
Multiprocessors

E ik H tErik Hagersten
Uppsala Universitypp y

Outline of these lectures

1. Uniprocessors
2. Multiprocessors

CoherenceCoherence
Memory ordering
V t i t tiVector instructions

3. Multicores & Manycores

PDC

4. Optimizing for speed

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 2

PDC
Summer
School
2011

The era of the “supercomputer”
multiprocessors multiprocessors

The one with the most blinking lights wins
Th ith th t t l iThe one with the strangest languages wins
The niftier the better!

PDC

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 3

PDC
Summer
School
2011

Taxomy for Architectures [Flynn]

SIMD MIMD

Focus of this
session

Message-
passing

Shared
Memory

session

COMA

PDC

UMA NUMA COMAFine-
grained

Coarse-
grained

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 4

PDC
Summer
School
2011

Coherent Shared Memory

E ik H tErik Hagersten
Uppsala Universitypp y

Programming Model:Programming Model:

Shared Memory

ThreadThreadThreadThreadThreadThreadThreadThreadThreadThreadThreadThreadThreadThreadThreadThread

PDC

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 6

PDC
Summer
School
2011

Adding Caches: More ConcurrencyAdding Caches: More Concurrency

Shared Memory

$ $ $ $ $ $ $ $$ $ $ $ $ $ $ $

PDC

Thread
pc

Thread
pc

Thread
pc

Thread
pc

Thread
pc

Thread
pc

Thread
pc

Thread
pc

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 7

PDC
Summer
School
2011

Caches:
A i R li i f DAutomatic Replication of Data

A: B:

Shared Memory

$ $ $$ $ $

Thread Thread Thread

PDC

Read A
Read A

...
Read A

Read B
…
R d A

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 8

PDC
Summer
School
2011

…
…
Read A

… Read A

The Cache Coherent Memory SystemThe Cache Coherent Memory System
A: B:

Shared Memory

$ $ $
INV INV

$ $ $

Thread Thread Thread

PDC

Read A
Read A

...
Read A

Read B
…
R d A

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 9

PDC
Summer
School
2011

…
…

…
Write A

Read A

The Cache Coherent 2The Cache Coherent 2
A: B:

Shared Memory

$ $ $$ $ $

Thread Thread Thread

PDC

Read A
Read A

...
Read A

Read B
…
R d A

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 10

PDC
Summer
School
2011

…
…
Read A

…
Write A

Read A

WritebackWriteback
A: B:

Shared Memory

$ $ $$ $ $

Thread Thread Thread

PDC

Read A
Read A

...
Read A

Read B
…
R d A

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 11

PDC
Summer
School
2011

…
…
Read A

…
Write A ...
A gets replaced

Read A

Summing up Coherenceg p

Sloppy: here can be many copies of Sloppy: here can be many copies of
a datum, but only one value

Coherence: There is a single global g g
order of value changes to each datum

PDC

Memory order/model: Defines the
order between accesses to many data

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 12

PDC
Summer
School
2011

order between accesses to many data

Where does coherence matter?

QuickPath Interconnect 4 x DDR-3Q

Coherence
Between

L3 $ 24MB

chips

L2 $ L2 $ L2 $ L2 $

X-bar

L2 $

Coherence
On chip

D$ I$

$
256kB

D$ I$

$
256kB

D$ I$

$
256kB

D$ I$

$
256B

D$ I$

$
256kB

...

PDC

CPU, 2 thr

64kB 64kB

CPU, 2 thr.

64kB 64kB

CPU, 2 thr.

64kB 64kB

CPU, 2 thr.

64kB 64kB

CPU

64kB 64kB

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 13

PDC
Summer
School
2011

8 cores x 2 threads

Implementing Coherencep g

PDC

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 14

PDC
Summer
School
2011

”Upgrade” in snoop-basedpg p

A: B:

BusINV

S
ta

S
ta$ $ $

Have to
INV

Have to
INV

My
INVS

ta ate

ate$ $ $ate

Per cachline

Thread Thread Thread
state info

PDC

Read A
Read A

...
Read A

Read B
…
R d A

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 15

PDC
Summer
School
2011

…
…

…
Write A

Read A

Cache-to-cache in snoop-basedp

A: B:

