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Scientific Computing 

•! Computing for science and engineering 

•! Based on applied fields of science, mathematics, computer 

science 

•! Typically requires HPC – infinite dimensional problems 

approximated by finite dimensional models 

•! Other terminologies for “scientific computing”: “numerical 

analysis”, “virtual prototyping”, “computational science 

and engineering” 
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Numerical analysis 

•! Original term used since the early 1950s 

•! Today it denotes 

–! Development of numerical algorithms from given mathematical 

models 

–! Analysis of these algorithms: consistency, stability, convergence, 

order of accuracy, computational complexity 

! 

Example, error estimate : u(x j ) " u j # Ch
p

j =1,2,..J( )

Virtual prototyping 

The term virtual prototyping is often used in industry to 

describe the use of simulation, data base techniques and 

visualization for: 

•! Understanding 

•! Verification 

•! Planning, optimization 

 and control 

Example from paper 

industry  
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Computational science 
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The expression computational 

science is broader and includes  

simulations for scientific discovery. 

Examples from life sciences 

(molecular biology), Material science  

(phase transition in welding), 

fluid dynamics (turbulence) 

Level of peta-scale computing: a break 

through for computational science 

Evolution of scientific computing 

 The development of scientific computing is based on progress in 

computer technology (Moor’s law) 
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Evolution of scientific computing 

 The development of scientific computing is based on progress in 

computer technology (Moor’s law), but also on algorithms and 

software. 

HPC “more than flops/second”  

•! Other architecture aspects: communication, memory 

hierarchy, etc. 

•! Overall computational environment: software,              

super computer ! grid ! cloud 

 “Slow Moving Clouds Fast Enough for HPC 

 Ian Foster penned an interesting blog comparing the utility of a 

supercomputer to that of public cloud for HPC applications. Foster pointed 

out that while the typical supercomputer might be much faster than a generic 

cloud environment, the turnaround time might actually be much better for the 

cloud. He argues that "the relevant metric is not execution time but elapsed 

time from submission to the completion of execution." 
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The Scientific Computing Pipeline 

   1. scientific process 

   2. mathematical model 

   3. numerical algorithm  validation 

       verification 

   4. computer code   feedback

        

   5. output, visualization 

1    2 

•! Formulation of quantitative mathematical model            

(i.e. differential equation, integral equations, etc.) 

•! Model derivation 

–! Physically based modelling 

–! Mathematical model reduction 

–! Pre-determined model structure (i.e. neural nets) 

•! Analysis of models, existence, uniqueness, continuous 

dependence on data, consistency with respect to relevant 

properties (i.e energy conservation) 

•! Matching model to computational  resources  
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2    3 

•! Formulation of numerical algorithm that is appropriate for 

the mathematical model and the computational recourses 

•! Derivation typically in two steps: 

      -  infinite to finite dimensional model (FDM, FEM,..) 

  -  algorithm for the finite dimensional model (Gaussian elimination, 

 Newton’s method, multigrid etc.) 

•! Build in adaptively and error estimation 

•! Analysis of algorithm 

–! Stability, accuracy, convergence, etc. 

–! Consistent with special properties in mathematical model 

–! Fit to computer architecture 

3    4 

•! Development of a computer code including libraries etc. 

•! Structure code and coding process for easy validation, 

debugging and collaborative work 

•! Optimize message passing, threading and/or “help” 

compiler to optimize cache handling and parallelization 

•! Careful debugging of individual modules 

•! Reuse software, from BLAS and up 

•! Consider grid aspects 
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4    5 

•! Typically all done by the computer system 

•! Could include interactive steps of computational steering, 

collaborative work and interactive visualization 

•! Output could be input to other systems for further 

computation, i.e. optimisation loop, model identification, 

or control 

•! Design output to support understanding of results and to 

aid in validation and debugging of the earlier steps 1 to 4 

1    2    3    4    5   

•! Verify that the code follows specifications 

•! Feedback to validate and optimize the computational 

pipeline, Check output with respect to 

–! measured data,  

–! known model properties 

–! results from known test cases and other codes 

–! Variation in parameters - i.e. mesh refinement 

•! Find efficiency bottlenecks and try to eliminate them using 

all steps in the scientific computing pipeline 
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General Remarks 

