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Introduction

» The gap between cores and memory speeds.
» Caches: fast and limited capacity.
» S0 keep it cached to get it fast!
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ThreadSpotter

» Cache memory optimization tool

» Analyzes memory bandwidth and latency, data locality and
thread communications

» Pinpoints troublesome areas in source code
» Provides guidance towards a resolution
» Two steps: sampling application then report generation.

http://www.roguewave.com/products/threadspotter/resources/videos.aspx




Improving performance on multi-cores
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Memory performance problems

» Data layout problems
- Partially used structures.
> Alignment problems.
- Dynamic memory allocation.

» Data access pattern problems
- Inefficient loop nesting.
- Random access patterns.




Memory performance problems

» Data reuse opportunities
> Blocking
- Loop fusion.

» Multi-threading problems
> False sharing
> Poor communication problems.




Case study

GMRES for block-toeplitz matrices




GMRES: lterative matrix inversion method

» Find x,=x that solves AX = Dand hence minimizes the residual
< -bj<ToL

» The core calculations at each iteration K of GMRES require a matrix-
vector multiplication A.C,




Block-toeplitz matrices

4
4
4
4

Total size of A =(6N ?)?

Ahas (6)° different blocks.
Typically max. N=128 and hence A is about 10 million elements
Using the mask matrix (storing unique elements of A). M size = (6N)?




First approach: The mask matrix M

» For the full matrix Agynzuen), Only a mask Mgyyen) 1S
needed to be stored. If N=128 — A is (98304)2 while
M is (768)2.

» Each element in M will appear N2 times in A due to the
circular block-toeplitz structure.

» Elements of A can be looked up in M by index
calculations.

6N




Why using M is not fast enough!

GMRES time in sec.
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mulmask.html

Report conclusions

» Avoid random access pattern.
» Increase data reusability.
» Apply blocking mechanism.




Alternative representation of A
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» Each segment S; of A’s six-
horizontal segments updates a
distinct Y, segment in Y.

6N?2

» Due to A’s structure, knowing
the first (leading) row of each
S; is sufficient to be stored
and used to determine the rest
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Data reusability through shifting
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Overall improvement

Speed lJp:Tmask / Tshift 4 A

. 2 hours using Mask

. 25 minutes using Shifts
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Case study

Gaussian Elimination with pivoting




Overview of forward elimination

fori=1ton-1
find pivotPos in column i
if pivotPos = i
exchange rows(pivotPos,i)
end if

for j=i+1 ton
end for j
I$omp parallel do private (i ,j)
for j=i+1 to n+1
for k=i+1 to n
end for k
end for j
end for i
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First approach speed up
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luOmpGE.html

What went wrong?!

» The original algorithm requires pivot columns
to be prepared in order while the whole
matrix is accessed for each pivot column.

» The cache is evicted many times for each
iteration and there is no reuse of data in the
cache.




Making things right!

» Each column is an accumulation of eliminations using
previous columns!

» Make more pivots available each step and eliminate each
column using several pivots while it is in the cache.




IOCking GE Row exchange —

two elements swap

before column
elimination

for k=1 to n-1, step C T T T LT ETT] Pivots array
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GE on A(k:n,k:BlockEnd) &
Store C pivots’ positions

I$omp parallel do private (i ,j)
— for each column j after BlockEnd

for i=k to BlockEnd

{ BlockEnd=min(k+C-1,n)
1

swap using pivots(i)
elimination i on j
end for i \
_ end for each |
End for k
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Speed up w.r.t sequential time
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Cyclic column distribution
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Improved Performance
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Conclusions

» Scalable performance on multicores is highly dependent on
application implementation, data layout and access patterns.

» The use of smart tools becomes crucial to deal with complex
structures, separated code/data files and multithreaded
applications.

» Cache and memory access optimization techniques is vital
for performance despite the loss of readability.




