose dimension will be denoted by N. We will denote by J/xthe gradient of J 

with respect to x, i.e., the N-vector whose components are the partial derivatives of J 

with respect to the components xiof x, viz.,  
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The gradient is equal to 0 at the minimum of the objective function. One way to 

determine the minimum could conceivably be (as is actually often done in simple 

small dimension problems) to determine analytical expressions for the components 

of the gradient, and then to solve a system of N scalar equations for the minimizing 

components of x. In meteorological and oceanographical applications, the 

complexity of the computations defining the objective function (in 4D-Var, these 

calculations include the temporal integration of a numerical dynamical model of the 

flow over the assimilation window) makes it totally inconceivable even to obtain 

analytical expressions for the gradient. Another way to proceed is to implement an 

iterative minimization algorithm, which determines a sequence of successive 

approximations x
(l) 

of the minimizing value of x, viz., 

 

   )()()1( lll
Dxx  , (27) 

 

where D
(l)

 is at every iteration an appropriately chosen vector in control space. One 

possibility is to choose D
(l)

 along the direction of the local gradient J/x. 

Algorithms which are based on that choice, called steepest descent algorithms, turn 

out, however, not to be numerically very efficient. In other algorithms, the vector D
(l)

 

is determined as a combination of the local gradient and of a number of gradients 

computed at previous steps of the iteration, Eq. 27 (see, e.g., Bonnans et al. 2003). 

All minimization methods that are efficient for large dimensions are of the form 

given by Eq. 27, and require the explicit determination, at each iteration step, of the 

local gradient J/x. They are called gradient methods. Since one cannot hope to 

obtain an analytical expression for the gradient, it must be determined numerically. 

One possibility could be to determine it by finite differences, by imposing in turn a 

perturbation xi on all components xi of the control vector, and approximating the 

partial derivative J/xi by the difference quotient 
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This, however, would require N explicit computations of the objective function, i.e., 

in the case of four-dimensional assimilation, N integrations of the assimilating 

model. Although that has actually been done for variational assimilation of 

meteorological observations, in an experimental setting, and with a relatively small 

dimension model (Hoffman 1986), it would clearly be impossible in any practical 

application. 

 

 

 

 



 

 

3.2 The adjoint method 

 
The adjoint method allows numerical computation of the gradient of a scalar function 

at a cost that is at most a few times the cost of the direct computation of that 

function. Adjoint equations are an extremely powerful mathematical and numerical 

tool. They are central to the theory of optimal control, i.e., the theory of how the 

behaviour of a physical system can be controlled by acting on some of its 

components (see for instance the book by Lions 1971). Adjoint equations can also be 

used for solving mathematical problems in their own right. The use of adjoint 

equations in meteorological and oceanographical applications was advocated by the 

Russian school of mathematics at an early stage of development of numerical 

modelling of the atmosphere and ocean (see, e.g., Marchuk 1974). We are going to 

demonstrate the method of adjoint equations in the special case of strong constraint 

4D-Var (Eq. 22), in the most general case where the model and observation operators 

can be non-linear. 

In order to stress the possible non-linearity of the model and observation 

operators, we now introduce the non-linear model operator, Mk( ), and the non-linear 

observation operator, Hk( ).  The notation for operators used hitherto in this chapter, 

Mk and Hk (denoting linear model and observation operators, respectively), being 

reserved hereafter for the Jacobians (matrices of partial derivatives) of Mk( ) and   

Hk( ), respectively.  We rewrite Eqs. 21-22 with non-linear operators as 
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    (29a) 

with 

   1,,0),(1  Kkkkk xx M  (29b) 



Our purpose is to determine the gradient J/x0of J with respect to x0. That 

gradient is characterized by the property that, for any perturbation x0 of x0, the 

corresponding variation of J is, to first order with respect to x0, equal to 
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The perturbation x0 results at later times in perturbations which, through 

differentiation of Eq. 29b, are given to first order by 

 

   1,,0,1  Kkkkk xMx  , (31) 

 

where, as said, kM is the Jacobian of xk+1 with respect to xk. Equation 31 is called the 

tangent linear equation of Eq. 29b. Although the dependence is not explicit in Eq. 



 

 

31, it must be kept in mind that the Jacobian kM will, in general, depend in the non-

linear case on the local value of xk. 

As for the first order variation of the objective function J, it is given by 

differentiation of Eq. 29a, viz.,  
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where kH is the local Jacobian of kH , and where the xk’s are given by Eq. 31. 

