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Graphics requires a lot of computation and a huge amount of 
bandwidth. This has encouraged people to look into using GPUs for 
more general purpose computing. These numbers are from a 2008-
vintage video game compared to a 2009 vintage top-of-the-line CPU. 
Note that the video game is already comparable to a top-of-the-line 
server CPU from the year after it was introduced. 
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Graphics shaders are small programs that do almost everything regular 
programs do. The big exception is that they have (until very recently) 
been limited to only containing loops with static bounds.  
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AMD and Nvidia want you to believe that the first one is the right 
answer. 
Intel admits the second is about right. 
For a lot of people the third one is true unless they restructure/redesign 
their algorithm. 
The fourth one is slowly becoming less of an issue as GPUs mature. 
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Here are two top-of-the-line chips in 2009. The images are scaled to 
approximately proportional sizes. The important thing to note is that the 
single-precision efficiency of the GPU is 1-to-2 orders of magnitude 
better than the CPU. It is hard to underestimate the significance of this, 
if your algorithm can work efficiently on the GPU architecture. Dual-
precision performance will scale similarly, but with slightly less benefit to 
the GPU. 
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Nvidia claims 100x speedups, and lots of people have seen this. 
Intel did a (what I consider to be quite honest from all appearances) 
study and found it was more along the lines of 3x. There is one problem 
with the Intel study: they used a 1-year-old GPU vs. a current CPU. 
However, they also did not take into account the time to transfer data to 
the GPU (next slide) which makes their results very very optimistic for 
the GPU. 
What we’d really like to see is Intel vs. Nvidia, with each optimizing 
their own code. 
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No matter how fast your GPU code is, if you have to move data to/from 
the CPU frequently (or at all, really) you will see very little performance 
improvement. You want to move your input data to the GPU (or better 
yet, generate it there) and then do lots and lots of work on it before 
moving a small result back. Otherwise the transfer time over PCIe will 
kill your performance. This will improve as GPUs and CPUs move onto 
the same die, which may give AMD a huge advantage over Nvidia, and 
is one of the prime reasons Intel does not allow Nvidia to use their new 
QPI bus directly. 
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Nearby pixels are very likely to accesses similar texture data (they are 
close together on screen, so they will have similar final results). 
This means that a small texture cache can be extremely valuable. 
Indeed GPUs today only have texture caches, and they are quite small. 
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Making a whole processor run 4x faster is far harder than stamping out 
4x as many processing elements. 
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Note the difference in area that does real work (yellow) between the two 
architectures. CPUs dedicate huge amounts of area to making sure that 
one thread can run really fast (caches and predictors to avoid ever 
having to stall it). GPUs dedicate huge amounts of area to making sure 
lots of threads can run simultaneously, and target aggregate throughput 
over latency. 
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Intel’s high-end server chip uses a very small amount of the area to 
actually compute. Most of the area is cache (which is actually a very 
good heat sink) and support logic to enable the computations to go 
quickly. 
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Most of a GPU is dedicated to small parallel processors with small local 
memories. This is how they get such good efficiency because they have 
a lot of silicon for compute. 
In addition they have hardware thread schedulers to make it efficient to 
swap threads very frequently and fixed-function logic for the portions of 
the graphics pipeline that are simply too slow to do in software.  
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Nvidia’s new architecture adds a few really nice features: data caches, 
function pointers, and multiple kernel execution. 
Data caches will provide most developers with ~90% of the benefit of 
software-managed memories with 0% of the hassle. 
Function pointers are important for more advanced language features 
(Nvidia claims C++ support). 
Multiple kernel execution is essential to maintain interactivity for any OS 
that uses the GPU for its window manager and wants to simultaneously 
do compute. 
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The rest of this presentation will cover two topics: how GPUs and CPUs 
differ in their approach to handling memory accesses, and issues 
surrounding instruction bandwidth on GPUs. 
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Computational intensity is a key metric of an application. The more 
math a an application does on its data the better it will scale with more 
and more cores. This is true for both CPUs and GPUs, and algorithms 
that do more work and access less data are far more likely to scale in 
the future. Note that these effects happen at each level of the memory 
hierarchy (caches, DRAM, registers), with the size and performance 
impact being dictated by the particular memory level. For unique 
memory accesses, caches do not help, since the data is never reused. 
(Prefetching can help, though.) 
 
Here A[i] indicates that the array A is being read at a different location 
for every math operation. Temp indicates that the variable is not being 
read from memory constantly, which would allow it to be kept in a 
register or cached very effectively. Note that cache-line effects are  
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The CPU is going to process this stream of instructions. 
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CPUs dedicate lots of hardware to trying to run fast. Here there is a 
large instruction window that analyzes as many instructions as possible 
to detect dependencies (colored) and instructions that can be run in 
parallel. It also enables executing multiple instructions at the same time. 
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The CPU finds two instructions that can run at the same time and starts 
executing both of them. 
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However, the load instruction is going to take a very long time to access 
memory. How can we speed this up? 
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We’ll build a cache. The cache will only take 1 cycle (realistically 3-4 
today) to return the data. 
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While we are waiting for the data to come back we take advantage of 
having analyzed the instruction dependencies to execute another 
instruction. 
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Now by the 2nd cycle (cycle 1) we have executed two math instructions 
and one memory instruction that hit in the cache due to our dependency 
analysis, cache, and ability to execute multiple instructions at once. 
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On the next cycle we have an addition and a load… 
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But this load misses in the L1. What to do? 
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We’ll build a much bigger (4x-8x) L2 cache. Remember that hit rate 
scales as the square root of size, so it has to be a lot bigger to be more 
helpful. However, larger caches are slower (longer wires) so this time it 
will take 20 cycles (optimistic) to get the data back. Since we don’t 
have any other instructions that are independent of the load to execute 
the processor stalls. 
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20 cycles later we get our data back and we can continue. 
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CPUs try really hard to get performance by reducing effective memory 
latencies via caches and hiding memory latency with other instructions. 
When your data fits in the cache this works really well and your thread 
can run at full speed. If it doesn’t, the CPU delivers terrible 
performance. 
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Here are some real numbers for a high-end CPU in 2009. (I highly 
recommend this paper to anyone who is serious about performance.) 
Note that unique data can be accessed at a rate of UP TO 1 double 
every cycle for all four cores. Think about what this means for a parallel 
operation such as a reduction. 
 