BusRTS

S
ta

S
ta

S
ta$ $ $

My RTS
wait

for data

Gotta
answer

ate

ate

ate$ $ $for data

Thread Thread Thread

PDC

...
Read A

Read B
…
R d A

Read A
Read A
…

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 16

PDC
Summer
School
2011

…
Write A

Read A…
…
Read A

”Upgrade” in dir-basedpg

A: B:
Who has
a copy

Who has
a copy

INV INV

a copy a copy

INVACK

S
ta

S
ta

S
ta$ $ $ACK ACKate

ate

ate$ $ $

Thread Thread Thread

PDC

Read A
Read A

...
Read A

Read B
…
R d A

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 17

PDC
Summer
School
2011

…
…

…
Write A

Read A

Cache-to-cache in dir-based

A: B:
Who has
a copy

Who has
a copy

ReadRequest

a copy a copy

ReadDemand

S
ta

S
ta

S
ta$ $ $Forward

Ack

ate

ate

ate$ $ $

Thread Thread Thread

PDC

Read A
Read A
…

...
Read A

Read B
…
R d A

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 18

PDC
Summer
School
2011

…
…
Read A

…
Write A

Read A

Directory-based coherence:
Per cachline info in the memoryPer-cachline info in the memory

A: B:

Directory Protocol

Directory
state

$ $ $

y

S
ta

S
ta

S
ta$ $ $

Cache access Cache access Cache access

ate

ate

ate

Thread Thread Thread

PDC

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 19

PDC
Summer
School
2011

Directory-based snooping: NUMA.
Per cachline info in the home nodePer-cachline info in the home node

A: B:

Directory Protocol Directory Protocol

Directory
state

Directory
state

$ $

y

S
ta

S
ta

y

Interconnect
$ $

Cache access Cache access

ate

ate

Thread Thread

PDC

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 20

PDC
Summer
School
2011

MultisocketMultisocket
Coherence = Non-Uniform

Coherence Coherence

DRAM
I/F

100

I/F

PDC

DRAM

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 21

PDC
Summer
School
2011

AMD Multi-socket Architecture
(same applies to Intel multi-sockets)

Coherence = Non-Uniform

Dir
L3 L3

L3L3
Cpu

I/OI/O

PDC

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 22

PDC
Summer
School
2011

AMD Magny-Cours
NUMA & NUCA on a socket
Non-Uniform Memory Architecturey
Non-Uniform Communication Architecture

C C C C C C C C C C C C

MCM

¢

$

¢

$

¢

$

¢

$

¢

$

¢

$

¢

$

¢

$

¢

$

¢

$

¢

$

¢

$

€ €

PDC
≈Istanbul

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 23

PDC
Summer
School
2011

DDR3 DDR3 DDR3 DDR3HT HT HT HT

False sharing:
Coherence is maintained with a
cache-line granularitycache line granularity

A B C D E F G H
Cache Line

Communication misses even though
the threads do not share data
”the cache line is too large”

ThreadThread

PDC

Read A
Write A

Read E
…

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 24

PDC
Summer
School
2011

…
…
Read A

Write E

More Cache Lingo
Capacity miss – too small cache
Conflict miss – limited associativityConflict miss limited associativity
Compulsory miss – accessing data the first time
Coherence miss – I would have had the data unless Coherence miss I would have had the data unless
it had been invalidated by someone else
Upgrade miss (only for writes) – I would have had a Upgrade miss (only for writes) I would have had a
writable copy, but gave away readable data and
downgraded myself to read-only
False sharing: Coherence/downgrade is caused by a
shared cacheline, to by shared data:

PDC

Read A
…
Write A

...
Read D A, B, C, D

cacheline:False sharing
example:

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 25

PDC
Summer
School
2011

Write A
…
Read A

…
Write D

M O d iMemory Ordering
(aka Memory Consistency) (aka Memory Consistency)

-- tricky but important stuff

Erik Hagersten
Uppsala UniversityUppsala University

Sweden

The Shared Memory Programming
Model (Pthreads/OpenMP, …)

Shared Memory

ThreadThreadThreadThreadThreadThreadThreadThread

PDC

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 27

PDC
Summer
School
2011

Memory OrderingMemory Ordering
Coherence defines a per-datum Coherence defines a per datum
valuechange order
M d l d fi th l h Memory model defines the valuechange
order for all the data.

Q: What
value will … … Read A

Initially A = B = 0

get printed?A:=1
…

...
While (A==0) {}
B := 1

…
…
…

PDC

While (B==0) {}
Print A

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 28

PDC
Summer
School
2011

Dekker’s AlgorithmDekker s Algorithm

Initially A = B = 0Initially A = B = 0

“fork”

A 1 B := 1A := 1
if (B== 0) print(“A won”)

B := 1
if (A == 0) print(“B won”)

Q: Is it possible that both A and B win?

PDC

It depends on the memory model ed!

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 29

PDC
Summer
School
2011

Memory Ordering

Defines the guaranteed memory
d i ordering: If a thread has seen that A happens

before B, what order can the other threads can
observe?observe?

I ” t t” b t th HW d SW Is a ”contract” between the HW and SW guys

PDC

Without it, you can not say much about the
result of a parallel execution

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 30

PDC
Summer
School
2011

p

Human intuition: There is one Human intuition: There is one
global order!