J is a compound function of x0 through the xk’s. Our purpose is to “skip” the 

intermediate xk’s, and to obtain a direct dependence of J with respect to x0 of 

form given by Eq. 30. To that end, we introduce at each time k = 1,…, K a vector k, 

belonging to the dual of state space (and therefore with dimension n), and to be 

defined more precisely later. We form the products )( 11  kkk

T

k xMx  , which, 

according to Eq. 31, are equal to 0. Subtracting those products from the right-hand 

side of Eq. 32 yields 
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(subtracting rather than adding the products is of course arbitrary, but convenient). 

We now transform Eq. 33 by first using the fact that the transpose of a matrix 

product is the product of the corresponding transposes, taken in reversed order. For 

instance, the product kk

T

kkk HRyx
1))(( H  is equal to T

kkkk

T

k )]))((([ 1
yxRH 

H  

(where use has been made of the fact that the covariance matrix Rk is symmetric), 

thus transforming the (scalar) quantity  kkk

T

kkk xHRyx 1))(( H  into the scalar 

product of the two n–vectors ))((1

kkkk

T

k yxRH 
H and xk.  Performing that 

operation on all terms in Eq. 33 and gathering all terms with common factor xk 

yields 
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This expression is valid for any choice of the k’s. It is seen that choosing 
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and then recursively 
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eliminates all xk terms in Eq. 34, except the x0 term. Defining further 
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there remains 
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which shows that 0 is the required gradient of the objective function with respect to 

the initial condition x0 (see Eq. 30). 

Equations 35a-c make up the adjoint of the tangent linear equation, Eq. 31. The 

word “adjoint” comes from the fact that Eqs. 35a-c are built on the transpose 

matrices T

kH  and T

kM , which are particular cases of the more general notion of 

adjoint operators. The adjoint equation is defined for the particular solution xk of the 

basic equation (29b) for which the gradient is to be determined. It depends on that 

solution through the terms kkk yx )(H  and, in the case of either a non-linear model 

operator kM  or a non-linear observation operator kH , through the transpose 

Jacobians T

kM  and/or T

kH . It is often said for convenience that Eqs. 35a-c define the 

adjoint of the basic model given by Eq. 29b, but it must be kept in mind that the 

adjoint equation is defined for a particular solution of that model. 

The computations to be performed for determining the gradient J/x0 for given 

initial condition x0 are now clearly defined: 

(1) Starting from x0, integrate the basic equation (29b). Store the corresponding 

solution xk in memory; 

(2) Starting from the “final” condition (Eq. 35a) at time K, integrate the adjoint 

equations 35b-c backward in time. The required gradient is 0. The direct 

solution xk is necessary for computing the terms ))((1

kkkk

T

k yxRH 
H  and, 

in case the basic model (Eq. 29b) is non-linear, for determining the 

transpose Jacobian T

kM . 

 
The determination of the gradient therefore requires one forward integration of 

the basic model (Eq. 29b), followed by one backward integration of the adjoint 

model (Eqs. 35a-c). The latter is a modified form of the direct model, and the 

corresponding cost must be of similar magnitude to the cost of integrating the direct 

model. It can be rigorously shown that, in terms of the number of arithmetic 

operations to be performed, the cost of one adjoint computation of the gradient 

J/x0 is at most four times the cost of one computation of the objective function, J. 

In meteorological and oceanographical applications, the cost of one adjoint 

integration (in terms of elapsed computer time) is typically twice the cost of one 

direct integration. This ratio is basically independent of the dimension N of the 

control variable, and makes the adjoint computation of a gradient much more 

economical than the N direct model integrations that would be required if the 



 

 

gradient was to be computed by explicit perturbations. It is this fact that made 

variational assimilation possible at all in the first place. 

Not surprisingly, there is a price to be paid for this major reduction in computing 

time. The price, as seen above, is the necessity to store in memory the direct solution 

xk. More precisely, what has to be kept in memory (or else to be recomputed in the 

course of the adjoint integration) are all quantities that are arguments of non-linear 

operations in the direct integration. Relaxing the storage constraint, for instance by 

using a more economical approximate adjoint, is difficult. Experience shows that 

minimization algorithms, especially efficient ones, are very sensitive to even slight 

misspecification of the gradient. The question of how the cost of variational 

assimilation can be reduced will be discussed in the next section. 

The description that has just been given of the adjoint method is fundamentally 

sufficient for 4D-Var. It obviously covers the case of 3D-Var (minimization of an 

objective function of form given by Eq. 18), which does not involve a dynamical 

model of the flow. In that case, of course, only the transpose Jacobian 
T

H of the 

observation operator is needed. 

