

Marwa Al-Shandawely

 Introduction

 Optimization process

 Memory perfomance problems

 Case study: GMRES for block toeplitz matrices

 Case study: Gaussian elimination

 The gap between cores and memory speeds.

 Caches: fast and limited capacity.

 So keep it cached to get it fast!

Speed
up Algorithm

Time/ space compexity

Correctness

Lock-free

Parallel tasks

Memory bandwidth

Memory latency

Data locality

Thread communication/ interaction

 Cache memory optimization tool

 Analyzes memory bandwidth and latency, data locality and

thread communications

 Pinpoints troublesome areas in source code

 Provides guidance towards a resolution

 Two steps: sampling application then report generation.

http://www.roguewave.com/products/threadspotter/resources/videos.aspx

Speed up

Analyse the code to find

performance issues

Rank issues to select best

opportunity to fix

Original

correct

code

Performance

OK?

Scalable

code

Yes

No

Apply optimization to

fix the code

 Data layout problems
◦ Partially used structures.

◦ Alignment problems.

◦ Dynamic memory allocation.

 Data access pattern problems
◦ Inefficient loop nesting.

◦ Random access patterns.

 Data reuse opportunities
◦ Blocking

◦ Loop fusion.

 Multi-threading problems
◦ False sharing

◦ Poor communication problems.

GMRES for block-toeplitz matrices

 Find 𝑥𝑘≈𝑥 that solves and hence minimizes the residual

 The core calculations at each iteration of GMRES require a matrix-

vector multiplication

TOLbAxr kk

kcA.

bAx

k

 Total size of A =

 A has different blocks.

 Typically max. =128 and hence is about 10 million elements

 Using the mask matrix (storing unique elements of A). M size =

22)6(N
2)6(

6N2

6N2 N2

N

N A
2)6(N

 For the full matrix A(6N2×6N2), only a mask M(6N×6N) is

needed to be stored. If N=128 → A is (98304)2 while
M is (768)2.

 Each element in M will appear N2 times in A due to the
circular block-toeplitz structure.

 Elements of A can be looked up in M by index
calculations.

M

6N

6N

13.7

250.6

6941.6

1

10

100

1000

10000

N=32 N=64 N=128

GMRES time in sec.

mulmask.html

 Avoid random access pattern.

 Increase data reusability.

 Apply blocking mechanism.

 Each segment Si of A’s six-
horizontal segments updates a
distinct Yi segment in Y.

 Due to A’s structure, knowing
the first (leading) row of each
Si is sufficient to be stored
and used to determine the rest
of its rows.

× =

6N2

x yA

6N2

6 segments

N blocks

N elements

Local
shift

Local

shift
Local
shift

N2

N2

N2

6N2

Leading row

Load the buffer
once and use it N2
times. It won’t be

needed again !

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N=32 N=64 N=128

GMRES Speed up

2 hours using Mask

25 minutes using Shifts

Speed up=Tmask / Tshift

Gaussian Elimination with pivoting

for i=1 to n-1
 find pivotPos in column i
 if pivotPos ≠ i
 exchange rows(pivotPos,i)
 end if

 for j=i+1 to n
 A(i,j) = A(i,j)/A(i,i)
 end for j

 for j=i+1 to n+1
 for k=i+1 to n
 A(k,j)=A(k,j)-A(k,i)×A(i,j)
 end for k
 end for j
end for i

!$omp parallel do private (i ,j)

nThreads

0

0.5

1

1.5

2

2.5

2 3 4 5 6 7 8

Original

luOmpGE.html

 The original algorithm requires pivot columns
to be prepared in order while the whole
matrix is accessed for each pivot column.

 The cache is evicted many times for each
iteration and there is no reuse of data in the
cache.

 Each column is an accumulation of eliminations using

previous columns!

 Make more pivots available each step and eliminate each

column using several pivots while it is in the cache.

for k=1 to n-1, step C

 BlockEnd=min(k+C-1,n)

 GE on A(k:n,k:BlockEnd) &

 Store C pivots’ positions

 for each column j after BlockEnd

 for i=k to BlockEnd

 swap using pivots(i)

 elimination i on j

 end for i

 end for each j

End for k

Pivots array

Row exchange →
two elements swap

before column
elimination

C Rest of columns C Rest of columns

!$omp parallel do private (i ,j)

1

2

nThreads
0

2

4

6

8

10

12

2 3 4 5 6 7 8

Original

Blocked

Pivots array

0

5

10

15

20

25

2 3 4 5 6 7 8

Original

Blocked

Cyclick dist.

nThreads

 Scalable performance on multicores is highly dependent on

application implementation, data layout and access patterns.

 The use of smart tools becomes crucial to deal with complex

structures, separated code/data files and multithreaded

applications.

 Cache and memory access optimization techniques is vital

for performance despite the loss of readability.

