Impacts of algorithms and data structures on multicore efficiency (cache/memory optimization study using ThreadSpotter)

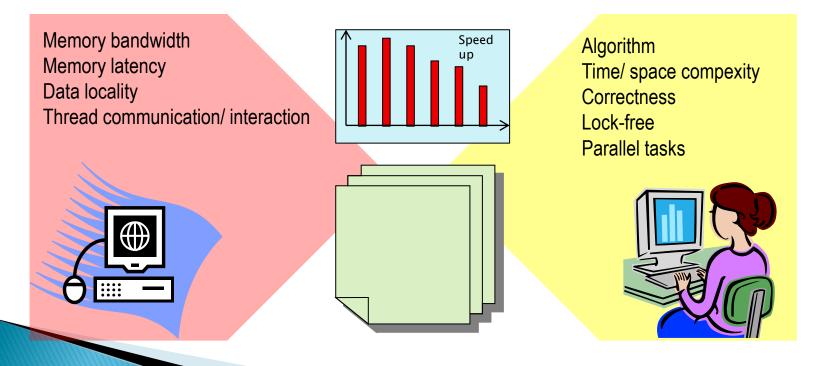
Marwa Al-Shandawely

Agenda

- Introduction
- Optimization process
- Memory perfomance problems
- Case study: GMRES for block toeplitz matrices
- Case study: Gaussian elimination

Introduction

- The gap between cores and memory speeds.
- Caches: fast and limited capacity.
- So keep it cached to get it fast!

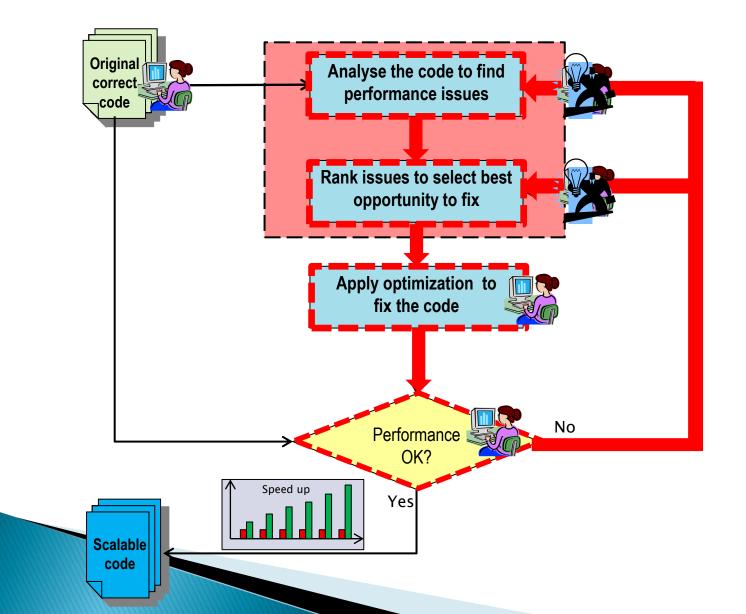


ThreadSpotter

- Cache memory optimization tool
- Analyzes memory bandwidth and latency, data locality and thread communications
- Pinpoints troublesome areas in source code
- Provides guidance towards a resolution
- Two steps: sampling application then report generation.

http://www.roguewave.com/products/threadspotter/resources/videos.aspx

Improving performance on multi-cores



Memory performance problems

Data layout problems

- Partially used structures.
- Alignment problems.
- Dynamic memory allocation.

Data access pattern problems

- Inefficient loop nesting.
- Random access patterns.

Memory performance problems

Data reuse opportunities

- Blocking
- Loop fusion.

Multi-threading problems

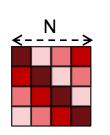
- False sharing
- Poor communication problems.

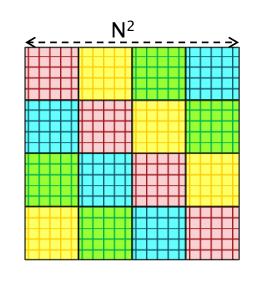
Case study GMRES for block-toeplitz matrices

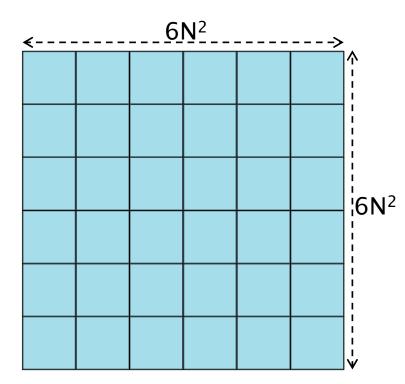
GMRES: Iterative matrix inversion method