The first attempt at using the adjoint approach for variational assimilation of 

meteorological observations was made by Penenko and Obraztsov (1976), on a 

simple one-level linear atmospheric model, and with synthetic data. Later attempts 

were made by Lewis and Derber (1985), Le Dimet and Talagrand (1986) and 

Talagrand and Courtier (1987). Courtier and Talagrand (1987) first used real data, 

while Thacker and Long (1988) made the first attempt at using adjoint equations for 

variational assimilation of oceanographical observations. Thépaut and Courtier 

(1991) first used a full primitive equation meteorological model. These early works 

showed that variational assimilation of meteorological or oceanographical 

observations was numerically feasible at an acceptable cost, and produced physically 

realistic results. Variational assimilation was progressively applied to more and more 

complex numerical models. It was introduced in 1997 in operational prediction, in 

the strong-constraint formulation, at the European Centre for Medium-Range 

Weather Forecasts, ECMWF (Klinker et al. 2000), and in 2000 at the French 

Meteorological Service (Météo-France). In both places, operational implementation 

of variational assimilation has resulted in significant improvements of the ensuing 

forecasts (see chapter Assimilation of Operational Data, Andersson and Thépaut). 

Some of these improvements were due to side effects not directly linked to the 

variational character of the assimilation, but others, especially in a number of 

specific meteorological situations, were due to better consistency between the 

assimilated states and the dynamics of the atmospheric flow. Since then, other 

meteorological services, such as the Japan Meteorological Agency, the 

Meteorological Office (United Kingdom), the Meteorological Service of Canada and 

the China Meteorological Administration, have introduced variational assimilation in 

their operational prediction system. All these schemes are of the strong-constraint 

form, and use a 6-hour assimilation window (12-hour in the case of ECMWF). In 

addition, ECMWF, after having produced several sets of reanalysed past 

observations, all based on sequential assimilation algorithms, is now running a new 

reanalysis project (the ERA-Interim project, 

http://www.ecmwf.int/research/era/do/get/era-interim) based on variational 



 

 

assimilation. A specific advantage of variational assimilation in the case of reanalysis 

of past data is that it propagates information both forward and backward in time, thus 

allowing the use of observations that have been performed after estimation time. 

Similar developments have taken place in oceanography, and variational 

assimilation using the adjoint of oceanographic circulation models is now commonly 

used for many diverse applications (although not so far for operational 

oceanographic prediction). Those applications include determination of the initial 

conditions of the flow, as described above (see, e.g., Weaver and Anderson 1997; 

Vialard et al. 2003; Ricci et al. 2005), but also identification of “parameters”, such as 

wind stress at the surface of the ocean (Vossepoel et al. 2004). Egbert et al. (1994) 

and Louvel (2001) used the dual approach through minimization in dual observation 

space of an objective function of form given by Eq. 25. In that approach, each 

iteration of the minimization process requires first a backward integration of the 

adjoint model, followed by a forward integration of the tangent linear model. 

Variational assimilation has also extended to other fields of geophysics and 

environmental sciences, such as atmospheric chemistry (Fisher and Lary 1995; 

Errera and Fonteyn 2001; Elbern et al. 2007; Lahoz et al. 2007 – see also chapters in 

Part D, Chemistry), or surface hydrology (Reichle 2000 – see chapter Land Surface 

Data Assimilation, Houser et al.). Other extensions of the variational methodology, 

that have largely benefited from the experience in meteorology, have been to 

terrestrial magnetism (Fournier et al. 2007; Sun et al. 2007) and seismology (Tromp 

et al. 2005). 

 

4 Practical implementation 

 
If the principle of variational assimilation and of the adjoint method is conceptually 

perfectly clear and rigorous, practical implementation of variational assimilation 

raises a number of serious problems. We will discuss below the specific problems 

associated with the development and validation of a code for performing the adjoint 

computations defined by Eq. 35, and are going to consider first a number of purely 

numerical problems. 

 

4.1 The incremental approach 

 
The developments of the previous section seem to require that it is the adjoint of the 

complete model (Eq. 29b) that has to be used for the computation of the gradient of 

the objective function. A Numerical Weather Prediction (NWP) model is an 

extremely complex and lengthy code, and the ensuing “all-or-nothing” choice (take 

the complete adjoint of the model, or else do nothing) seems particularly impractical. 

Simplifying the adjoint equation as such, without modification of the direct model 

nor of the objective function, is not an appropriate solution. That would lead to an 

approximate gradient of the objective function, and, as has already been said, 

experience shows that minimization algorithms, especially efficient ones, are very 

sensitive to even slight misspecification of the gradient. A convenient and versatile 

solution, known as the incremental approach to variational assimilation, has been 



 

 

introduced by Courtier et al. (1994). Several variants of that approach exist. We are 

going to describe the one that is conceptually the simplest. 

