
Efficiency, energy efficiency and programming of
accelerated HPC servers: Highlights of PRACE
studies

Lennart Johnsson

Department of Computer Science
University of Houston
and
School of Computer Science and Communications
KTH

To appear in Springer Verlag “GPU Solutions to Multi-scale Problems in Science
and Engineering”, 2011

2 Lennart Johnsson

Abstract

During the last few years the convergence in architecture for High-Performance
Computing systems that took place for over a decade has been replaced by a di-
vergence. The divergence is driven by the quest for performance, cost-
performance and in the last few years also energy consumption that during the
life-time of a system have come to exceed the HPC system cost in many cases.
Mass market, specialized processors, such as the Cell Broadband Engine (CBE)
and Graphics Processors, have received particular attention, the latter especially
after hardware support for double-precision floating-point arithmetic was intro-
duced about three years ago. The recent support of Error Correcting Code (ECC)
for memory and significantly enhanced performance for double-precision arithme-
tic in the current generation of Graphic Processing Units (GPUs) have further so-
lidified the interest in GPUs for HPC.

In order to assess the issues involved in potentially deploying clusters with

nodes consisting of commodity microprocessors with some type of specialized
processor for enhanced performance or enhanced energy efficiency or both for
science and engineering workloads, PRACE, the Partnership for Advanced Com-
puting in Europe, undertook a study that included three types of accelerators, the
CBE, GPUs and ClearSpeed, and tools for their programming. The study focused
on assessing performance, efficiency, power efficiency for double-precision
arithmetic and programmer productivity. Four kernels, matrix multiplication,
sparse matrix-vector multiplication, FFT, random number generation were used
for the assessment together with High-Performance Linpack (HPL) and a few ap-
plication codes. We report here on the results from the kernels and HPL for GPU
and ClearSpeed accelerated systems. The GPU performed surprisingly signifi-
cantly better than the CPU on the sparse matrix-vector multiplication on which the
ClearSpeed performed surprisingly poorly. For matrix-multiplication, HPL and
FFT the ClearSpeed accelerator was by far the most energy efficient device.

Error! No text of specified style in document. 3

1. Introduction.

1.1 Architecture and performance evolution

High-Performance Computing (HPC) has traditionally driven high innovation in
both computer architecture and algorithms. Like many other areas of computing it
has also challenged established approaches to software design and development.
Many innovations have been responses to opportunities offered by the exponential
improvements of capabilities of silicon based technologies, as predicted by
“Moore’s Law”[1], and constraints imposed by the technology as well as packag-
ing constraints. Taking full advantage of computer system capabilities require ar-
chitecture aware algorithm and software design, and, of course, problems for
which algorithms can be found that can take advantage of the architecture at hand.
Conversely, architectures have historically been targeted for certain workloads. In
the early days of electronic computers, even at the time transistor technologies re-
placed vacuum tubes in computer systems, scientific and engineering applications
were predominantly based on highly structured decomposition of physical do-
mains and algorithms based on local approximations of continuous operators.
Global solutions were achieved through a mixture of local or global steps depend-
ing on algorithm selected (e.g., explicit vs. implicit methods, integral vs. differen-
tial methods). In most cases methods allowed computations to be organized into
similar operations on large parts of the domains and data accessed in a highly
regular fashion. This fact was exploited by vector architectures, such as the very
successful Cray-1 [2], and highly parallel designs such as the Illiac IV (1976)
[3,4,5,6], the Goodyear MPP (Massively Parallel Processor) (1983) [7] with
16,896 processors, the Connection Machine [8,9,10] CM-1 (1986) with 65,536
processors and the CM-2 (1987) with 2048 floating-point accelerators, These ma-
chines all were of the SIMD (Single Instruction Multiple Data) [11], data-parallel,
or vector type, thus amortizing instruction fetch and decode over several, prefera-
bly large number of operands. The memory systems were designed for high
bandwidth, which in the case of the Cray-1 [2] and the Control Data Corp. 6600
[12,13] was achieved by optimizing it for access of streams of data (long vectors),
and in the case of MPPs through very wide memory systems. The parallel ma-

4 Lennart Johnsson

chines with large numbers of processors had very simple processors, indeed only
1-bit processors. (It is interesting to note that the data parallel programming model
is the basis for Intel’s recently developed Ct technology [14,15] and was also the
basis for RapidMind [16] acquired by Intel in 2009.)

