
8/2/11 

1 

1!

MPI – History and Basic Concepts 

Erwin Laure  
Director PDC-HPC, Guest Professor KTH!

What is MPI!

n  M P I = Message Passing Interface !
n  MPI is not an implementation – it is a specification!

n  Specifies the interface of the library!
n  Interface specifications have been defined for C/C++ and 

Fortran programs.!

n  Commonly used implementations of MPI:!
n  MPICH (Argonne)!
n  MVAPICH!
n  OpenMPI!
n  Vendor specific!

•  Cray!
•  Platform!
•  IBM!

2!



8/2/11 

2 

MPI History!

n  Many different message passing implementations in the 
late 80s!
n  Very difficult to port an application to another platform, sometimes 

even between two generations of the same platform!
n  1992-1994: community process to standardize MPI!
n  1996: MPI-2!

3!

Reasons for MPI!
n  Standardization - MPI is the only message passing library which can 

be considered a standard. It is supported on virtually all HPC 
platforms. Practically, it has replaced all previous message passing 
libraries. !

n  Portability - There is no need to modify your source code when you 
port your application to a different platform that supports (and is 
compliant with) the MPI standard. !

n  Performance Opportunities - Vendor implementations should be 
able to exploit native hardware features to optimize performance.!

n  Functionality - 128 routines are defined in MPI-1 alone – some 333 
in MPI-2!

n  Availability - A variety of implementations are available, both vendor 
and public domain.!

4!



8/2/11 

3 

Main MPI Concepts!

5!

A basic MP library!

send(address, length, destination, tag)!
!

n  address: memory location signifying the beginning of the 
buffer containing the data to be sent,!

n  length: is the length in bytes of the message, !
n  destination: is the receiving process identifier!
n  tag: arbitrary integer to restrict receipt of message!

recv (address, maxlen, source, tag, actlen)!

6!

Process 0 

Message Buffer 

Process 1 

Recv Buffer 
tag 



8/2/11 

4 

Message Buffers!

n  (address, length) is insufficient in case of non-contiguous 
data and the need of data conversion!

n  MPI introduces datatypes!
n  Basic datatypes predefined (MPI_INT, MPI_DOUBLE, …)!
n  User can define own (non-contiguous) data types!

n  A message buffer in MPI is described as!

(buf, count, datatype)!

7!

MPI Basic Datatypes (Fortran)!

MPI Datatype! Fortran Datatype!
MPI_INTEGER! INTEGER!
MPI_REAL! REAL!
MPI_DOUBLE_PRECISION!DOUBLE_PRECISION!
MPI_COMPLEX! COMPLEX!
MPI_LOGICAL! LOGICAL!
MPI_CHARACTER! CHARACTER(1)!
MPI_BYTE!
MPI_PACKED!

8!

Note: the names of the MPI C datatypes are slightly different 



8/2/11 

5 

Processes and Communicators!

n  Processes belong to groups!
n  Processes within a group are identified with their rank!

n  A group of n processes has ranks 0 … n-1!

n  MPI uses objects called communicators and groups to 
define which collection of processes may communicate with 
each other!
n  MPI_COMM_WORLD  

is the default  
communicator  
covering all of the  
original MPI  
processes!

9!

Why Communicators?!

n  How to chose safe (unique) tags when writing a library? 
I.e. how to avoid a message being picked up by the wrong 
receiver? !

n  Collective operations (broadcast, reductions) can be 
easily defined over subgroups by using communicators!

10!



8/2/11 

6 

Note: Processes vs. Processors!

n  MPI defines processes, it does not specify how these 
processes are mapped to physical processors/cores!

n  The mapping of processes to processors/cores is done at 
program start and dependent on the startup mechanism 
available on a certain resource – more about that later on. !

11!

Send/Receive in MPI!

!
n  (buf, count, datatype) describes the data to be 

sent!
n  Dest is the rank of the destination in the group 

associated with communicator comm!
n  tag is an identifier of the message!
n  comm identifies a group of processes!

n  status provides information on the message received, 
including source, tag, and count! 12!

MPI_Send (buf, count, datatype, dest, tag, comm)!
 

MPI_Recv (buf, count, datatype, source, tag, !
          comm, status)!
 



8/2/11 

7 

Recap: Basic MPI Concepts!

n  Message buffers described by address, data type, and 
count!

n  Processes identified by their ranks!

n  Communicators identifying communication contexts/
groups!

13!

MPI has over 300 functions …!

n  How many years do I have to study before I can use it? !

n  In fact, you will hardly ever use most of the MPI functions!

n  6 functions are sufficient for simple programs:!
n  MPI_Init – to initialize the MPI environment!
n  MPI_Comm_Size – to know the number of processes!
n  MPI_Comm_Rank – to know the rank of the calling process!
n  MPI_Send – to send a message!
n  MPI_Recv – to receive a message!
n  MPI_Finalize – to exit in a clean way!