The basic idea is to simplify the dynamical model (Eq. 29b) to a form that is both 

more economical and more manageable, in particular as concerns the adjoint. But 

that is not done on the model (Eq. 29b) itself, but rather on the tangent linear model 

(Eq. 31). A reference solution xk
(0)

 of the basic equation (29b) having been 

determined (emanating for instance from the background x0
b
 = x0

(0)
), the 

corresponding tangent linear model (Eq. 31) is modified to 

 

   1,,0,1  Kkkkk xLx  , (37) 

 

where Lk is, at any time k, an appropriately chosen “simpler” operator than the 

Jacobian Mk. Consistency then requires to modify the basic model (Eq. 29b) in such 

a way that the tangent linear equation corresponding to solution xk
(0)

 is Eq. 37. This 

is achieved by making the initial condition x0  x0
(0)

 + x0 evolve into xk  xk
(0)

 + xk, 

where xk itself evolves according to Eq. 37. That makes the basic dynamics linear. 

As for the objective function (Eq. 29a), several possibilities exist, at least when 

the observation operators are non-linear. One possibility is to linearize those 

operators just as the model operator kM  has been linearized. This leads to replacing 

the quantity )( kk xH  by kkkk xNx )( )0(
H , where Nk is an appropriate simplified 

linear operator (possibly, but not necessarily, the Jacobian of Hk at point xk). The 

objective function (Eq. 29a) is then replaced by 
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where the xk’s are subject to Eq. 37, and where )( )0(

kkkk xyd H  is the 

innovation at time k. 

The function given by Eq. 38 is an exactly quadratic function of the initial 

perturbation x0. The minimizing perturbation x0,m defines a new initial state x0
(1)

  

x0
(0)

 + x0,m, from which a new solution xk
(1)

 of the basic equation (Eq. 29b) is 

computed. The process is then repeated for solution xk
(1)

.  

This defines a system of two-level nested loops for minimization of the original 

objective function (Eq. 29a). The fundamental advantage of the incremental 

approach is that it allows one to define at will the simplified linearized operators Lk 

and Nk. Many degrees of freedom are available for ensuring an appropriate trade-off 

between practical implementability and meteorological accuracy and usefulness. The 

simplified dynamics in Eq. 37 can itself be modified in the course of the 

minimization, by progressively introducing more and more complex dynamics or 

“physics” in the successive outer loops. 



 

 

It is the incremental method which, after the adjoint method, makes variational 

assimilation feasible. It is implemented, either in the form that has just been 

described or in slightly different variants, in most (if not all) operational NWP 

systems that use variational assimilation. At ECMWF, it is implemented with two 

outer loops, the approximations introduced in the linearized dynamics (Eq. 37) 

consisting first, of a reduced spatial resolution (from triangular spectral truncation 

T799 to T255 for the second outer loop) and, second, of a simplified “physical” 

package. 

An obvious question is whether the nested-loop process of the incremental 

process converges and, if it does, to what it converges. In the case where the 

linearized operators Lk and Nk vary from one outer loop to the next, the possible 

convergence of the process can depend on the way those operators vary. In 

particular, convergence to the minimum of the original objective function (Eq. 29a) 

is possible only if the linear operators Lk and Nk converge to the corresponding 

Jacobians Mk and Hk at that minimum. The question of the convergence of the 

incremental process has been studied in some detail by Trémolet (2007) on the 

ECMWF 4D-Var system. Numerical tests show that the process does not converge 

asymptotically, at least in the conditions in which it is implemented at ECMWF. The 

way the incremental approach is implemented, at ECMWF and elsewhere, is largely 

based on empirical tuning. 

 

4.2 First-Guess-At-the-right-Time 3D-Var 

 
An extreme case of the incremental approach is what is called First-Guess-At-the-

right-Time 3D-Var, or FGAT 3D-Var. It can be described as a process of form of 

Eqs. 37-38 in which the simplified linear operator Lk is taken as the identity operator. 

This process is four-dimensional in that the observations distributed over the 

assimilation window are compared with their analogues in a time-evolving reference 

integration of the assimilating model. But it is three-dimensional in that the 

minimization of the objective function (Eq. 38) does not use any explicit dynamics 

other than the trivial dynamics expressed by the unit operator, and that the numerical 

implementation is in effect three-dimensional. The FGAT 3D-Var approach, which is 

implemented through a unique minimization (no nested loops), has been shown to 

improve the quality of the assimilated fields, simply through the fact that is 

effectively uses a more exact innovation vector than does standard 3D-Var, in which 

all observations over the assimilation window are compared to the same first-guess 

field. 