The emergence of the microprocessor with a complete CPU on a single chip

[17,18,19,20] targeted for a broad market and produced in very high volumes of-
fered large cost advantages over high-performance computers designed for the
scientific and engineering market and led to a convergence in architectures also
for scientific computation. According to the first Top500 [21] list from June 1993,
369 out of 500 systems (73.8%) were either “Vector” or “SIMD”, while by No-
vember 2010 only one Vector system appears on the list, and no SIMD system.
Since vector and SIMD architectures were specifically targeting scientific and en-
gineering applications whereas microprocessors were, and still are, designed for a
broad market, it is interesting to understand the efficiencies, measured as fraction
of peak performance, achieved for scientific and engineering applications on the
two types of platforms. The most readily available data on efficiencies, but not
necessarily the most relevant, is the performance measures reported on the
Top500 lists based on High-Performance Linpack (HPL) [22] that solves dense
linear systems of equations by Gaussian elimination. The computations are highly
structured and good algorithms exhibit a high degree of locality of reference. For
this benchmark, the average floating-point rate as a fraction of peak for all vector
systems was 82% in 1993, Table 1, with the single vector system on the 2010 list
having an efficiency of over 93%, Table 2. The average HPL efficiency in 1993
for “Scalar” systems was 47.5%, but improved significantly to 67.5% in 2010.
The microprocessors, being targeted for a broad market with applications that do
not exhibit much potential for “vectorization”, focused on cache based architec-
tures enabling applications with high locality in space and time to achieve good
efficiency, despite weak memory systems compared to the traditional vector archi-
tectures. Thus, it is not all that surprising that microprocessor based systems com-
pare relatively well in case of the HPL benchmark. The enhanced efficiency over
time for microprocessor based systems is in part due to increased on-chip memory
in the form of three levels of cache in current microprocessors, and many added
features to improve performance, such as, e.g., pipelining, pre-fetching and out-of-
order execution that add complexity and power consumption of the CPU, and im-
proved processor interconnection technologies. Compiler technology has also
evolved to make more efficient use of cache based architectures for many applica-
tion codes.

Error! No text of specified style in document. 5

Processor
Architecture Count Share % Rmax Sum (GF) Rpeak Sum

(GF)
Proces-

sor Sum

Vector 334 66.80 % 650 792 1,242

Scalar 131 26.20 % 408 859 15,606

SIMD 35 7.00 % 64 135 54,272

Totals 500 100% 1,122.84 1,786.21 71,120

Table 1. June 1993 Top 500 list by process architecture [21]

Processor
Architecture Count Share

% Rmax Sum (GF) Rpeak Sum (GF) Processor
Sum

Vector 1 0.20 % 122,400 131,072 1,280

Scalar 497 99.40 % 43,477,293 64,375,959 6,459,463

N/A 2 0.40 % 73,400 148280 11,584

Totals 500 100% 43,673,092.54 64,655,310.70 6,472,327

Table 2. November 2010 Top500 list by processor architecture [21]

The scientific and engineering market also had a need for good visualization of

simulated complex physical phenomena, or visualization of large complex data
sets as occurring for instance in petroleum exploration. Specialized processor de-
signs, like the LDS-1 [23] from Evans & Sutherland [24, 25] that initially targeted
training simulators, evolved to also cover the emerging digital cinema market as
well as engineering and scientific applications. As in the case of standard proces-
sors, semiconductor technology evolved to a point where much of the performance
critical processing could be integrated on a single chip, such as the Geometry En-
gine [26,27] by Jim Clark who founded Silicon Graphics Inc [28] that came to
dominate the graphics market until complete Graphics Processing Units (GPUs)
could be integrated onto a single chip (1999) [29,30] at which time the cost had
become sufficiently low that the evolution became largely driven by graphics for
gaming with 432 million such units shipped in 2010 [31] (compared to about 350
million PCs [32] and 9 million servers [33] according to the Gartner group). Thus,
since in the server market two socket servers are most common, but four and even

6 Lennart Johnsson

8-socket servers are available as well, the volumes of discrete GPUs (as opposed
to GPUs integrated with CPUs, e.g. for the mobile market) and CPUs for PCs and
servers are almost identical. Today, GPUs are as much of a mass market product
as microprocessors are, and prices are comparable (from about a hundred dollars
to about two thousand dollars depending on features).

