
David Black-Schaffer! 1!

David Black-Schaffer! 2!

David Black-Schaffer! 3!

Graphics requires a lot of computation and a huge amount of
bandwidth. This has encouraged people to look into using GPUs for
more general purpose computing. These numbers are from a 2008-
vintage video game compared to a 2009 vintage top-of-the-line CPU.
Note that the video game is already comparable to a top-of-the-line
server CPU from the year after it was introduced.

David Black-Schaffer! 4!

Graphics shaders are small programs that do almost everything regular
programs do. The big exception is that they have (until very recently)
been limited to only containing loops with static bounds.

David Black-Schaffer! 5!

AMD and Nvidia want you to believe that the first one is the right
answer.
Intel admits the second is about right.
For a lot of people the third one is true unless they restructure/redesign
their algorithm.
The fourth one is slowly becoming less of an issue as GPUs mature.

David Black-Schaffer! 6!

Here are two top-of-the-line chips in 2009. The images are scaled to
approximately proportional sizes. The important thing to note is that the
single-precision efficiency of the GPU is 1-to-2 orders of magnitude
better than the CPU. It is hard to underestimate the significance of this,
if your algorithm can work efficiently on the GPU architecture. Dual-
precision performance will scale similarly, but with slightly less benefit to
the GPU.

David Black-Schaffer! 7!

David Black-Schaffer! 8!

Nvidia claims 100x speedups, and lots of people have seen this.
Intel did a (what I consider to be quite honest from all appearances)
study and found it was more along the lines of 3x. There is one problem
with the Intel study: they used a 1-year-old GPU vs. a current CPU.
However, they also did not take into account the time to transfer data to
the GPU (next slide) which makes their results very very optimistic for
the GPU.
What we’d really like to see is Intel vs. Nvidia, with each optimizing
their own code.

David Black-Schaffer! 9!

No matter how fast your GPU code is, if you have to move data to/from
the CPU frequently (or at all, really) you will see very little performance
improvement. You want to move your input data to the GPU (or better
yet, generate it there) and then do lots and lots of work on it before
moving a small result back. Otherwise the transfer time over PCIe will
kill your performance. This will improve as GPUs and CPUs move onto
the same die, which may give AMD a huge advantage over Nvidia, and
is one of the prime reasons Intel does not allow Nvidia to use their new
QPI bus directly.

David Black-Schaffer! 10!

David Black-Schaffer! 11!

Nearby pixels are very likely to accesses similar texture data (they are
close together on screen, so they will have similar final results).
This means that a small texture cache can be extremely valuable.
Indeed GPUs today only have texture caches, and they are quite small.

David Black-Schaffer! 12!

Making a whole processor run 4x faster is far harder than stamping out
4x as many processing elements.

David Black-Schaffer! 13!

Note the difference in area that does real work (yellow) between the two
architectures. CPUs dedicate huge amounts of area to making sure that
one thread can run really fast (caches and predictors to avoid ever
having to stall it). GPUs dedicate huge amounts of area to making sure
lots of threads can run simultaneously, and target aggregate throughput
over latency.

David Black-Schaffer! 14!

Intel’s high-end server chip uses a very small amount of the area to
actually compute. Most of the area is cache (which is actually a very
good heat sink) and support logic to enable the computations to go
quickly.

David Black-Schaffer! 15!

Most of a GPU is dedicated to small parallel processors with small local
memories. This is how they get such good efficiency because they have
a lot of silicon for compute.
In addition they have hardware thread schedulers to make it efficient to
swap threads very frequently and fixed-function logic for the portions of
the graphics pipeline that are simply too slow to do in software.

David Black-Schaffer! 16!

Nvidia’s new architecture adds a few really nice features: data caches,
function pointers, and multiple kernel execution.
Data caches will provide most developers with ~90% of the benefit of
software-managed memories with 0% of the hassle.
Function pointers are important for more advanced language features
(Nvidia claims C++ support).
Multiple kernel execution is essential to maintain interactivity for any OS
that uses the GPU for its window manager and wants to simultaneously
do compute.

David Black-Schaffer! 17!

David Black-Schaffer! 18!

The rest of this presentation will cover two topics: how GPUs and CPUs
differ in their approach to handling memory accesses, and issues
surrounding instruction bandwidth on GPUs.