 

5 Further considerations on variational assimilation 

 
Independently of its numerical and algorithmic properties, the major advantage of 

variational assimilation is that it takes into account, through the adjoint equation, the 

temporal evolution of the uncertainty in the state of the flow, at least over the 

assimilation window. Although (contrary to the Kalman filter) it does not explicitly 

compute the evolution of the uncertainty as such (and, in particular, does not produce 

an explicit estimate of the uncertainty in the estimated fields), it determines an 

approximation of the minimizing solution of the objective function (Eq. 29), which 



 

 

depends on the dynamics of the flow, and of the temporal evolution of the 

uncertainty. This was shown in full detail by Thépaut et al. (1993), who compared 

the impact of individual observations in a 3D-Var process, which ignores the 

temporal evolution of the uncertainty, and a 4D-Var process. The impact was 

significantly different, and strongly dependent on the dynamical state of the flow, in 

the latter case. 

Significant impact does not of course mean positive impact. All operational 

implementations of 4D-Var have been preceded by the development and 

implementation of a 3D-Var system. This is very convenient in that it allows 

progressive introduction of the various components of the full 4D-Var system. But it 

also provides the opportunity for systematic comparison of 3D-Var and 4D-Var. The 

comparison has always shown the superiority of 4D-Var, in particular in terms of the 

quality of the ensuing forecasts. Similar comparisons have also been performed, with 

the same conclusions, on other, non-operational assimilation systems. See also 

Lorenc and Rawlins (2005) for a detailed discussion of 3D-Var and 4D-Var. 

All operational implementations of 4D-Var have so far been of the strong 

constraint form. In spite of the constant improvement of NWP models, the 

hypothesis of a perfect model is of course highly disputable. Weak-constraint 

assimilation, which corresponds to minimization of an objective function of form 

given by Eq. 23, would certainly be desirable. It however requires a quantitative 

estimate, in the form of the covariance matrix Qk, of the model error. A reliable 

estimate may be difficult to obtain. Derber (1989) has suggested identifying a 

possible systematic bias in the model by introducing that bias in the control variable. 

Other authors (Zupanski 1997; Trémolet 2006) have studied algorithms of the 

general form given by Eq. 23. There is some indication (M. Fisher, pers. comm.) that 

weak constraint variational assimilation could be useful over longer assimilation 

windows (24 hours or more) than used in strong constraint assimilation. That is 

easily understandable in view of the fact that the perfect model hypothesis becomes 

less and less valid as the length of the assimilation window increases. 

The primal weak-constraint objective function (Eq. 23) becomes singular in the 

limit of a perfect model (Qk=0). As already said, the dual approach uses the data 

error covariance matrices in their direct form, so that the dual objective function (Eq. 

25), as defined for weak constraint variational assimilation, is regular for Qk=0. This 

means that the same dual algorithm can be used for both strong- and weak-constraint 

variational assimilation. This is an attactive feature of the dual approach. 

Courtier  (1997) has shown that, subject to an appropriate preconditioning of the 

dual variable in Eq. 25, the numerical conditioning (and therefore the numerical 

cost) of the dual algorithm is the same as that of the primal approach. In variational 

assimilation, it is actually the repeated numerical integrations of the direct and 

adjoint models that takes the major part of the computations, and the numerical cost 

of strong- and weak-constraint variational assimilation is fundamentally the same. 

This point is discussed in more detail in Louvel (2001). 

The dual approach requires strict linearity of the operator H in Eq. 25 which, in 

the case of variational assimilation, means strict linearity of the model and 

observation operators. Auroux and Blum (2002, 2004) have introduced a double-loop 

algorithm (which has some similarity with the incremental approach described 



 

 

above) in which successive linear problems of form given by Eq. 25 are solved, each 

one being based on a linearization about the result of the previous one. 

More generally, and independently of the particular numerical algorithm that is 

used, the validity of the linear approach defined by Eqs. 7 and 10 is questionable in 

meteorological and oceanographical applications. It has already been said that, from 

a purely heuristic point of view, the linear approach must be valid if the non-

linearities are in a sense small enough. A more accurate description of the real 

situation that is encountered in meteorology and oceanography is given, rather than 

by Eqs. 11-12, by 

   btb  xx , (39) 

     )( t
xy H , (40) 

 

where H 
*
(H - star) denotes a non-linear observation operator. In the case of 3D-Var, 

H  
*
 is the observation operator at estimation time. In the case of 4D-Var, the vector 

y denotes the complete temporal sequence of observations, and the operator H 
*
 

includes the (non-linear) dynamical model. The knowledge of the data (Eqs. 39-40) 

is equivalent to the knowledge of Eq. 39 together with what can be called the non-

linear innovation vector  

     )()()( btb
xxxyd HHH . (41) 

 

If the background x
b
 is close enough to the real unknown state x

t
, d can be 

approximated by  

    )( bt
xxHd , (42) 

 

where H is here the Jacobian of the full operator H  *at point x
b
. If the so-called 

tangent linear approximation defined by Eq. 42 is valid, Eqs. 39-42 define an 

estimation problem that is linear with respect to the deviation x
t
-x

b 
of the real state 

with respect to the background x
b
. Equations 15 and 18 are then valid, H being the 

Jacobian of   H  
*
. In the case of 4D-Var, this leads to minimization of an objective 

function of the incremental form given by Eqs. 37-38, where the operators Lk and Nk 

replace the exact Jacobians Mk and Hk along the (full non-linear) reference model 

solution. 

