
PDC Summer School 2011
Brief introduction to

Serial performance measurement

KTH, August 22, 2011

Basic questions on HPC systems

We’ve seen that hardware is complicated (cache memories, TLBs, SSE-vectorization)
and that the way we code impacts performance.

Most of this is hidden from the coder – we have to evaluate performance empirically, a
posteriori, at various levels of interest:

• Which functions in my (large) code take the most time?

• Can the code be optimized? Where? Is it worth the effort?

• What did the compiler do with my code?

• Is arithmetic handled in SSE-registers or on the FPU stack?

• Are fused arithmetic operations (SSE) issued?

• Does my code generate a lot of TLB misses?

• Are branch mispredictions causing stalls?

We need tools

Basic timing
How long did it take to run the program?

Sampling profilers
Where is my program spending most time? What line? Which machine instruction?

Hardware event counting
How many hardware events (e.g. cache misses) were actually triggered?

Emulators
Try to estimate hardware events by emulation instead.

Will try to cover some of the most common tools on Linux.

An example program: Jacobi iteration

Basic timing

UNIX time

> time ./jacobi

Jacobi iteration converged in 263 iterations.

0.420u 0.000s 0:00.41 102.4% 0+0k 0+0io 0pf+0w

System time in C

#include <sys/time.h>

double gettime(void)

{

struct timeval tv;

gettimeofday(&tv,NULL);

return tv.tv_sec + 1e-6*tv.tv_usec;

}

int main(void){

double t = gettime();

jacobi_solver(100);

t = gettime()-t;

}

Sampling profilers

Works by periodically stopping the program and investigating the stack.

• GNU ’gprof’

• Intel VTune

• Valgrind ’callgrind’ + KDE-based GUI kcachegrind

On Mac OS X, ’Shark’ part of XCode (very good)

Sampling profiler: GNU gprof

Basic and reliable. Flat profile and call graph.

• Compile code with flag ’-pg’

• Run program

• Run profiler, ’gprof ./jacobi’

Sampling profiler: Intel VTune
Commercial, fancy GUI, sophisticated*, (marketing hype). Also some hardware events.
Free “non-commercial” download for Linux – so try it!

Hardware event counters

Registers used by the hardware manufacturers to debug and evaluate their designs are
left and can be used for detailed profiling.

Papi

• Records actual number of hardware events that occurred!

• Free and open source: http://icl.cs.utk.edu/~mucci/papiex/

• By Phil Mucci (previously at PDC and gave this lecture)

• Not easy to install*: kernel modules, major dependency chain.

• What PAPI can record depends on hardware.

Papi front-ends

• PapiEx

• Cray PAT (though this is much more!)

* Mucci could do it :)

http://icl.cs.utk.edu/~mucci/papiex/

Hardware event counters

What can Papi determine?

> papi_avail

Available events and hardware information.

PAPI_L1_DCM Level 1 data cache misses

PAPI_L2_DCM Level 2 data cache misses

PAPI_TLB_DM Data translation lookaside buffer misses

PAPI_HW_INT Hardware interrupts

PAPI_BR_MSP Conditional branch instructions mispredicted

PAPI_TOT_INS Instructions completed

PAPI_FP_INS Floating point instructions

PAPI_TOT_CYC Total cycles

(...)

PapiEx basic usage

> papiex ./jacobi
(...)
Derived Metrics:

MFLOPS 197.50
(...)
PAPI_TOT_CYC 1.93957e+10
PAPI_FP_OPS 1.44011e+09

PAPI_TOT_CYC : Total cycles
PAPI_FP_OPS : Floating point operations

Get specific counter:

> papiex -e PAPI_L1_DCM ./jacobi

(...)

L1 Data Cache Misses 1.17406e+09

Cray PAT

Very sophisticated framework for performance analysis (and MPI, OpenMP).
Commercial, available on high-end Cray systems.
∴ Not simple. Steps (see tutorial on lab):

• Select (PAPI) event group: env PAT_RT_HWPC

• Prepare the executable: pat_build ./jacobi

• Run: aprun -n 1 ./jacobi+pat

• View report: pat_report jacobi+pat+<RUN ID>.xf (next slide)

Hardware counter groups
> export PAT_RT_HWPC=

1 Summary with TLB metrics

2 L1 and L2 metrics

3 Bandwidth information

8 Instructions and branches

12 Floating point operations (SSE)

Cray PAT Sample output

In counter group 1:

===

USER / jacobi_iteration / jacobi_base.c

Samp% 99.9%

Samp 772

PAPI_L1_DCM 2.621M/sec 32335186 misses

PAPI_TLB_DM 0.125M/sec 1541704 misses

PAPI_L1_DCA 1348.371M/sec 16633470668 refs

PAPI_FP_OPS 1726.230M/sec 21294737308 ops

User time (approx) 12.336 secs 24671990403 cycles

FLOPs 1726.230M/sec 21294737308 ops 21.6%peak(DP)

Computational intensity 0.86 ops/cycle 1.28 ops/ref

MFLOPS (aggregate) 1726.23M/sec

TLB utilization 10789.02 refs/miss 21.072 avg uses

D1 cache hit,miss ratios 99.8% hits 0.2% misses

D1 cache utilization (misses) 514.41 refs/miss 64.301 avg hits

Emulators

Try to extract same information as hardware counters record, but with modelling of
the architecture.

• Valgrind ’cachegrind’ + KDE-based GUI ’kcachegrind’

• Accumem ThreadSpotter (commercial)
By Prof. Hagersten et. al. (now owned by Rogue Wave Software)

Results are only as accurate as the emulator. If the emulator has incorrect or
incomplete parameters for the present architecture it will give a warning (and those
warnings are important)

Emulator: Cachegrind
Part of the Valgrind tool-set that you of course already use for checking for memory
leaks (right?).

Note the argument: valgrind --tool=cachegrind

Emulator: Cachegrind GUI

KDE-based GUI kcachegrind available in most Linux distros. Similar tool in XCode
on Mac OS X.

What did the compiler accomplish?

Example: did the compiler emit packed SSE memory transactions and arithmetic for
the Jacobi inner loop?

OK, now it gets more technical!

Can generate disassembly from executable:

> objdump -d ./jacobi > jacobi_dump.asm

In this case, 134300 lines of assembly code! How do we determine where the inner
loop is?

Use Valgrind (again):

> valgrind --tool=callgrind --dump-instr=yes --collect-jumps=yes

KCachegrind will now show us the loops:

Assembly-code annotation with Valgrind

Assembly-code annotation with Valgrind

What do we learn from this?

Use “Intel Instruction Set Reference” (or Google)

• ’movsd’ is a single move of a double prec. number from memory to a SSE
register (p. 3-718, vol. 2A)

• Corresponding vector instructions movpd,mulpd,addpd did not execute.

∴ The compiler failed to generate efficient SSE code. Do it yourself!?!