With their design target having been efficient processing for computer graphics

GPUs lend themselves to vector/stream processing. As in the case of the vector
machines for scientific and engineering applications GPUs are optimized for ap-
plying the same operation to large amounts of (structured) data and have memory
systems that support high execution rates. Over time GPUs have enhanced their
floating-point arithmetic performance significantly and since 2008 also incorpo-
rated hardware support for double-precision floating-point operations and moved
towards support of the IEEE floating-point standard. Double-precision floating-
point performance and compliance with the IEEE floating-point standard are criti-
cal for many scientific and engineering applications. The evolution of GPU float-
ing-point performance since 2002 is shown in Figure 1 [34].

Fig. 1. Performance growth of GPUs and CPUs 2002 – 2010. [34]

As seen in Figure 1, in 2003 the GPU single-precision floating-point perform-
ance was only modestly higher than that of common IA-32 [35] microprocessors
by, e.g., AMD and Intel, and there was no hardware support for double-precision

Error! No text of specified style in document. 7

floating-point arithmetic, so many application developers in science and engineer-
ing did not find the benefits of porting codes to GPUs sufficiently large to warrant
the effort to do so. However, as is also apparent from the figure, the performance
trajectories for GPUs have been quite different from those of CPUs, so that today
a GPU may have 10 – 30 times higher single-precision performance than a CPU,
with the AMD/ATI Radeon HD5870 [36,37] having a peak single-precision per-
formance of 2.7 TF (1012 flops/s (floating-point operations per second)). More-
over, today GPUs not only support double-precision arithmetic, but the perform-
ance advantage compared to a CPU may be a factor of five or more.

Good application performance also requires high memory bandwidth. Today,

the memory bandwidth for high-end GPUs is about 150 GB/s [36, 37, 38, 39],
which compares very favorably with that of IA-32 microprocessors by AMD and
Intel that today has a memory bandwidth of 25 – 30+ GB/s. (The Intel Westmere-
EP 6-core CPU has three memory channels each with a peak data rate of 10.8
GB/s (32.4 GB/s total with DDR3 1.333 GHz DIMMs [40], whereas the AMD
Magny-Cours 8- and 12-core CPUs have a peak memory data rate of 28.8 GB/s
across four channels for DDR3 1.333 GHz DIMMs due to limitations in the North
Bridge [41]. Observed Stream [42] benchmark numbers are 20.5 GB/s [43] and
17.9 GB/s [41] for the Intel Westmere-EP CPU and 27.5 GB/s [44], 24.7 GB/s
[41] and 19.4 GB/s [45] for the AMD Magny-Cours CPU (on a per CPU basis).

Thus, today GPUs offer about five times the memory bandwidth and about a

factor of five higher peak double-precision floating-point performance than IA-32
microprocessors, and the cost is comparable. For instance, nVidia’s Tesla C2050
lists for about $2,500, and the ATI FirePro 3D V9800 is priced similarly, com-
pared to a list price of $1,663 for the top-of-the line Intel Westmere-EP CPU (3.46
GHz, 6-cores, 12 MB L3 cache) [40] whereas the top-of-the line AMD Magny-
Cours CPU has a list price of $1,514 (2.5 GHz, 12-cores, 12GB L3 cache) [46].
The lowest costs versions of CPUs may cost as little as 20% of the top-of-the line
CPUs, comparable to the GPUs targeted for the low end consumer market.

1.2 Energy efficiency

Performance and cost-performance are the traditional measures affecting choice of
technology and platforms for high-performance scientific and engineering applica-
tions. In recent years energy efficiency in computation has become another impor-
tant and sometimes deciding factor in the choice of platform. Since a few years

8 Lennart Johnsson

ago the life-time energy cost including cooling of servers has exceeded the cost of
the server itself, Figure 2 [47].

