
8/8/11

1

1!

Intermediate MPI

Erwin Laure  
Director PDC-HPC, Guest Professor KTH!

What we know already!

n  Everything to write MPI programs!
n  Program structure!
n  Point-to-point communication!
n  Communication modes!
n  Blocking/non-blocking communication!
n  Collective Communication!

2!

8/8/11

2

Take a deeper look!

n  Usage of data types!
n  So far we used the pre-defined data types; what if we need to deal

with more complex structures? !

n  Usage of communicators!
n  How to group processes in individual groups!

n  Improving Communication Performance!
n  Aka how to speed up programs!

3!

Recap: MPI Datatypes!

4!

MPI Datatype! Fortran Datatype!
MPI_INTEGER! INTEGER!
MPI_REAL! REAL!
MPI_DOUBLE_PRECISION!DOUBLE_PRECISION!
MPI_COMPLEX! COMPLEX!
MPI_LOGICAL! LOGICAL!
MPI_CHARACTER! CHARACTER(1)!
MPI_BYTE!
MPI_PACKED!

Note: the names of the MPI C datatypes are slightly different

8/8/11

3

Derived Datatypes!
n  Primitive datatypes are contiguous (basically arrays)!

n  Derived Datatypes allow you to define your own data structures based
upon sequences of the MPI primitive data types. !

n  Derived data types allow you to specify non-contiguous data in a
convenient manner and to treat it as though it was contiguous. !

n  MPI provides several methods for constructing derived data types:!
n  Contiguous!
n  Vector!
n  Indexed!
n  Struct!

5!

Example!

n  Send one row of a matrix:!
n  Data is contiguous in C;  

can simply send!
n  But it is not contiguous in Fortran!

!

n  Send one column of a matrix:!
n  Same as above but  

contiguous in Fortran!

n  How to solve non-contiguous case?!
n  Send each element in separate message!

•  Overhead and error prone!

6!

8/8/11

4

Send contiguous data!

n  Could be achieved simply with !
MPI_Send(&a[i][0], 4, MPI_FLOAT, j, tag,  
 MPI_COMM_WORLD);!
!
n  If you do this frequently, you might want to use a more

descriptive datatype name (eg. coordinate point) and help
MPI packing the data!

MPI_Type_contiguous(4, MPI_FLOAT, &rowtype);!
MPI_Type_commit(&rowtype);!
!
MPI_Send(&a[i][0], 1, rowtype, j, tag,  
 MPI_COMM_WORLD)!
!

7!

Equivalent to above!

Example Contʼd!
MPI_Type_contiguous(SIZE, MPI_FLOAT, &rowtype);!
MPI_Type_commit(&rowtype);!
!
if (numtasks == SIZE) {!
 if (rank == 0) {!
 for (i=0; i<numtasks; i++)!
 MPI_Send(&a[i][0], 1, rowtype, i, tag, MPI_COMM_WORLD);!
 }!
!
 MPI_Recv(b, SIZE, MPI_FLOAT, source, tag, MPI_COMM_WORLD,
&stat);!
 printf("rank= %d b= %3.1f %3.1f %3.1f %3.1f\n",!
 rank,b[0],b[1],b[2],b[3]);!
 }!
else!
 printf("Must specify %d processors. Terminating.\n",SIZE);!
! 8!

•  Note different type in send/recv!
•  Is the program safe? !

8/8/11

5

Example: submatrix!

9!

!
!
!
!
!
!
!
!
!
do j = 1, m!
 call MPI_Send(a(k,l+j-1), n, MPI_DOUBLE,  
 dest, tag, MPI_COMM_WORLD, ierr)!
enddo!