- Find $x_k \approx x$ that solves Ax = b and hence minimizes the residual $||r_k|| = ||Ax_k b|| \le TOL$
- The core calculations at each iteration k of GMRES require a matrix-vector multiplication $A.c_k$

Block-toeplitz matrices



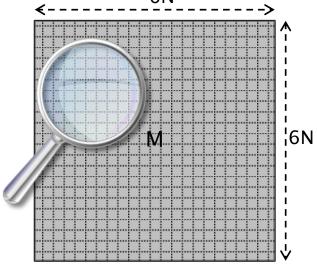




- Total size of A = $(6N^2)^2$
- A has $(6)^2$ different blocks.
- Typically max. N=128 and hence A is about 10 million elements
- Using the mask matrix (storing unique elements of A). M size = $(6N)^2$

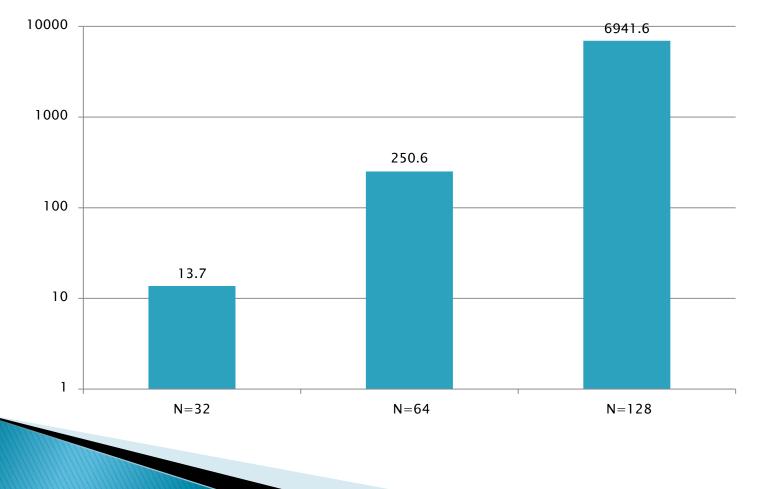
First approach: The mask matrix M

- For the full matrix $A_{(6N^2 \times 6N^2)}$, only a mask $M_{(6N \times 6N)}$ is needed to be stored. If N=128 \rightarrow A is (98304)² while M is (768)².
- Each element in M will appear N² times in A due to the circular block-toeplitz structure.
- Elements of A can be looked up in M by index calculations.



Why using M is not fast enough!

GMRES time in sec.



Report conclusions

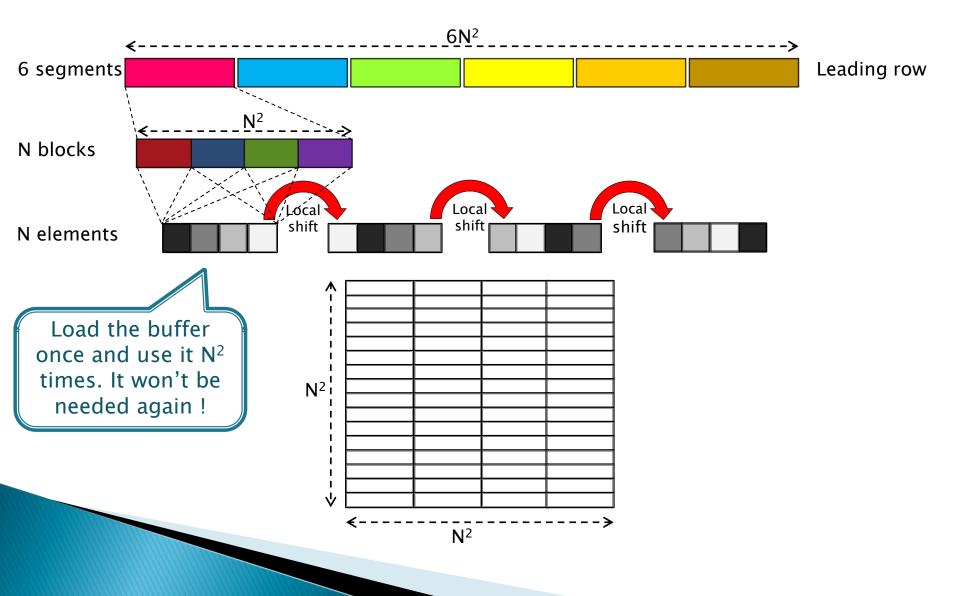
- Avoid random access pattern.
- Increase data reusability.
- Apply blocking mechanism.