•! The computational pipeline may be part of larger 

simulation, as i.e. the simulation step in an optimization 

•! Only part of pipeline may be relevant in a particular case 

as, i.e. in visualization of measured data 

•! Computations may be needed to define the mathematical 

model (identification) 

•! Strategy in development may vary 

–! Will the code be used only once or thousands of times 

–! Is the desired result goal oriented (i.e calculate drag of an airplane) 

or is the simulation for general discovery 

Time sinks 
•! Flops 

 - Algorithms with minimal number of flops (often in conflict with     
algorithms that are easy to distribute) 

 - Distribute flops to many processors 

 - Load balance for maximal use of processors, Amdahl’s law 

 - Data and operation flow (GPUs) 

•! Memory access time 

 - Memory hierarchy, Cache strategy (depends on algorithm) 

 - Pipelining of operations (prefetch, GPUs) 

•! Node to node communication 

 - Use of parallelism in algorithms 

 - Consider architecture of interconnect (i. e. multicore processors) 

 - Consider both latency and bandwidth 
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Simple addition example 

•! Very large sum (N numbers) with access to very large 

number of processors 

•! Flop time "1 , communication time (one number) "2 

•! Distribute m numbers to each processor 

•! Cost of summing including communication (one step) 

•! Discuss following steps and optimal choices of m-values  

! 

time = (m + (N /m))"
1

+ (N /m)"
2

! 

S = a
n

n=1

N

"

Computational complexity  

 The main reasons for high computational cost (flops) in 

scientific computing are high dimensions and multi-scale 

phenomena. The smallest scales must be represented over the 

distance of the largest scales 
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 If 1 is the largest scale (or wave length of the lowest 

frequency) in each dimension and # is the smallest scale 

then,  

   Flops = O(N(#, ") #-1)dr) 

•! N(#, ") is the number of unknowns needed for a given 

accuracy ". Typically 2 < N < C"#
-1. Methods with higher 

order accuracy gives lower N. 

•! d is the number of dimensions 

•! r measures the computational cost per unknowns. Explicit 

methods: r=1, Gaussian elimination of a dense matrix: r=3. 

•! Best possible case: flops=O(#-d) $ “atomistic simulation 

can not be used directly for system scales” 

•! Compare Shannon sampling theorem: “a signal requires at 

least two points /wavelength to be exactly represented” 
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Reduction of flops 

•! The problem of large d and small # must be handled 

already in the mathematical model. Use effective or 

averaged equation whenever possible.  

•! For r$1 use efficient methods as i.e. multigrid instead of 

Gaussian elimination. (Note that multigrid increases 

connectivity over simpler iteration algorithms and thus the 

communication cost in the simulation) 

•! An higher order numerical method (more accurate) 

requires lower N than a lower order in order to get the 

same accuracy in the result 

HPC Remarks 

•! For a given number of flops the overall computing time 

can be reduced by concurrent computing, load balancing, 

ordering and types of operations, memory and 

communication strategies. 

•! Efficient distributed computation requires distributed 

algorithms and sometimes even modified mathematical 

models. 

•! The numerical algorithm also effects the  possibility to 

write codes that optimally uses cache (localization). 

•! All steps in scientific computing pipeline coupled 
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Model and Algorithm: effect on 

parallelism and localization 

•! Differential equations (local processes) 

•! Integral equations (global processes)  

•! Monte Carlo (direct simulation of stochastic processes) 

•! Optimization 

•! Approximation, filtering, etc. 

•! Sorting, searching, etc. 