Fig. 2. Evolution of US power and cooling costs for a standard IA-32 server [47]

For microprocessors a large contribution to the performance gain from one
generation to the next was increased clock frequency, until about a decade ago.
The first microprocessor, the Intel 4004 [17, 18, 19, 20] introduced in 1971 had a
clock frequency of 0.74 MHz. By the end of 2002, Intel introduced a Pentium 4
clocked at 3.06 GHz using its Northwood core [48]. The clock frequency was fur-
ther increased to 3.4 GHz in a version available in early 2004 and further to 3.8
GHz in the Prescott core introduced later that year. (The 3.8 GHz Prescott Pen-
tium 4 is the highest clock frequency ever used in an Intel CPU.) Thus, over a pe-
riod of about 30 years clock frequencies for Intel microprocessors increased by a
factor of about 5,000, followed by a slight decline since its peak in 2004, Figure 3.
The evolution is similar for CPUs from AMD, though traditionally AMD CPUs
have operated at somewhat lower clock rates, as shown in Figure 4, and lower
power consumption.

Error! No text of specified style in document. 9

Fig. 3. Intel CPU clock rates 1971 – 2007. [49]

Fig. 4. AMD and Intel CPU clock rates, 1993.- 2005. [50]

The reason for the apparent limit on clock frequency is that, for CMOS tech-

nology, the dominating technology for microprocessors, the dynamic switching
power P depends on voltage and clock frequency as P cV2f. This relationship is
due to the fact that CMOS is a charge transfer technology in which charges on
gates of transistors effectively acting as capacitors are drained and restored in
switching transistors on or off. The energy stored on a capacitor (gate) is cV2.
Furthermore, for CMOS the clock frequency f V. Hence, the power dissipation
increases very rapidly with the clock frequency. In fact, even though V typically
has been reduced form one chip generation to the next, the power density for Intel

10 Lennart Johnsson

CPUs doubled for each generation as shown in Figure 5. The evolution of the
power consumption for AMD CPUs [50] has been similar, Figure 6. In 1999 Fred
Pollack of Intel stated in his keynote at Micro 32 that “We are on the Wrong side
of a Square Law” [51] and concluded with a new goal for CPU design: “Double
Valued Performance every 18 months, at the same power level”, something that
the industry has largely adhered to since almost a decade ago.

Fig. 5. Heat density of Intel CPUs, Source Shekhar Borkar, Intel.

Fig. 6. Comparison of the power consumption of AMD and Intel IA-32
CPUs [50].

Error! No text of specified style in document. 11

The energy per instruction for a range of Intel CPUs [52] is shown in Table 3.
The approach taken to achieve “Double valued performance every 18 months, at
the same power level” has been to introduce multi-core CPUs exploiting reduced
feature sizes in CPU manufacturing, and slightly reducing the maximum clock
frequencies. This approach has enabled “double valued performance” to continue
for applications that can take advantage of parallelism, but at a cost in application
porting and development, and a challenge for compiler developers. High parallel-
ism is becoming main stream, not only by increased core count per chip, but also
by increased number of operations a core can perform in a single clock cycle,
from one floating-point operation per cycle about a decade ago for IA-32 designs
to currently four and in the next generation eight, resulting in a capability to cur-
rently carry out 48 floating-point operations per cycle in the case of the AMD 12-
core chip.

Product
Normalized
Performance

Normalized
Power

EPI on 65 nm at
1.33 volts (nJ)

i486 1.0 1.0 10
Pentium 2.0 2.7 14
Pentium Pro 3.6 9 24
Pentium 4
(Willamette) 6.0 23 38
Pentium 4
(Cedarmill) 7.9 38 48
Pentium M
(Dothan) 5.4 7 15
Core Duo
(Yonah) 7.7 8 11

Table 3. Energy per instruction for Intel CPUs [52].