Both direct (see, e.g., Lacarra and Talagrand 1988) and indirect evidence shows 

that the tangent linear approximation is valid for large scale geostrophic atmospheric 

flow (scales larger than 200 km) up to about 24-48 hours. This limit, however, 

rapidly decreases with decreasing spatial scales, to be of the order of a few hours for 

convective scales. For oceanic geostrophic flow (scales larger than a few tens of 

kilometres), the limit is a few weeks. 

The developments of this chapter are therefore fully valid within those limits. It is 

to be stressed, however, that in circumstances where the tangent linear 

approximation is known or hypothesized to be valid, the linearization in Eq. 42 is 

rarely performed explicitly. Either fully non-linear operators are kept in the objective 

function to be minimized, or (as is actually the case in the incremental approach 

described above) approximations that go further than Eq. 42 are implemented. The 

only case where the linearization given by Eq. 42 seems to have explicitly been 



 

 

implemented is in the above-mentioned works of Auroux and Blum (2002, 2004) 

relative to the dual approach, which requires exactly linear operators. 

But the question arises of what is to be done in circumstances when the tangent 

linear approximation is not valid. In the context of 4D-Var, there are actually two 

different questions, depending on the strength of the non-linearities. If the non-

linearities are weak, the minimization of an objective function of the general form 

given by Eq. 29 remains numerically feasible, but may not be justified on the basis of 

estimation theory. If the non-linearities are strong, even the numerical minimization 

of the objective function, owing for instance to the presence of distinct minima, can 

raise difficulties. 

These questions have not been discussed so far in much depth. One can mention 

the work of Pires et al. (1996), who studied variational assimilation for a strongly 

chaotic non-linear system (specifically, the celebrated three-parameter system of 

Lorenz 1963). These authors have shown that the objective function given by Eq. 29 

possesses an increasing number of local minima with increasing length of the 

assimilation window. This can be easily understood in view of the repeated folding 

in state space that is associated with chaos. They have defined a procedure, called 

Quasi-Static Variational Assimilation (QSVA), in which the length of the 

assimilation window, starting from a value for which the objective function (Eq. 29) 

possesses a unique minimum, is progressively increased.  Each new minimization is 

started from the result of the previous one. This allows one to keep track of the 

absolute minimum of the objective function, at least if the temporal density of 

observations is in a sense high enough. QSVA has been implemented on a quasi-

geostrophic atmospheric model by Swanson et al. (1998) who have been able to 

usefully extend variational assimilation (in the hypothesis of a perfect model) to 

assimilation windows as long as five days. This is largely beyond the limit of validity 

of the tangent linear approximation. QSVA, or a similar algorithm, could possibly be 

implemented in operational practice, for instance by using successive overlapping 

assimilation windows. 

Other developments have taken place recently at the research level. Carrassi et al. 

(2008) have defined a 3D-Var system in which the control variable, instead of 

consisting of the whole state vector, is restricted to the deviations from the 

background along the (relatively few) unstable modes of the system. This approach 

is now being extended to 4D-Var (Trevisan, pers. comm.). A somewhat similar work 

has been performed by Liu et al. (2008), who have developed a low-order 

incremental 4D-Var system. The background error covariance matrix P0
b
 (Eq. 38) is 

defined, not on the basis of an a priori statistical model, but on the basis of the 

dispersion of an ensemble of background forecasts. As in Carrassi et al. (2008), the 

control space is not the entire state space, but the state spanned by the background 

forecasts. Taking advantage of the relatively small dimension of the control space, 

and of the linearity associated with the incremental character of the procedure, it is 

not necessary to use an adjoint code for computing the gradient of the objective 

function. That can be achieved through simple transposition of an appropriate matrix. 

The results obtained are competitive with a fully-fledged 4D-Var. The “ensemble” 

feature of those works give them similarity with the Ensemble Kalman Filter (see 

chapter Ensemble Kalman Filter: Current Status and Potential, Kalnay). 



 

 

Both those works suggest that it could be possible to achieve substantial 

numerical gain, without significant degradation of the final results (and even maybe 

without the use of an adjoint), by restricting the control variable to an appropriate 

subspace of the whole state space. 