This figure is to scale with widths representing bandwidths, sizes 
capacity, and distances latency. 
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GPUs are much simpler. They have no instruction window and only 
execute one instruction at a time. This makes it possible to build those 
much smaller cores that are needed to fit more on the chip. 
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Because GPUs only execute one instruction at a time, the independent 
add and load instructions must wait for the first add to execute. 
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When we execute the load instruction we’re going to have a similar 
latency to what the CPU would have, but we have no cache on the 
GPU. (The newest GPUs are starting to introduce very small caches.) 
Since this is a simple architecture we have no way to do anything about 
this delay so we just “give up” on this thread. 
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The GPU then finds another thread (red), and starts running it. The first 
thread (white) is suspended while it waits for the memory access. 
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The second thread executes… 
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Until it hits a load, at which point we do the same thing… 
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The GPU suspends it and finds another thread (yellow) to execute. 
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After 100 cycles the memory is ready with the data for the first thread. 
Note: if we have enough threads (50*2 cycles before the read here) we 
have managed to keep the processor busy the whole time by swapping 
in new work rather than trying to reduce the latency of each thread. This 
allows high throughput, but also high latency. 
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We can now suspend the current thread and go back to using the data 
from memory. 
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At cycle 104 we’ve executed 1 instruction every single cycle despite a 
100 cycle memory latency and no cache. But unlike the CPU, we’ve 
executed instructions from 50 different threads. Our total throughput is 
excellent, but no single thread has made more than 3 instructions of 
progress. 
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This is why GPUs want thousands of threads for good performance. 
This is also how they are able to get good bandwidth: if you have lots 
and lots of threads running in parallel you can try to be clever about 
how you service all the memory accesses to try and take advantage of 
your DRAM system. 
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So how did we do? Compare the peak performance numbers for some 
CPUs and GPUs. For the CPU, if you have fewer than 6 floating point 
operations per unique double loaded you are bandwidth bound. For 
GPUs that number is 29. (And they don’t have large caches, which 
makes the “unique” part a lot less important.) This doesn’t sound 
good… 
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In fact, this isn’t good.  
 
Except that GPUs have a much larger bandwidth, so even if you get 
only a fraction of it you’re better off, plus they have hardware (lots of 
threads) to help you get a higher percentage of it. 
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Now we’ll take a look at another one of the tradeoffs GPUs made in 
making more of their area compute and less of it support, namely 
instruction fetch. 
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If thread 7 takes the else branch and all the other threads take the if 
branch, the performance drops off terribly. This becomes far worse if 
each thread takes a different path through the code. The take-away 
lesson is that GPUs do support each thread doing its own thing, but not 
with good performance. This contrasts with a CPU which can fetch 
multiple instructions each cycle for a single thread. (Note that there are 
various tricks to deal with simple if/else cases, but if you have truly 
divergent execution you will experience bad performance.) 
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Instruction divergence happens in real-world applications. There is 
some support in current architectures to avoid the pain of simple if-then-
else divergence, but beyond that performance falls off a cliff. 
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You can ignore this by running one thread on each cluster of cores on a 
GPU. (SM in Nvidia parlance.) This sacrifices up to 15/16 of your 
performance, but then gives you one instruction fetch per cycle per 
core. 
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Clearly things are moving together. Intel has (wasted?) spent a huge 
amount of money on Larabee to make their CPUs look more like GPUs. 
Nvidia keeps adding features that make their GPUs look more like 
CPUs, and AMD is busily trying to build a GPU and CPU on the same 
chip to avoid the whole convergence issue and get the best of both 
worlds. 
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So where will we end up? AMD “got” there first with their Fusion 
processor, but no one has yet really tried it out. This will solve the 
bandwidth issues of getting data from main memory to the GPU and 
make GPUs far more useful for small frequent computations as 
opposed to just large bulk ones. Intel’s Larabee derivatives will 
undoubtedly influence their future cores with enhanced vector 
operations, scatter/gather, and higher degrees of multi-threading, but 
unless they move to a heterogeneous design I doubt it will be much of a 
player. Nvidia is in a difficult position unless they start putting x86 cores 
on their parts and selling the whole system or invest in a lot of binary 
translation. Interestingly, Cell demonstrated a hybrid system many 
years ago, and developers were able to get huge performance wins out 
of it due to the tightly-coupled memory system between the GPU-like 
SPUs and the CPU. 
 
It’s worth noting that the largest GPU manufacturer today (Intel) does 
not support OpenCL on its GPUs, and even if it did, the performance 
would be so bad no one would use it. 
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