Alternative representation of A

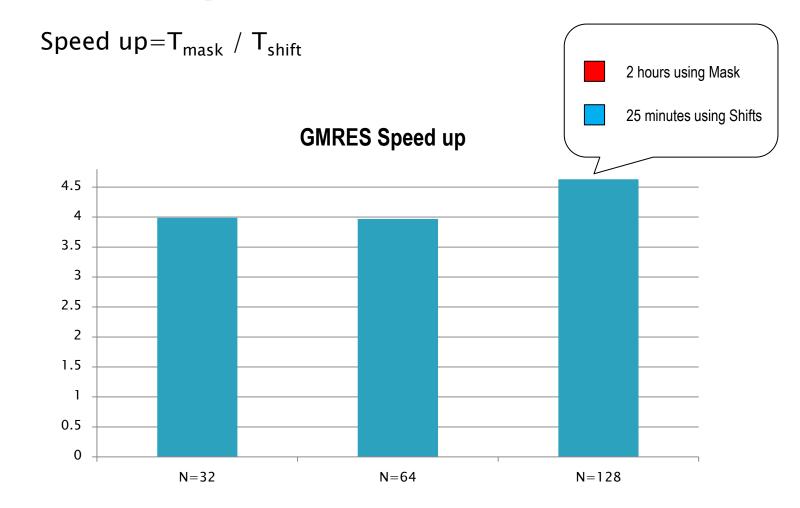
- Each segment S_i of A's sixhorizontal segments updates a distinct Y_i segment in Y.
- Due to A's structure, knowing the first (leading) row of each
 S_i is sufficient to be stored and used to determine the rest of its rows.



Data reusability through shifting



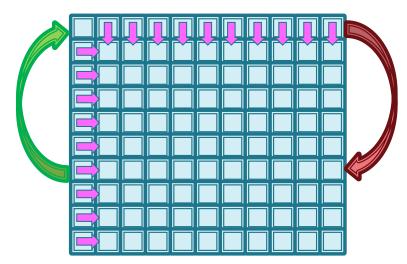
Overall improvement



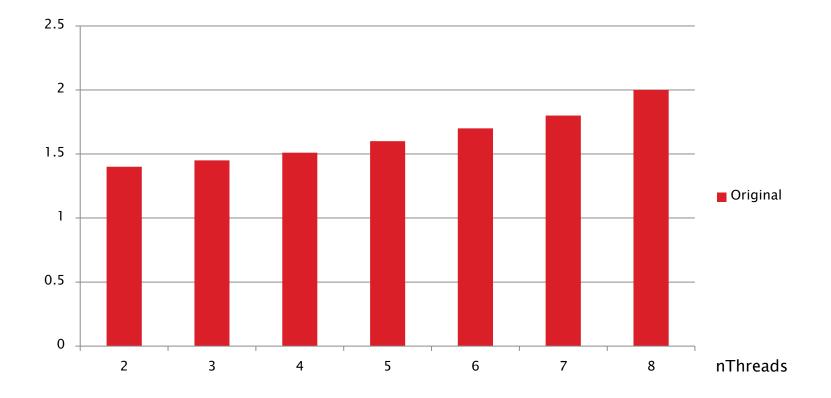
Case study Gaussian Elimination with pivoting

Overview of forward elimination

```
for i=1 to n-1
  find pivotPos in column i
   if pivotPos \neq i
     exchange rows(pivotPos,i)
   end if
   for j=i+1 to n
     A(i,j) = A(i,j)/A(i,i)
   end for j
  !$omp parallel do private ( i ,j )
   for j=i+1 to n+1
     for k=i+1 to n
         A(k,j) = A(k,j) - A(k,i) \times A(i,j)
      end for k
   end for j
end for i
```



First approach speed up



What went wrong?!

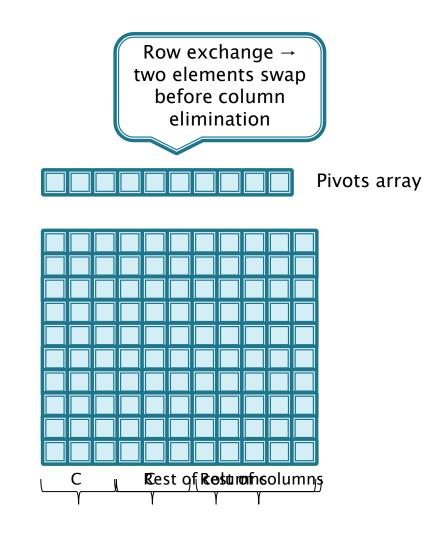
- The original algorithm requires pivot columns to be prepared in order while the whole matrix is accessed for each pivot column.
- The cache is evicted many times for each iteration and there is no reuse of data in the cache.

Making things right!