First Approach: Buffering!

n  Create a user-level buffer for the sub-matrix:!
icount = 0!
do j = l, l+m-1!
 do i = k, k+n-1!
 icount = icount + 1!
 p(icount) = a(i,j)!
 enddo!
enddo!
!
call MPI_Send(p, n*m, MPI_DOUBLE, dest, tag,  
 MPI_COMM_WORLD, ierr)!
!

n  Limitations: !
n  Usage of memory and CPU time to do buffering!
n  Still can use only one datatype in the buffer!
n  Need to interpret the buffer correctly on the receiving side! 10!

8/8/11

6

Buffering Contʼd!
n  MPI provides help with buffering: MPI_PACK!

icount = 0!
do i = 1, m!
 call MPI_PACK(a(k,l+i-1), n, MPI_DOUBLE, buffer,  
 bufsize, &icount, MPI_COMM_WORLD, ierr)!
enddo!
call MPI_SEND(buffer, icount, MPI_PACKED, dest, tag,  
 MPI_COMM_WORLD, ierr)!

n  MPI_UNPACK used at receiving side!
n  Still packing/unpacking and copy overhead; procedure call overhead!

n  Caveat: MPI_Pack can be very inefficient – donʼt use it unless
there is a compelling need !

11!

A better Approach: Derived Datatypes!
n  MPI_TYPE_Vector: Similar to contiguous, but allows for regular

gaps (stride) in the displacements!

call MPI_TYPE_VECTOR(m, n, nn, MPI_DOUBLE,  
 my_mpi_type, ierr)!
call MPI_TYPE_COMMIT(my_mpi_type, ierr)!
call MPI_SEND(a(k,l), 1, my_mpi_type, dest, tag,  
 MPI_COMM_WORLD, ierr)!

n  m…count (we send m columns)!
n  n…number of contiguous elements (each column has n elements)!
n  nn…stride (distance between the starting locations of adjacent blocks

of data. The columns of the full matrix each have NN values, so NN
will be the stride between the beginning of one column segment and
an adjacent column segment.)!

12!

8/8/11

7

Different Derived Datatypes!
n  Contiguous: This is the simplest constructor. It produces a new

datatype by making count copies of an existing one.!

n  Vector: This is a slight generalization of the contiguous type that
allows for regular gaps in the displacements. Elements are separated
by multiples of the extent of the input datatype. !

n  Hvector: This is like vector, but elements are separated by a
specified number of bytes. !

n  Indexed and Hindexed: An array of displacements of the input
datatype is provided; the displacements are measured in terms of the
extent of the input datatype or in bytes. !

n  Struct: This provides a fully general description. !

13!

Example: MPI_TYPE_INDEXED!

14!

8/8/11

8

Example: MPI_TYPE_Struct!

15!

Other Derived Datatype Commands!

n  MPI_Type_extent returns the size in bytes of the
specified data type. Useful for the MPI subroutines that
require specification of offsets in bytes.!

n  MPI_Type_commit commits new datatype to the system.
Required for all user constructed (derived) datatypes.!

n  MPI_TYPE_free deallocates the specified datatype
object. Use of this routine is especially important to
prevent memory exhaustion if many datatype objects are
created, as in a loop.!

16!

8/8/11

9

Derived Datatypes Summary !!

n  MPI allows to create user defined datatypes!

n  Useful if non-contiguous memory locations need to be
communicated !

n  The created derived datatype should be used frequently in
a program – otherwise overhead might be too large!

17!

Groups and Communicators!

18!

8/8/11

10

Recap!

n  Processes belong to groups!
n  Processes within a group are identified with their rank!

n  A group of n processes has ranks 0 … n-1!

n  MPI uses objects called communicators and groups to
define which collection of processes may communicate
with each other!
n  MPI_COMM_WORLD  

is the default  
communicator  
covering all of the  
original MPI  
processes!

19!

Communicator Basics!

n  So far we used MPI_COMM_WORLD!
n  Allows any process to communicate with any other process!
n  Very useful for many tasks!

n  Sometimes it is advantageous to restrict the number of
processes in a communicator (group)!
n  E.g. Matrix-Matrix multiplication:!