All the algorithms that have been described above are based on the minimization 

of an objective function of the general form given by Eqs. 10, 18 or 29, which is 

quadratic in terms of the data-minus-unknown differences, with weights equal to the 

inverse of the covariance matrices of the corresponding errors. Equations 10 and 18 

correspond to least-variance statistical linear estimation, while Eq. 29 corresponds to 

an extension to weakly non-linear situations. Other forms for the objective function 

have also been considered. In particular, Fletcher and Zupanski (2006) and Fletcher 

(2007), following a general Bayesian approach, propose to maximize the conditional 

probability density function for the state of the flow, given the data. In the case of 

linear data operators and Gaussian errors, this leads to minimization of an objective 

function of form given by Eq. 10. Those authors consider the case of lognormal 

distributions, which are more appropriate for bounded variables such as humidity. 

This leads to a significantly different form for the objective function. 

 

6 More on the adjoint method 

 
The adjoint method has been demonstrated above in the particular case of the 

objective function given by Eq. 29. It is actually very general, and defines a 

systematic approach for computing the (exact) gradient of a differentiable scalar 

function with respect to its arguments. Although this may not be obvious from the 

above developments, the adjoint method consists in a systematic use of the chain rule 

for differentiation of a compound function. Proceeding backward through the 

original sequence of computations, it recursively computes the partial derivatives of 

the scalar function under consideration with respect to the variables in those 

computations (see, e.g., Talagrand 2003). As such, the adjoint method can be used 

not only for optimization purposes, as in variational assimilation, but (actually more 

simply) for determination of gradients as such, and for sensitivity studies. 

The advantages and disadvantages of variational assimilation will be further 

discussed in the Conclusions below (Section 7). But its major disadvantage (at least 

for variational assimilation as it exists at present) is probably the need for developing 

the adjoint code which performs computations in Eq. 35. Not only must the adjoint 

code be developed, but it must be carefully validated, since experience shows that 

even minor errors in the computed gradient can significantly degrade the efficiency 

of the minimization (if not totally inhibit it). In addition, NWP models are constantly 

modified, and the corresponding modifications must be made on the adjoint code. 

Writing the adjoint of a code at the same time as the direct code involves only a 

rather small amount of additional work (10% or 20%). But developing the adjoint of 

an already existing code can require a substantial amount of work, and can be a very 

tedious and time-consuming task. On the other hand, the fact that adjoint 

computation is in essence a systematic use of the chain rule for differentiation leads 

to perfectly defined “adjoint” coding rules, which make the development of an 



 

 

adjoint code, if lengthy and tedious, at least totally straightforward. These rules are 

described in, e.g., Talagrand (1991), Giering and Kaminski (1998) or Kalnay (2002). 

Those same rules are at the basis of “adjoint compilers”, i.e., software pieces that 

are designed to automatically develop the adjoint of a given code (see, e.g., 

http://www.fastopt.de/; Hascoët and Pascual 2004). The adjoint of a particular piece 

of code is independent of the rest of the code, and automating the derivation of the 

adjoint instructions for a sequence of coding instructions, which is a purely local 

operation, is relatively easy. Other aspects, such as the choice and management of 

non-linear variables to be kept in memory from the direct integration, or to be 

recomputed in the course of the adjoint integration, require a global view of the code, 

and are more difficult to automate. For that reason, the use of these software pieces 

still requires experience of adjoint coding as well as some preparatory work, but they 

are nevertheless extremely useful, and very substantially reduce the amount of time 

and work necessary for developing the adjoint of an atmospheric or oceanic 

circulation model. 

The adjoint approach is used in assimilation of meteorological and 

oceanographical observations for numerically solving, through an iterative 

minimization process, an optimization problem. Now, as said above, what the adjoint 

equations really do is simply compute the gradient of one scalar output of a 

numerical process with respect to (potentially all) the input parameters of that 

process. As such, the adjoint approach can be used for sensitivity studies of outputs 

with respect to inputs, independently of any optimization or minimization. It will be 

useful to use the adjoint approach when the number of output parameters whose 

sensitivity is sought is smaller than the number of input parameters with respect to 

which the sensitivity is sought (in the inverse case, direct perturbation of the input 

parameters will be more economical). 

Actually, the first proponents of the use of the adjoint approach in meteorology 

and oceanography had primarily sensitivity studies in mind (Marchuk 1974; Hall et 

al. 1982). Adjoint models have been used to perform sensitivity studies of many 

different kinds: sensitivity of the atmospheric flow with respect to initial or lateral 

boundary conditions (Errico and Vukicevic 1992; Rabier et al. 1992; Gustafsson et 

al. 1998); sensitivity of the global oceanic circulation to parameters (Marotzke et al. 