Thread 1 Thread 2

(A’ denotes a modified value to the data at addr A)

LD A

ST B’
LD B’
ST A’

(LD A happend before ST A’)

ST B’

LD C

ST D’

ST C’

LD D
ST D

LD E

…

ST E’

…

…

PDC

…
…

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 31

PDC
Summer
School
2011

One possible Another possible One possible
observed order

Another possible
observed order

Thread 1 Thread 2

Thread 1

LD A

Thread 2

LD A

ST B’
ST A’

ST B’

LD C
ST A’

ST B’

LD C
LD B’

ST C’

LD B’

ST C’

ST D’

LD E

LD D

ST E’

ST D’

LD E

LD D

ST E’

PDC

…

…

ST E

…

…

…

…

ST E

…

…

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 32

PDC
Summer
School
2011

“The intuitive memory order”
Sequential Consistency (L t)Sequential Consistency (Lamport)

Shared MemoryShared Memory

loads, stores

ThreadThreadThreadThreadThreadThreadT Thread

Global order achieved by interleaving all memory Global order achieved by interleaving all memory
accesses from different threads
“Programmer’s intuition is maintained”

PDC

Programmer s intuition is maintained
Store causality? Yes
Does Dekker work? Yes

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 33

PDC
Summer
School
2011

Unnecessarily restrictive ==> performance penalty

One implementation of SC in dir-based
(without speculation)(….without speculation)

A: B:
Who has
a copy

Who has
a copy

INV INV

a copy a copy

INVACK

$ $ $ACK ACK$ $ $

Thread Thread Thread

PDC

Read A
Read A

Read X
Read A

Read B
…
R d A

Read X must complete before starting Read A

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 34

PDC
Summer
School
2011

…
…

…
Write A
Read C

Read A

Must receive all ACKs before continuing

“Almost intuitive memory model”
Total Store Ordering [TSO] (P Sindhu)Total Store Ordering [TSO] (P. Sindhu)

Shared MemoryShared Memory

stores loads

ThreadThreadThreadThreadThreadThreadT Thread

Global interleaving [order] for all stores from different Global interleaving [order] for all stores from different
threads (own stores excepted)
“Programmer’s intuition is maintained”

PDC

Programmer s intuition is maintained
Store causality? Yes
Does Dekker work? No

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 35

PDC
Summer
School
2011

Unnecessarily restrictive ==> performance penalty

TSO HW ModelTSO HW Model

Network

Stores loads

=
=

Stores loads

=
=

Store
Buffer

=
=
=
=

inv
Store
Buffer

=
=
=

inv

CPU

$

CPU

$

PDC

CPU CPU

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 36

PDC
Summer
School
2011

Stores are moved off the critical path
Coherence implementation can be the same as for SC

TSOTSO
Flag synchronization worksFlag synchronization works
A := data while (flag != 1) {};

fl 1 X Aflag := 1 X := A

Q: What
Provides causal correctness

Initially A B 0 Q: What
value will

get printed?
…
A:=1

…
...

Read A
…

Initially A = B = 0

PDC

get printed?
Answer: 1

… While (A==0) {}
B := 1

…
…
While (B==0) {}

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 37

PDC
Summer
School
2011

While (B 0) {}
Print A

Dekker’s Algorithm TSODekker s Algorithm, TSO

Initially A = B = 0Initially A = B = 0

“fork”

Does the write
become globally
i ibl A 1 B := 1visible

before
the read is
performed?

A := 1
if (B== 0) print(“A won”)

B := 1
if (A == 0) print(“B won”)

Q: Is it possible that both A and B wins?

PDC

It depends on the memory model ed!
Left: The read (i.e., test if B==0) can bypass the store (A:=1)
Right: The read (i.e., test if A==0) can bypass the store (B:=1)

both loads can be performed before any of the stores

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 38

PDC
Summer
School
2011

yes, it is possible that both wins
Dekker’s algorithm breaks

Dekker’s Algorithm for TSODekker s Algorithm for TSO

Initially A = B = 0Initially A = B = 0

“fork”

A 1 B := 1A := 1
Membar #StoreLoad
if (B== 0) print(“A won”)

B := 1
Membar #StoreLoad
if (A == 0) print(“B won”)() p ()

Q: Is it possible that both A and B win?

PDC

It depends on the memory model ed!
Membar: The read is stared after all previous stores have been ”globaly ordered”

behaves like SC
Dekker’s algorithm works!

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 39

PDC
Summer
School
2011

Weak/release Consistency
(M Dubois K Gharachorloo)(M. Dubois, K. Gharachorloo)

Shared Memory

loads
stores

ThreadThreadThreadThread

Most accesses are unordered
“Programmer’s intuition is not maintained”Programmer s intuition is not maintained

Store causality? No
Does Dekker work? No

Gl b l d l t bli h d h th

PDC

Global order only established when the
programmer explicitly inserts memory barrier
instructions

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 40

PDC
Summer
School
2011

++ Better performance!!
--- Interesting bugs!!

