Impacts of algorithms and data structures

on multicore efficiency
(cache/memory optimization study using ThreadSpotter)

Marwa Al-Shandawely

Agenda

» Introduction

» Optimization process

» Memory perfomance problems

» Case study: GMRES for block toeplitz matrices
» Case study: Gaussian elimination

Introduction

» The gap between cores and memory speeds.
» Caches: fast and limited capacity.
» S0 keep it cached to get it fast!

Memory bandwidth

Memory latency

Data locality

Thread communication/ interaction

N

N

Algorithm

Time/ space compexity
Correctness

Lock-free

Parallel tasks

me

~5

Y

ThreadSpotter

» Cache memory optimization tool

» Analyzes memory bandwidth and latency, data locality and
thread communications

» Pinpoints troublesome areas in source code
» Provides guidance towards a resolution
» Two steps: sampling application then report generation.

http://www.roguewave.com/products/threadspotter/resources/videos.aspx

Improving performance on multi-cores

Original

correct-=—=

Apply optimization to U—TQ
fix the code ;

—
<\

> Performance =&
OK?

Speed up v
‘ I I I es

Memory performance problems

» Data layout problems
- Partially used structures.
> Alignment problems.
- Dynamic memory allocation.

» Data access pattern problems
- Inefficient loop nesting.
- Random access patterns.

Memory performance problems

» Data reuse opportunities
> Blocking
- Loop fusion.

» Multi-threading problems
> False sharing
> Poor communication problems.

Case study

GMRES for block-toeplitz matrices

GMRES: lterative matrix inversion method

» Find x,=x that solves AX = Dand hence minimizes the residual
< -bj<ToL

» The core calculations at each iteration K of GMRES require a matrix-
vector multiplication A.C,

Block-toeplitz matrices

4
4
4
4

Total size of A =(6N ?)?

Ahas (6)° different blocks.
Typically max. N=128 and hence A is about 10 million elements
Using the mask matrix (storing unique elements of A). M size = (6N)?

First approach: The mask matrix M

» For the full matrix Agynzuen), Only a mask Mgyyen) 1S
needed to be stored. If N=128 — A is (98304)2 while
M is (768)2.

» Each element in M will appear N2 times in A due to the
circular block-toeplitz structure.

» Elements of A can be looked up in M by index
calculations.

6N

Why using M is not fast enough!

GMRES time in sec.

10000

1000

250.6

100

13.7
]0]
1 -

N=32 N=64 N=128

mulmask.html

Report conclusions

» Avoid random access pattern.
» Increase data reusability.
» Apply blocking mechanism.

Alternative representation of A

2
<____________6N _____________ >

>

» Each segment S; of A’s six-
horizontal segments updates a
distinct Y, segment in Y.

6N?2

» Due to A’s structure, knowing
the first (leading) row of each
S; is sufficient to be stored
and used to determine the rest

CE—mm =

of its rows.

Data reusability through shifting

\ / \/\/\,\’:’”\(—” ! ,z’
Netements T 1" L] "7 " BT W

{ Load the buffer }

once and use it N2
times. It won’t be
needed again !

Z
N

I e TS =

Overall improvement

Speed lJp:Tmask / Tshift 4 A

. 2 hours using Mask

. 25 minutes using Shifts

GMRES Speed up ¥/)

4.5

4

3.5 -

3 -

2.5 -

2 -

1.5 -

1 -

0.5 -

0 -

N=32

N=64 N=128

Case study

Gaussian Elimination with pivoting

Overview of forward elimination

fori=1ton-1
find pivotPos in column i
if pivotPos = i
exchange rows(pivotPos,i)
end if

for j=i+1 ton
end for j
I$omp parallel do private (i ,j)
for j=i+1 to n+1
for k=i+1 to n
end for k
end for j
end for i

I 5 5 A
151 [
5
5
50 I O
5 [
51

HEEENN

HEEEN

[

5
5
= e I]

First approach speed up

2.5

1.5
m Original
1 A
0.5 -
0 T T T T T T T 1
2 3 4 5 6 7 8 nThreads

.

luOmpGE.html

What went wrong?!

» The original algorithm requires pivot columns
to be prepared in order while the whole
matrix is accessed for each pivot column.

» The cache is evicted many times for each
iteration and there is no reuse of data in the
cache.

Making things right!

» Each column is an accumulation of eliminations using
previous columns!

» Make more pivots available each step and eliminate each
column using several pivots while it is in the cache.

IOCking GE Row exchange —

two elements swap

before column
elimination

for k=1 to n-1, step C T T T LT ETT] Pivots array

)) T N N Y
I N T O

GE on A(k:n,k:BlockEnd) &
Store C pivots’ positions

I$omp parallel do private (i ,j)
— for each column j after BlockEnd

for i=k to BlockEnd

{ BlockEnd=min(k+C-1,n)
1

swap using pivots(i)
elimination i on j
end for i \
_ end for each |
End for k

EEEEEEEEN
sl BN EEEEENN
EEEEEEEEN
EEEEEEEN
EEEEEEEN
EEEEEEEN
EEEEEEEN
EEEEEEEN
EEEEEEEN
EEEEEEEN
EEEEEENN

A Kvest qf\ Revbi;m mﬁsolumn,s,

Speed up w.r.t sequential time

12
10
8
m Original
m Blocked
nThreads

Cyclic column distribution

HEN Pivots array

U U U U
w N - o

Improved Performance

25

20

m Original

m Blocked

m Cyclick dist.

Conclusions

» Scalable performance on multicores is highly dependent on
application implementation, data layout and access patterns.

» The use of smart tools becomes crucial to deal with complex
structures, separated code/data files and multithreaded
applications.

» Cache and memory access optimization techniques is vital
for performance despite the loss of readability.