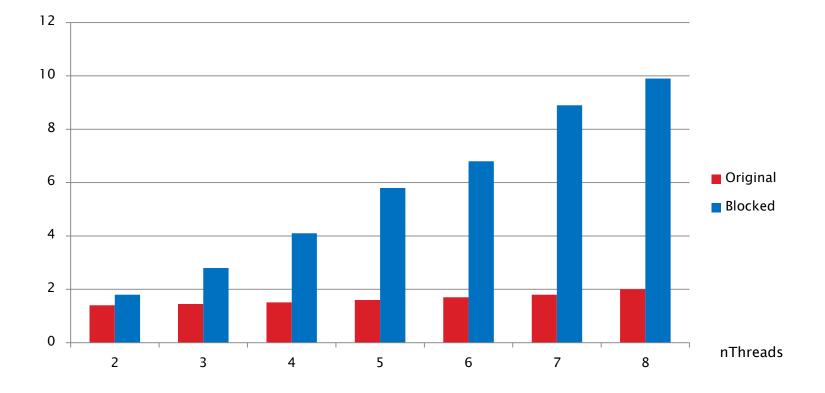
- Each column is an accumulation of eliminations using previous columns!
- Make more pivots available each step and eliminate each column using several pivots while it is in the cache.

Blocking GE

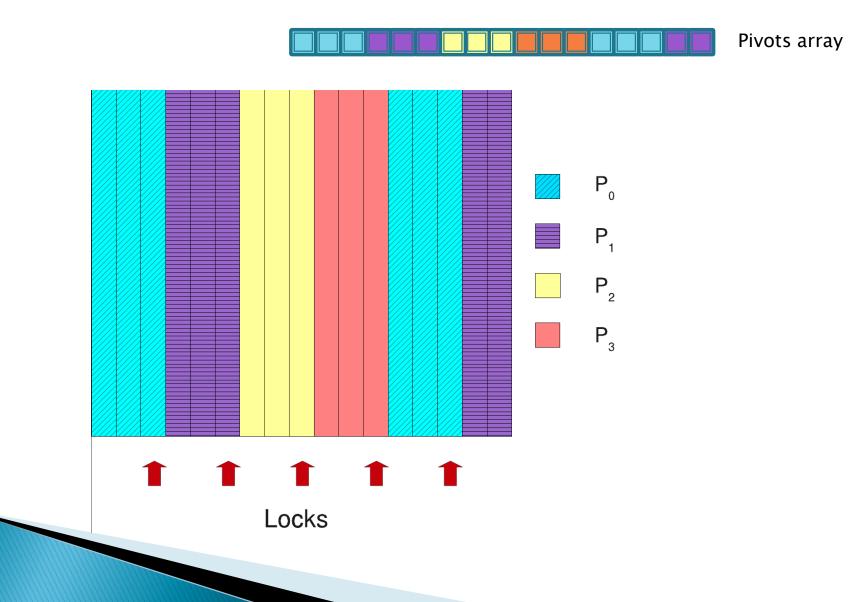
for k=1 to n-1, step C $\begin{bmatrix} BlockEnd = min(k+C-1,n) \end{bmatrix}$ ¹ GE on A(k:n,k:BlockEnd) & - Store C pivots' positions !\$omp parallel do private (i ,j) for each column j after BlockEnd for i=k to BlockEnd swap using pivots(i) elimination i on j end for i _ end for each j End for k



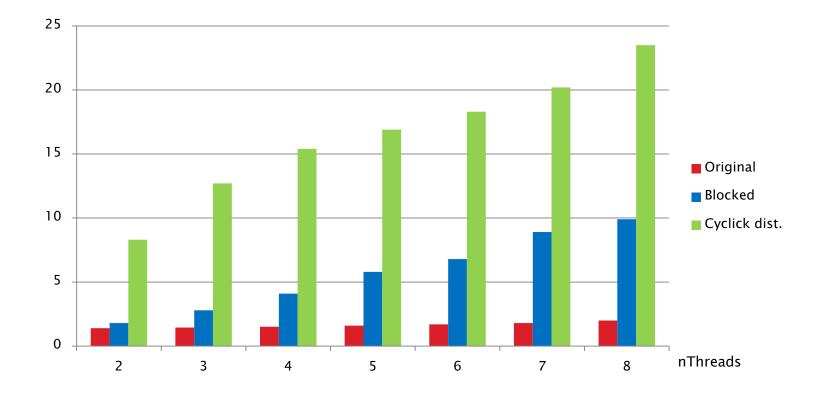
Speed up w.r.t sequential time



Cyclic column distribution



Improved Performance



Conclusions

- Scalable performance on multicores is highly dependent on application implementation, data layout and access patterns.
- The use of smart tools becomes crucial to deal with complex structures, separated code/data files and multithreaded applications.
- Cache and memory access optimization techniques is vital for performance despite the loss of readability.