14!



8/2/11 

8 

What is not specified!

n  Certain aspects are not specified in the MPI standard but 
left as implementation detail:!
n  Process startup (how to start an MPI program)!

•  All what happens before MPI_Init is executed!
n  Richer error codes are allowed!
n  Message  

buffering!

15!

A first MPI Program!

16!



8/2/11 

9 

MPI Program Structure!

17!

#include "mpi.h"!

rc = MPI_Init(&argc,&argv);!
!
MPI_Comm_size
(MPI_COMM_WORLD,&numtasks);!
!
MPI_Comm_rank
(MPI_COMM_WORLD,&rank);!

MPI_Finalize();!

Format of MPI Routines!

n  C Binding:! !!
n  rc = MPI_Xxxxx(parameter, ... ) !!
n  Example:!rc = MPI_Send(&buf,count,type,dest,tag,comm)!
n  Error code: Returned as "rc". MPI_SUCCESS if successful!

n  Fortran Binding ! !!
n  call mpi_xxxxx(parameter,..., ierr) !!
n  Example: CALL MPI_SEND
(buf,count,type,dest,tag,comm,ierr)!

n  Error code: Returned as "ierr" parameter. MPI_SUCCESS if 
successful !!

18!



8/2/11 

10 

Example: Hello, World (C)!
   #include "mpi.h"!
   #include <stdio.h>!
!

   int main(argc,argv)!
   int argc;!
   char *argv[]; {!
   int  numtasks, rank, rc; !
!
   rc = MPI_Init(&argc,&argv);!

   if (rc != MPI_SUCCESS) {!
     printf ("Error starting MPI program. Terminating.\n");!
     MPI_Abort(MPI_COMM_WORLD, rc);!
     }!
!
   MPI_Comm_size(MPI_COMM_WORLD,&numtasks);!

   MPI_Comm_rank(MPI_COMM_WORLD,&rank);!
   printf ("Hello, World from rank %d out of %d\n", rank, numtasks);!
   MPI_Finalize();!
   }!

19!

Example: Hello, World (Fortran)!
   program simple!
   include 'mpif.h'!
!
   integer numtasks, rank, ierr, rc!
!
   call MPI_INIT(ierr)!
   if (ierr .ne. MPI_SUCCESS) then!
      print *,'Error starting MPI program. Terminating.'!
      call MPI_ABORT(MPI_COMM_WORLD, rc, ierr)!
   end if!
!
   call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)!
   call MPI_COMM_SIZE(MPI_COMM_WORLD, numtasks, ierr)!
   print *, 'Hello, World from rank ',rank, ' out of=',numtasks!
!
   call MPI_FINALIZE(ierr)!
!
   end!

!!
!

20!



8/2/11 

11 

Sample Output (24 processes)!
Hello, World from rank 9 out of 24 !
Hello, World from rank 17 out of 24 !
Hello, World from rank 13 out of 24 !
Hello, World from rank 7 out of 24 !

Hello, World from rank 11 out of 24 !
Hello, World from rank 14 out of 24 !
Hello, World from rank 16 out of 24 !

Hello, World from rank 4 out of 24 !
Hello, World from rank 15 out of 24 !
Hello, World from rank 3 out of 24 !
Hello, World from rank 23 out of 24 !

Hello, World from rank 10 out of 24 !
Hello, World from rank 5 out of 24 !
Hello, World from rank 12 out of 24 !

Hello, World from rank 2 out of 24 !
Hello, World from rank 19 out of 24 !
Hello, World from rank 21 out of 24 !
Hello, World from rank 8 out of 24 !

Hello, World from rank 18 out of 24 !
Hello, World from rank 1 out of 24 !
Hello, World from rank 6 out of 24 !
Hello, World from rank 22 out of 24 !

Hello, World from rank 20 out of 24 !
Hello, World from rank 0 out of 24 !
! 21!

Note the 
random order! 

How to launch MPI Programs?!

n  Not specified by MPI standard!

n  Many implementations use mpirun –np X!
n  Hostfile used to specify processes/hardware mapping!

n  MPI standard proposes, but does not mandate, a common 
mpiexec syntax/semantics, similar to mpirun!

n  Cray uses aprun –n x!

22!



8/2/11 

12 

Summary!

n  MPI Basics!
n  Message buffers!
n  Processes and communicators!
n  Structure of MPI programs!
n  Implementation specific features!

n  To find out the exact syntax of certain commands:!
n  On Lindgren use > man MPI_xxx!
n  Look up Web resources!

23!