Capturing the physical parallelism in 

modern computer architectures 

•! Discretization of differential equations 

•! Time: sequential processes (causality)  

•! Space: concurrent processes 

•! Classification of algorithms – different degrees of 

concurrency 
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ODEs: initial value problems 

•! Typical applications 

–! Molecular dynamics 

–! Chemical reactions 

–! Astrophysics 

–! Rigid body dynamics 

–! Electrical circuits 

•! Typical form 

•! Causality: obstacle to concurrent computing 

! 

dy

dt
= f (y, t), y(t

0
) = y

0

Difficulties in parallelization 

•! Typical algorithm 

•! Standard: sequential evaluation - no parallelism: yn must be 
known before yn+1 is calculated  

•! Options for parallelization 
–! Parallel evaluation of F - efficient for very large u and F 

dimensions (example, molecular dynamics) 

–! Special structure of F  

! 

y
n
" y(tn ), tn = n#t

y
n+1

= F(y
n
,..,y

n$r
,tn ), n = r, r +1, r + 2,..
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Special structure of f and F 

(a)! “Very weak dependence on y (history mostly known)” 

(b)! “Very strong dependence on y (history not so 
important)” 

! 

dy

dt
= f (y, t), y(t

0
) = y

0
, 0 < " <<1

(a) f = "g(y, t) + h(t)

(b) f = "#1g(y,t)

Special structure, cont. 

•! Iterate over m - compare Picard iteration (small # means 

fast convergence 

•! The integrals can easily be evaluated in parallel, time 

segment decomposition, waveform relaxation 

! 

(a) y
(m+1)

(t) = y
0

+ h(" )d"
0

t

# + $ g(y
(m )
("),")d"

0

t

#
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Special structure, cont. 

•! Type (b) with the implicit Euler method (scalar) 

•! Also interval decomposition. Initial interval points 

unknowns in outer iteration. ! 

dy

dt
= f (y, t), y(t

0
) = y

0
, (b) f = "#1g(y, t)

y
n+1
# y

n

$t
= "#1g(yn+1

,tn+1)

(y
n+1
#$t"#1g(yn+1

,tn+1)) = y
n
,
%g(y, t)

%y
< 0 & contraction

PDEs: initial and initial/boundary value 

problems (evolution) 

•! Typical applications 

–! All processes with local dependence 

–! Examples: continuum and quantum mechanics, electromagnetics, 

meteorology, geophysics, financial models… 

•! Typical form 

•! Natural concurrency in space $ domain decomposition 

(sequential in time) ! 

"u

"t
= f (# x,u,x, t), u(x, t

0
) = u

0
(x) and BCs
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Explicit methods (first generation 

algorithms) 

•! A partial differential operator is local $ natural with local 

discretization. New grid value depends on older neighbors.  

! 

u j

n
" u(x j ,tn )

u j

n+1
= F(u j+r

n
,..,u j#r

n
,x j ,tn )

Spatial domain decomposition (DD) 

•! Distribute data (grid points, cells) to different processors 
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Remarks: DD 

•! Further DD for reduced cache misses and for multicore. 

•! For DD: connectivity in computational stencils is 

important not physical distance 

•! Overlapping DD for broader stencils and for multiple time 

steps between message passing (reduces latency effects) 

Explicit computational 

difference stencil 

Remarks: DD 

•! Scaling: number of interior points in block % O(N3) 

        number of block boundary points % O(N2) 

•! O(N3) related to flops, O(N2) related to communication 

•! High efficiency for large  

 problem sizes 

•! Consider band width  

 versus latency in  

 decomposition strategy 
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Implicit algorithms (second generation 

algorithms) 

•! Explicit algorithm often have severe time step limitations 

due to stability requirements 

•! Implicit algorithms (a system of equations needs to be 

solved in each time step) typically have much less time 

step limitations 

•! Heat equation example: explicit time step constraints 

   implicit Crank-Nicolson: no constraints 

! 

"t # C"x
2

! 