The power consumption of CMOS processors, as mentioned above, raises

steeply with the clock frequency, and of course the number of transistors. The
most recent IA-32 CPU by Intel, the 6-core Westmere-EP CPU, (3.46 GHz, 1.17
billion transistors, 240 mm2 in 32 nm technology) [53] and by AMD, the 8- and
12-core Magny-Cours CPU (2.5 GHz, 2 billion transistors, 692mm2 in 45 nm
technology) [41] both dissipates up to 130 -140W in their highest clock rate ver-
sions, while the current generation GPUs from AMD/ATI (0.825 GHz, 2.15 bil-
lion transistors, 334 mm2 in 40nm technology) [36,54] and nVidia (0.575 GHz, 3
billion transistors, 550mm2 also in 40 nm technology) [38,55] both have a maxi-

12 Lennart Johnsson

mum power rating of 225W. But, since the GPUs have a peak double-precision
performance about five times higher than that of the IA-32 CPUs, the GPUs still
may deliver higher energy efficiency for applications. We summarize this infor-
mation in Table 4.

Table 4. Some chip characteristics for CPU and GPU processors. (* limited to 28.8
GB/s by the Northbridge)

 Estimates of the peak double-precision floating-point rate per W at the chip
level is shown in Table 5 [56] for a few processors. The table shows an advantage
by a factor of 2.5 to about 4 of GPUs over CPUs. Thus, GPUs in addition to offer-
ing potentially higher performance and lower cost-performance in regards to
hardware cost, GPUs also have the potential to offer a further cost advantage by
being more energy efficient and more environmentally friendly despite their
higher power rating.

ARM Coretx-9 ATOM AMD 12-core Intel 6-core ATI 9370

Cores W GF/W Cores W GF/W Cores W GF/W Cores W GF/W Cores W GF/W

4 ~2 ~0.5 2 2+ ~0.5 12 115 ~0.9 6 130 ~0.6 1600 225 ~2.3

nVidia Fermi TMS320C6678 IBM BQC ClearSpeed CX700

Cores W GF/W Cores W GF/W Cores W GF/W Cores W GF/W

512 225 ~2.3 8 10 ~4 16 ~50 ~4 192 10 ~10

Table 5. Estimates of theoretical performance/W for some processor alternatives
[56].

 nm Trans.
(Billions)

Die
mm2 Cores Memory

BW GB/s
I/O BW
 GB/s

GF
DP W

Nehalem-EP 45 0.731 263 4 3x10.8 2x25.6 53.3 130
Westmere-EP 32 1.17 240 6 3x10.8 2x25.6 83.0 130

AMD Magny-Cour 45 2 692 12 4x10.8* 4x25.6 120.0 137
Tesla C1060 65 1.4 576 240 102.4 8 77.8 188
Tesla C2050 40 3 550 448 144 8 515.2 225
ATI HD5870 40 2.15 334 1600 153.6 8 544 225

Error! No text of specified style in document. 13

The potential for higher energy efficiency than that of IA-32 CPUs is indeed
real as demonstrated by measurements for HPL. The Green500 list ranks systems
on the Top500 list based on their HPL energy efficiency. On the November 2010
list eight of the ten most energy efficient systems use some form of accelerator,
with five using GPUs and three using the Cell Broadband Engine (CBE)[57, 58,
59]. Systems using GPUs ranked 2nd, 3rd, 8th, 9th, and 10th. The IBM Blue Gene/Q
to be delivered late in 2011 or 2012 ranked 1st with an energy efficiency of 1,684
MF/W. Compared to the Blue Gene/P, its predecessor, the BG/Q has double the
execution width of each core, and twice the number of cores per node. Few de-
tails are available at this time. The most energy efficient GPU accelerated system
achieved an efficiency of 958 MF/W, while the most energy efficient system using
the CBE for acceleration achieved 773 MF/W [60]. This system used an experi-
mental interconnection network connecting nodes via the CBE internal high-speed
bus. Non-accelerated systems using the latest generation IA-32 CPUs achieved an
energy efficiency of about 350 – 400 MF/W for HPL.