Weak/Release consistencyWeak/Release consistency
New flag synchronization neededg y
A := data; while (flag != 1) {};

membarrier; membarrier;membarrier; membarrier;
flag := 1; X := A;

Dekker’s: same as TSODekker s: same as TSO
Causal correctness provided for this code

Q: What
value will …

A:=1
… Read A

Initially A = B = 0

PDC

get printed?
Answer: 1

A:=1
…

...
While (A==0) {}
membarrier
B := 1

…
…
…
While (B==0) {}

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 41

PDC
Summer
School
2011

B := 1 While (B==0) {}
membarrier
Print A

Learning more about memory models

Shared Memory Consistency Models: A Tutorial
b S it Ad K h Gh h lby Sarita Adve, Kouroush Gharachorloo
in IEEE Computer 1996

RFM: Read the F****ng Manual of the system you are
working on!g
(Different microprocessors and systems supports
different memory models.)

PDC

Issue to think about:
What code reordering may compilers really do?

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 42

PDC
Summer
School
2011

What code reordering may compilers really do?
Have to use ”volatile” declarations in C.

X86’s current memory modelX86’s current memory model
Common view in academia: TSO

If you ask Intel:
P i t ith l Processor consistency with causual
correctness for non-atomic memory ops
TSO for atomic memory ops

Video presentation:
http://www.youtube.com/watch?v=WUfvvFD5tAA&hl=sv

PDC

p // y /

See section 8.2 in this manual:

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 43

PDC
Summer
School
2011

See section 8.2 in this manual:
http://developer.intel.com/Assets/PDF/manual/253668.pdf

A few words about SIMDA few words about SIMD

SIMD MIMDSIMD
e.g., vector
instructions

MIMD

Message-
passing

Shared
Mpassing Memory

PDC
UMA NUMA COMAFine- Coarse-

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 44

PDC
Summer
School
2011

grained grained

Examples of vector instructionsExamples of vector instructions

A:
SSE MUL D B A

Vector Regs

B:

SSE_MUL D, B, A

C: x x x x

D:

PDC

E:

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 45

PDC
Summer
School
2011

...

x86 Vector instructions
MMX: 64 bit vectors (e.g., two 32bit ops)
SSE 128 bit t (f 32 bit)SSEn: 128 bit vectors(e.g., four 32 bit ops)
AVX: 256 bit vectors(e.g., eight 32 bit ops)
(in Sandy Bridge, Q1 2011)
Intel MIC: ”16-way vectors” ??Intel MIC: 16 way vectors ??

PDC

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 46

PDC
Summer
School
2011

A few words about Message-passingA few words about Message passing

SIMD MIMDSIMD
e.g., vector
instructions

MIMD

Message-
passing

Shared
Mpassing Memory

PDC
UMA NUMA COMAFine- Coarse-

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 47

PDC
Summer
School
2011

grained grained

A modern ”supercomputer”p p

hSwitch

I/O I/O I/O I/O

...

Multicore

Mem
I/O

NA

Multicore

Mem
I/O

NA

Multicore

Mem
I/O

NA

Multicore

Mem
I/O

NA

PDC

Multicore Multicore Multicore Multicore

X = vec[i]; ...

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 48

PDC
Summer
School
2011

X vec[i];
MPI_send(X, to_dest);
...

MPI_receive(Y, from_dest);
print (Y);

MPI inside a multicore?
MPI can be implemented on top of coherent
shared memoryshared memory
Coherent Shard memory cannot easily be
i l t d t f MPIimplemented on top of MPI
Many options for parallelism within a ”node”:

OpenMP
MPI

PDC

Unix ”fork”
...

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 49

PDC
Summer
School
2011

A few words about simultaneously
multithreading (SMP) or “Hyper-threading”multithreading (SMP) or Hyper threading

SIMD MIMDSIMD
e.g., vector
instructions

MIMD

Message-
passing

Shared
Mpassing Memory

PDC
UMA NUMA COMAFine- Coarse-

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 50

PDC
Summer
School
2011

grained grained

Several threads sharing a pipeline
TLP helps finding more independent instructionsTLP helps finding more independent instructions

I R B M MWIThread 1

I R B M MW

I R B M MW

I

I
Issue
logicThread 2

I R B M MW

I R B M MW

I

IlogicThread 2

Regs [1]
Many different
policies for how
to interleave

Regs [2]
Each thread has its

$1-10 cycles

to interleave
instructions
from different
threads

The cache hierarchy
i t i ll h d

Each thread has its
own register file

PDC 150 l 1GB

$threads is typically shared
between the
threads

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 51

PDC
Summer
School
2011

Mem150cycles 1GB