•  Communication along rows and columns!
•  Can have individual communicators for rows and columns !

n  E.g. Master/Worker:!
•  Restrict certain communications only to workers!

20!

8/8/11

11

Groups vs. Communicators!
n  A group is an ordered set of processes. Each process in a group is

associated with a unique integer rank. Rank values start at zero and
go to N-1, where N is the number of processes in the group. A group
is always associated with a communicator object. !

n  A communicator encompasses a group of processes that may
communicate with each other. All MPI messages must specify a
communicator. The communicator that comprises all tasks is
MPI_COMM_WORLD. !

n  From the programmer's perspective, a group and a communicator are
one. The group routines are primarily used to specify which processes
should be used to construct a communicator.!

21!

Primary Purposes of Groups and Communicators!

1.  Allow you to organize tasks, based upon function, into
task groups. !

2.  Enable Collective Communications operations across a
subset of related tasks. !

3.  Provide basis for implementing user defined virtual
topologies (see later)!

4.  Provide for safe communications!

22!

8/8/11

12

Programming Considerations!
n  Groups/communicators are dynamic - they can be created and

destroyed during program execution. !
n  Processes may be in more than one group/communicator. They will

have a unique rank within each group/communicator. !
n  MPI provides over 40 routines related to groups, communicators, and

virtual topologies. !
n  Typical usage:!

n  Extract handle of global group from MPI_COMM_WORLD using
MPI_Comm_group!

n  Form new group as a subset of global group using MPI_Group_incl!
n  Create new communicator for new group using MPI_Comm_create!
n  Determine new rank in new communicator using MPI_Comm_rank!
n  Conduct communications using any MPI message passing routine!
n  When finished, free up new communicator and group (optional) using

MPI_Comm_free and MPI_Group_free!

23!

24!

8/8/11

13

Intra- and Intercommunicators!

n  Intracommunicators refer to a process group!
n  E.g. comm1 from the example below!
n  Allow communication within the group!

n  Intercommunicators  
refer to two groups  
of processes!
n  Allow communication  

between disjoint groups  
!

25!

Creation of Intracommunicators!

n  Split an existing intracommunicator into two or more sub-
communicators!

n  Duplicate an existing intracommunicator!

n  Modify a group of processes from an existing
intracommunicator, and create a new communicator
based on this modified group!

26!

8/8/11

14

Communicator Split!
MPI_Comm_split(MPI_Comm comm, int color, int key,  
 MPI_Comm *newcomm);!
MPI_COMM_SPLIT(int comm, int color, int key, int  
 newcomm, int IERR)!
!

n  Color denotes the group a process should be part of !
n  Key denotes the ranking in the new group!

27!

Example!
n  Split MPI_COMM_WORLD into two groups for even-ranked and odd-

ranked process and keep the relative ranking!

MPI_Comm_rank(MPI_COMM_WORLD, &rank);!
color = rank%2;!
MPI_Comm_split(MPI_COMM_WORLD, color, rank, &newcomm);!

28!

8/8/11

15

Duplication of existing Communicator!

MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm);!
!
MPI_COMM_DUP(int comm, int newcomm, int IERR)!
!

29!

Modifying a Group of Processes!

30!

8/8/11

16

Group Modifications!
n  MPI_Group_incl creates a new group by reordering a specified

number of the processes from an existing group!

n  MPI_Group_excl creates a new group from an original group that
contains all processes left after deleting those with specified ranks. !

n  MPI_Group_union creates a new group that contains all processes
in the first group followed by all processes in the second group with
no duplication of processes.!

n  MPI_Group_intersection creates a new group from two groups
that contains all processes that are in both of the groups with rank
order the same as that in the first group1.!

n  MPI_Group_difference creates a new group from two groups that
contains all processes in the first group that are not in the second
group with rank order the same as that in the first group.!

31!