Fig. 7. The 10 most energy efficient systems on the November 2010 Top500 list [18]

14 Lennart Johnsson

1.3 GPU integration and Programming

Programming and code generation for both CPUs and GPUs today requires effec-
tive exploitation of parallelism for high efficiency. IA-32 CPUs support common
programming languages, such as C, C++, Fortran, etc with a choice of mature
compilers that generate efficient code. GPUs on the other hand with a quite differ-
ent memory architecture and different instruction set have traditionally required
specialized and sometimes proprietary languages and compilers. This fact, and
the lack of architectural support for many operations commonly used in science
and engineering applications have been a limiting factor on their wide-spread
adoption. However, the hardware support for general purpose use of GPUs is im-
proving rapidly, thus lowering the barrier towards wide adoption. The good dou-
ble-precision arithmetic performance and support for IEEE arithmetic are also im-
portant factors in today’s strong interest in GPUs. However, GPUs are not stand-
alone processors and requires a host, which typically for HPC applications is a
common microprocessor. GPUs are “add-on” units typically integrated into the
system using the I/O bus of the CPU. This bus can be a performance bottleneck in
many cases since data needs to move between the CPU memory and the smaller
but faster GPU memory for many applications. As GPUs become integrated onto
CPU chips this bottleneck will disappear, but at least initially the GPUs integrated
with CPUs on the same chip will not have their own high bandwidth memory sys-
tem one of the key advantages of today’s GPUs. In future generation CPUs the
role of GPUs or stream processors may very well change for the scientific and en-
gineering market and stream or vector architectures taking on the primary role, as
in the case of Intel’s Many Integrated Core (MIC) CPUs [61].

To alleviate some of the programming issues associated with having to produce

code for both CPUs and GPUs in a heterogeneous node the Open Computing Lan-
guage [62], OpenCL, was conceived with version 1.0 published in December 2008
and version 1.1 in September 2010 [63]. OpenCL has been developed by the
Khronos Group that also developed OpenGL. Because of the potential benefits of
being an Open Standard, OpenCL was included in the assessment despite the fact
that only prerelease compilers were available.

1.4 Concurrency comparison between CPUs and GPUs

On-chip parallelism is increasing rapidly for both CPUs and GPUs. The current
generation CPUs can carry out up to about 50 double-precision floating-point op-
erations concurrently (48 for the AMD 12 core Magny-Cours CPUs) whereas

Error! No text of specified style in document. 15

GPUs can carry out in the order of 500 – 600 double-precision floating-point op-
erations concurrently (640 for the AMD/ATI HD5870 and FirePro 3D
V9800GPUs). Though the concurrency for GPUs is about 10 times higher than for
CPUs, the peak performance difference is smaller because the GPUs operate at
lower clock frequency (e.g. max 2.5 GHz for the AMD 12-core CPU versus max
0.825 GHz for the AMD/ATI GPU)). As silicon technologies evolve to allow for
smaller feature sizes enabling more transistors to be put on the same die, chip de-
signers so far has used the increased capability for additional cores, increased on-
chip memory, and less often for execution units of increased width. However, for
CPUs the next generation from both AMD and Intel will double the width of the
execution units as well as increase the number of cores, thus significantly increas-
ing the peak capabilities, and bringing the parallelism required for peak perform-
ance of a IA-32 chip to a level of 100 operations or more. Over about a decade the
number of floating-point operations per cycle per core will have increased from
one to eight. Hence, though there will be a difference in the degree of parallelism
to be expressed and managed, both CPUs and GPUs will have comparable chal-
lenges in regards to concurrency. In regards to the viability of GPUs for “general
purpose” scientific and engineering computations Shalf et al at LBNL [64] made
the interesting observation that only 80 instructions out of the close to 300 instruc-
tions on IA-32 platforms were used across a broad range of codes.

16 Lennart Johnsson

2. Highlights of a PRACE study of accelerated IA-32
servers.

2.1 Background

The potential performance, cost/performance and energy efficiency advantages

of GPUs are significant, but the programming, and in particular the code porting
challenges, are also quite significant. In order to assess the benefits and the code
porting challenges PRACE, the Partnership for Advanced Computing in Europe
[65], undertook an evaluation of GPU accelerated servers during the second half
of 2008 and 2009. The evaluation was made from a data center perspective, i.e.,
the perspective that codes to be run on a GPU accelerated system could largely
only be ported with modest effort using tools targeting heterogeneous node archi-
tectures, and not be completely rewritten or hand optimized. Furthermore, the fo-
cus was on double-precision arithmetic performance since the intent was to evalu-
ate the merits of GPU accelerated nodes across “all” codes used at partner centers.
The tools evaluated were HMPP (Hybrid Multi-core Parallel Programming) [66,
67] from CAPS [68], RapidMind [69, 70] and to a lesser degree the Portland
Group Inc’s (PGIs) Accelerator Compilers [71, 72] because the PGI products were
not available at the time this evaluation started, and OpenCL, as already men-
tioned. For the GPU test systems the results were compared with nVidia’s CUDA
[73, 74] whenever possible. In addition to nVidia C1060 accelerated servers,
ClearSpeed [75] CSX700 [76] accelerated systems were also assessed, as were
systems with CBEs. However, since IBM has decided not to continue with the
CBE we do not include results related to it.