David Black-Schaffer! 19!

David Black-Schaffer! 20!

Computational intensity is a key metric of an application. The more
math a an application does on its data the better it will scale with more
and more cores. This is true for both CPUs and GPUs, and algorithms
that do more work and access less data are far more likely to scale in
the future. Note that these effects happen at each level of the memory
hierarchy (caches, DRAM, registers), with the size and performance
impact being dictated by the particular memory level. For unique
memory accesses, caches do not help, since the data is never reused.
(Prefetching can help, though.)

Here A[i] indicates that the array A is being read at a different location
for every math operation. Temp indicates that the variable is not being
read from memory constantly, which would allow it to be kept in a
register or cached very effectively. Note that cache-line effects are

David Black-Schaffer! 21!

The CPU is going to process this stream of instructions.

David Black-Schaffer! 22!

CPUs dedicate lots of hardware to trying to run fast. Here there is a
large instruction window that analyzes as many instructions as possible
to detect dependencies (colored) and instructions that can be run in
parallel. It also enables executing multiple instructions at the same time.

David Black-Schaffer! 23!

The CPU finds two instructions that can run at the same time and starts
executing both of them.

David Black-Schaffer! 24!

However, the load instruction is going to take a very long time to access
memory. How can we speed this up?

David Black-Schaffer! 25!

We’ll build a cache. The cache will only take 1 cycle (realistically 3-4
today) to return the data.

David Black-Schaffer! 26!

While we are waiting for the data to come back we take advantage of
having analyzed the instruction dependencies to execute another
instruction.

David Black-Schaffer! 27!

David Black-Schaffer! 28!

Now by the 2nd cycle (cycle 1) we have executed two math instructions
and one memory instruction that hit in the cache due to our dependency
analysis, cache, and ability to execute multiple instructions at once.

David Black-Schaffer! 29!

On the next cycle we have an addition and a load…

David Black-Schaffer! 30!

But this load misses in the L1. What to do?

David Black-Schaffer! 31!

We’ll build a much bigger (4x-8x) L2 cache. Remember that hit rate
scales as the square root of size, so it has to be a lot bigger to be more
helpful. However, larger caches are slower (longer wires) so this time it
will take 20 cycles (optimistic) to get the data back. Since we don’t
have any other instructions that are independent of the load to execute
the processor stalls.

David Black-Schaffer! 32!

20 cycles later we get our data back and we can continue.

David Black-Schaffer! 33!

David Black-Schaffer! 34!

David Black-Schaffer! 35!

David Black-Schaffer! 36!

CPUs try really hard to get performance by reducing effective memory
latencies via caches and hiding memory latency with other instructions.
When your data fits in the cache this works really well and your thread
can run at full speed. If it doesn’t, the CPU delivers terrible
performance.

David Black-Schaffer! 37!

Here are some real numbers for a high-end CPU in 2009. (I highly
recommend this paper to anyone who is serious about performance.)
Note that unique data can be accessed at a rate of UP TO 1 double
every cycle for all four cores. Think about what this means for a parallel
operation such as a reduction.

This figure is to scale with widths representing bandwidths, sizes
capacity, and distances latency.

David Black-Schaffer! 38!

GPUs are much simpler. They have no instruction window and only
execute one instruction at a time. This makes it possible to build those
much smaller cores that are needed to fit more on the chip.

David Black-Schaffer! 39!

Because GPUs only execute one instruction at a time, the independent
add and load instructions must wait for the first add to execute.

David Black-Schaffer! 40!

David Black-Schaffer! 41!

When we execute the load instruction we’re going to have a similar
latency to what the CPU would have, but we have no cache on the
GPU. (The newest GPUs are starting to introduce very small caches.)
Since this is a simple architecture we have no way to do anything about
this delay so we just “give up” on this thread.

David Black-Schaffer! 42!

The GPU then finds another thread (red), and starts running it. The first
thread (white) is suspended while it waits for the memory access.

David Black-Schaffer! 43!

The second thread executes…

David Black-Schaffer! 44!

David Black-Schaffer! 45!

Until it hits a load, at which point we do the same thing…

David Black-Schaffer! 46!

The GPU suspends it and finds another thread (yellow) to execute.