Example!

n  In a master/worker scheme create communicator for workers!
n  Master has rank 0!

comm_world = MPI_COMM_WORLD;!
 !
MPI_Comm_group(comm_world, &group_world);!
!
MPI_Group_excl(group_world, 1, &ranks,  
 &group_worker); !
 /* process 0 not member */!
!
MPI_Comm_create(comm_world, group_worker, &comm_worker);!
…!
MPI_Comm_free(&comm_worker);!

32!

8/8/11

17

Communicators Summary!

n  Communicators provide a powerful tool to restrict
communication to subsets of processes!

n  Useful for certain programming styles!
n  E.g. Master/Worker!
n  Virtual Topologies (see later)!

33!

Improving Performance!

34!

8/8/11

18

Loss of performance!

n  Transfer time = latency + message length/bandwidth +
synchronization time!

n  You cannot do much about bandwidth but!

n  Reduce latency!
n  Combine many small into a single large message!
n  Hide communication with computation!

n  Reduce message length!
n  Only communicate what is absolutely needed!

n  Avoid synchronization !
35!

Avoid Synchronization!

n  Synchronization time occurs when!
n  Receiver waits for message to be sent!
n  Sender waits for message to be received!

n  Send early, receive late!
n  Send early – reduce time receiver has to wait for message!
n  Receive late – do as much work as possible on the receiving side

before waiting for message to arrive!

n  BUT: What if underlying protocol requires send/receive
handshake? Then things are actually getting worse!!

36!

8/8/11

19

Avoid Synchronization!

n  Non-blocking communication modes can help!
n  Post Irecv early on so that send would find matching receive!
n  But could introduce buffer problems!

n  If receiving order is not important avoid receiving from a
dedicated sender but post receives with
MPI_ANY_SOURCE!

MPI_Recv(buffer, size, MPI_INT,  
 MPI_ANY_SOURCE, tag, comm, &status) !

37!

Can we avoid
copying?!

MPI-ANY-SOURCE Example!

if (myrank == 0) {!
 for (int i = 1,numproc-1) {!
 MPI_Recv(b[i], size, MPI_INT, i, tag,  
 comm, &status);!
 }!
} else {!
 MPI_Send(x, size, MPI_INT, 0, tag, comm);!
}!
!
n  Better:!
MPI_Recv(x, size, MPI_INT,  
 MPI_ANY_SOURCE, tag, comm, &status);!
b[status.MPI_SOURCE] = x; !
!

38!

8/8/11

20

Example Contʼd!

MPI_Probe(MPI_ANY_SOURCE, tag, comm, &status);!
!
MPI_Recv(b[status.MPI_SOURCE], size, MPI_INT,  
 status.MPI_SOURCE, tag, comm,  
 &status);!
!

39!

Avoid Synchronization!

n  Use Sendrecv!
n  Use Collective operations!

n  Most of them will synchronize but are typically implemented well.!
n  But avoid MPI_Barrier and all-to-all !

n  Pitfall:!
n  Not all MPI implementations are equally well optimized!
n  If critical, implement several variants and compare their timing

(same for derived datatypes)!

40!

8/8/11

21

Latency Hiding!

n  Use non-blocking communication and try to do as much
computation as possible before blocking on the WAIT!
n  Use standard send/receive if WAIT follows immediately after the

send/receive!
n  Can result in buffer and/or envelope queue overflow!

41!

Reduce communication!

n  Re-compute vs. communication!
n  Sometimes it can be more efficient to compute certain data on all

processes where it is needed rather than communicating it. !

42!

8/8/11

22

Summary!

n  Several ways to reduce communication/synchronization
overhead!

n  Use tools to figure out where the hot-spots of your
application are!

n  Most performance tuning is NOT portable and highly
implementation and hardware dependent!

43!

Whatʼs next!

n  Some Advanced MPI Features!
n  Virtual Topologies!
n  Timing!
n  MPI-IO!
n  One-sided communication!

44!