"u

"t
=#

" 2u

"x 2

Implicit algorithms, cont. 

•! The implicit step typically implies global coupling (all 
unknowns are coupled in each time step)  

•! Efficient if the signal speed is high or infinite (parabolic 
equations, hyperbolic multiscale equation, stiff problems) 

•! Similar solution strategy as in steady state problems 
(elliptic boundary value problems) 

•! Basic algorithmic component: fast parallel solver for 
systems of linear equations  
–! Parallel Gaussian elimination (often in existing library) 

–! As step in nonlinear iteration (Newton’s method) 

–! See also third generation iterative methods; multigrid, Krylov type 
methods 
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Stationary problems, boundary value 

problems, elliptic equations 

•! Stationary problems do not correspond to evolution 

processes (or evolution as time $&) 

•! Typical types of equations: elliptic equations, boundary 

integral equations, minimization problems 

•! Model problem: Laplace equation 

! 

" 2u(x,y)

"x 2
+
" 2u(x,y)

"y 2
= 0, (x,y)# $ (domain)

u(x,y) = f (x,y), (x,y)# "$ (boundary)

Stationary problems, continued 

•! Discretization (FDM, FEM, quadrature,..) results in a 

linear or nonlinear system of equations 

–! Differential equations: sparse systems 

–! Integral equations: dense systems  

•! Existing software,for example ScaLAPACK, requires 

special distribution of data (ScaLAPACK: linear algebra 

software for distributed computing). 

•! Natural domain distribution of data may not be optimal for 

parallel computing. Example Gaussian elimination 
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Gaussian elimination 

•! Standard domain decomposition or block decomposition 

with regular Gaussian elimination leads to inefficient load 

balance 

•! $ redistribute, for example, the rows (classical example of 

parallel algorithm) 

p1 p2 .. 

Third generation algorithms 

•! First generation algorithms are easy to parallelize but may 

require many flops 

•! Second generation algorithms require coupling of all 

unknowns (solution of system of equations) at each time 

level 

•! Third generation algorithms introduces coupling in a more 

complex way 

–! Examples, multigrid and Krylov subspace methods for solution of 

systems of equations 

–! Fast mulipole and fast Fourier transform methods 
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Multigrid 

•! Efficient global coupling via interpolation to coarser grids 

•! From O(N3) (Gaussian elimination) to O(N) computational 

complexity 

Multigrid 
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Multigrid, cont. 

•! Iteration with simple explicit local operator a few times on 

each grid level 

•! Compute residual (error in equation) and use in correction 

at coarser grid level 

•! Multigrid can also be used on unstructured grids and even 

on matrix problems without grids (algebraic multigrid) 

•! Load balancing (Amdahl’s law) and increased 

communication at coarse grids are difficulties in 

parallelization 

Fast multipole method (FMM) 

•! Point to point interaction requires O(N2) operations. FMM 

reduces the computational complexity to O(NlogN) 

•! Can be seen as fast matrix-vector multiply 

•!  Simplified far field interaction - compare gravity 

Electromagnetic  

example 
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Fast Fourier transform (FFT) 

•! FFT also reduces an O(N2) 

 computation to O(NlogN)  

•! Multidimensional FFT quite 

 difficult to parallelize 

•! Typically, there exists 

 efficient software 

•! Dense matrix multiply $ product of sparse matrix 
multiplies 

! 

ck =
1

N
W

jk
f j

j= 0

N"1

# , W = e
2$i /N

! 

c =Wf =W
1
W

2
" "WJ f

Summary 

•! Consider all steps in the scientific computing pipeline for 
validation and computational efficiency 

•! Consider potential concurrency and locality in the physical 
and mathematical models when designing the parallel 
computational algorithm 

•! Balance the potential for efficient parallel implementation 
of simple numerical methods versus the reduced number of 
flops of more complex numerical methods. 

•! In algorithm design use simple model for latency-
bandwidth-flop ratios, load balancing, memory access cost, 
etc. 