1999); sensitivity of biogeochemical processes (Waelbroeck and Louis 1995); and 

sensitivity of atmospheric chemical processes (Zhang et al. 1998). See also the 

special issue of Meteorologische Zeitschrift (Ehrendorfer and Errico 2007) devoted 

to Adjoint Applications in Dynamic Meteorology. Two specific types of applications 

are worthy of particular mention. The first one has to do with the identification, for a 

particular situation, of the unstable components of the flow. In its simplest form, this 

amounts to determining the so-called singular vectors of the flow, i.e., the 

perturbations that amplify most rapidly, over a period of time, in the tangent linear 

approximation (Lacarra and Talagrand 1988; Farrell 1989; Urban 1993). This has 

been extended by Mu and colleagues (Mu 2000; Mu et al. 2003) to Non-Linear 

Singular Vectors (NLSVs), i.e., perturbations that amplify most rapidly in the full 

non-linear evolution. A condition must then be imposed on the initial amplitude of 

the perturbation, which leads to a (technically more difficult to solve) constrained 

optimization problem. Both linear and non-linear singular vectors allow accurate 

diagnostic and analysis of instability (Moore and Farrell 1993; Mu and Zhang 2006; 

http://www.fastopt.de/


 

 

Rivière et al. 2008). A related, but more specific, application is the identification of 

the components of the flow to which a particular feature of the future evolution of 

the flow (such as, for instance, the deepening of a depression) is most sensitive. This 

allows one to “target” observations in order to optimize the prediction of the feature 

under consideration. This has been implemented successfully on the occasion of 

specific campaigns (see, e.g., Langland et al. 1999; Bergot and Doerenbecher 2002). 

Observation targeting through adjoint methods is further discussed in Buizza et al. 

(2007). Another, potentially very promising, application of the adjoint method is the 

determination of the sensitivity of analysed and predicted fields to observations. It is 

then the adjoint of the whole assimilation and prediction process, and not only of the 

assimilating model, that has to be used (Langland and Baker 2004). This has led to 

very useful diagnostics of the value and usefulness of various types of observations 

(Langland, Cardinali, pers. comm.).  

 

7 Conclusion 

 
Variational assimilation has now become a basic tool of numerical meteorology and 

oceanography, and a major component of operational NWP in several major 

meteorological services. Together with the Ensemble Kalman Filter (see chapter 

Ensemble Kalman Filter: Current Status and Potential, Kalnay), it is one of the two 

most advanced and powerful assimilation methods. The specific advantages of 

variational assimilation are rather obvious. It is very versatile and flexible, and 

allows for easy introduction of a new type of observation in an assimilation system. 

It suffices to specify the corresponding observation operator and the first- and 

second-order statistical moments of the associated error. It automatically propagates 

information both forward and backward in time, and makes it easy to take into 

account temporal correlation between errors (either observation or model errors). To 

the author’s knowledge, this last possibility has been used so far on only one 

occasion, for taking into account temporally correlated errors in high frequency 

observations of surface pressure (Järvinen et al. 1999). But it can be extremely 

useful, especially for the treatment of model error and of the associated temporal 

correlation (time will presumably come when this will be necessary). 

Variational assimilation is costly in that it requires the development, validation 

and maintenance of the adjoint of the assimilating model, as well as of the various 

observation operators. This is a time-consuming task. However, owing to the gain in 

experience and expertise, and to the continuous improvement of adjoint compilers, 

that task progressively becomes easier and easier. And, as discussed in the previous 

section, adjoints, once they are available, can be used for many other applications 

than assimilation, and in particular to powerful diagnostic studies. 

Assimilation of meteorological and oceanographical observations may be at a 

turning point. It seems that the limits of what can be obtained from statistical linear 

estimation (i.e., from Eq. 7 and its various generalizations to weakly non-linear 

situations) are being reached. The only exception is likely Quasi-Static Variational 

Assimilation, discussed in Section 5, which is based on minimization of objective 

functions of form given by Eq. 29, but whose limits have not been identified. 

Statistical linear estimation is at the basis of variational assimilation and of the 



 

 

“Kalman” component of the Ensemble Kalman filter. It can legitimately be said that 

the ultimate purpose of assimilation is to achieve Bayesian estimation, i.e., to 

determine the conditional probability distribution for the state of the atmosphere (or 

the ocean), given all the relevant available information. In view of the large 

dimension of the state of the atmosphere, the only possible way to describe the 

conditional probability distribution seems to be through an ensemble of points in 

state space, as indeed the Ensemble Kalman filter already does. A basic question is 

then to determine whether it is possible to develop methods for ensemble variational 

assimilation, which would produce a Bayesian ensemble, while retaining the specific 

advantages of variational assimilation, namely easy propagation of information both 

forward and backward in time, and possibility to easily take error temporal 

correlations into account. Some results suggest that this should be possible. 
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