David Black-Schaffer! 47!

David Black-Schaffer! 48!

After 100 cycles the memory is ready with the data for the first thread.
Note: if we have enough threads (50*2 cycles before the read here) we
have managed to keep the processor busy the whole time by swapping
in new work rather than trying to reduce the latency of each thread. This
allows high throughput, but also high latency.

David Black-Schaffer! 49!

We can now suspend the current thread and go back to using the data
from memory.

David Black-Schaffer! 50!

David Black-Schaffer! 51!

At cycle 104 we’ve executed 1 instruction every single cycle despite a
100 cycle memory latency and no cache. But unlike the CPU, we’ve
executed instructions from 50 different threads. Our total throughput is
excellent, but no single thread has made more than 3 instructions of
progress.

David Black-Schaffer! 52!

This is why GPUs want thousands of threads for good performance.
This is also how they are able to get good bandwidth: if you have lots
and lots of threads running in parallel you can try to be clever about
how you service all the memory accesses to try and take advantage of
your DRAM system.

David Black-Schaffer! 53!

So how did we do? Compare the peak performance numbers for some
CPUs and GPUs. For the CPU, if you have fewer than 6 floating point
operations per unique double loaded you are bandwidth bound. For
GPUs that number is 29. (And they don’t have large caches, which
makes the “unique” part a lot less important.) This doesn’t sound
good…

David Black-Schaffer! 54!

In fact, this isn’t good.

Except that GPUs have a much larger bandwidth, so even if you get
only a fraction of it you’re better off, plus they have hardware (lots of
threads) to help you get a higher percentage of it.

David Black-Schaffer! 55!

David Black-Schaffer! 56!

Now we’ll take a look at another one of the tradeoffs GPUs made in
making more of their area compute and less of it support, namely
instruction fetch.

David Black-Schaffer! 57!

If thread 7 takes the else branch and all the other threads take the if
branch, the performance drops off terribly. This becomes far worse if
each thread takes a different path through the code. The take-away
lesson is that GPUs do support each thread doing its own thing, but not
with good performance. This contrasts with a CPU which can fetch
multiple instructions each cycle for a single thread. (Note that there are
various tricks to deal with simple if/else cases, but if you have truly
divergent execution you will experience bad performance.)

David Black-Schaffer! 58!

Instruction divergence happens in real-world applications. There is
some support in current architectures to avoid the pain of simple if-then-
else divergence, but beyond that performance falls off a cliff.

David Black-Schaffer! 59!

David Black-Schaffer! 60!

You can ignore this by running one thread on each cluster of cores on a
GPU. (SM in Nvidia parlance.) This sacrifices up to 15/16 of your
performance, but then gives you one instruction fetch per cycle per
core.

David Black-Schaffer! 61!

David Black-Schaffer! 62!

David Black-Schaffer! 63!

David Black-Schaffer! 64!

Clearly things are moving together. Intel has (wasted?) spent a huge
amount of money on Larabee to make their CPUs look more like GPUs.
Nvidia keeps adding features that make their GPUs look more like
CPUs, and AMD is busily trying to build a GPU and CPU on the same
chip to avoid the whole convergence issue and get the best of both
worlds.

David Black-Schaffer! 65!

So where will we end up? AMD “got” there first with their Fusion
processor, but no one has yet really tried it out. This will solve the
bandwidth issues of getting data from main memory to the GPU and
make GPUs far more useful for small frequent computations as
opposed to just large bulk ones. Intel’s Larabee derivatives will
undoubtedly influence their future cores with enhanced vector
operations, scatter/gather, and higher degrees of multi-threading, but
unless they move to a heterogeneous design I doubt it will be much of a
player. Nvidia is in a difficult position unless they start putting x86 cores
on their parts and selling the whole system or invest in a lot of binary
translation. Interestingly, Cell demonstrated a hybrid system many
years ago, and developers were able to get huge performance wins out
of it due to the tightly-coupled memory system between the GPU-like
SPUs and the CPU.

It’s worth noting that the largest GPU manufacturer today (Intel) does
not support OpenCL on its GPUs, and even if it did, the performance
would be so bad no one would use it.

David Black-Schaffer! 66!

David Black-Schaffer! 67!