The reference platform for the evaluations was a dual socket server equipped with
Intel Nehalem 2.53 GHz quad-core CPUs and 3GB DDR3 memory per core. The
theoretical peak performance per core of this reference platform thus was 10.12
GF/s. The choice of the Nehalem CPU for the reference platform was motivated
by the dominance of Intel EM64T on the November 2009 Top500 [21] list on
which this processor family accounted for 79% of the CPUs, see Figure 8, and the

Error! No text of specified style in document. 17

Nehalem CPU being the most recent EM64T CPU from Intel at the time of this
evaluation.

Fig. 8. November 2009 Top500 [21] processor family statistics.

GPU evaluations were made on dual socket, quad-core 2.8 GHz Intel Harper-

town servers with two nVidia Tesla servers for each node and two C1060 cards for
each Tesla server. The Tesla servers were connected to the hosts over PCI Express
Gen2 16x (8GB/s) for each node. The C1060 has 30 stream processors each with
eight single-precision (SP) Floating-Point Units (FPUs) and one double-precision
(DP) FPU. The peak SP performance is 624 GF and the peak DP performance is
78 GF.

ClearSpeed results were obtained from two platforms; 1) dual socket 2.53 GHz

Intel Nehalem servers with 4GB/core with a ClearSpeed-Petapath e710 unit for
each server connected via PCI express Gen2 16x [77,78]., 2) dual socket 2.67
GHz Nehalem servers with 3 GB/core and ClearSpeed-Petapath e740 and e780
units, one per CPU socket, connected via PCI express Gen 2 16x [77,78]. The
ClearSpeed-Petapath units use 1, 4 or 8 ClearSpeed CSX700 units, each with a
peak double-precision arithmetic performance of 96 GF. A ClearSpeed CSX700 is
in turn made up of two Multi-Threaded Array Processors (MTAPs) [79], each
with a peak performance of 48 GF, double-precision.

The benchmarks used for the evaluations were a few kernels common in scien-

tific and engineering applications: dense matrix multiplication, solution of dense
systems of linear equations (HPL), sparse matrix-vector multiplication, FFT and
random number generation. This selection was based on a study of application
codes used at PRACE partner sites [80]. These kernels also represent a subset of
Phil Colella’s well known “Seven Dwarf’s” [81] described in [82]. The bench-

18 Lennart Johnsson

mark software used for these functions was EuroBen [83], except for the linear
system solution for which High-Performance Linpack (HPL) [22] was used. The
EuroBen routines used were

• mod2am for dense matrix-matrix multiplication C=AxB
• mod2as for sparse matrix-vector multiplication c=Axb with the matrix in Com-

pressed Sparse Row (CSR) format
• mo2f for 1-D complex-to-complex Fast Fourier Transform using a radix-4 al-

gorithm
• mod2h for random number generation.
•
• All benchmarks were based on C codes.

2.2 Results for the Reference Platform.

For the reference platform we report both single core and eight core results. The
memory system supports a single core well, but not fully all four cores on a CPU
for memory intensive applications. Furthermore, a node has NUMA (Non-
Uniform Memory Access) [84] characteristics in that in a node each CPU with
four cores has its own memory not directly accessible by the cores on the other
CPU in a two socket system.

2.2.1 Single core results

Matrix multiplication

The single core dense matrix multiplication using mod2am calling Intel’s Math
Kernel Library (MKL) [85] is shown in Figure 9. The peak achieved performance
is 9.387 GF, 92.8% of peak [78].

Error! No text of specified style in document. 19

10 100 1000 10000
Matrix order

0

2000

4000

6000

8000

10000

M
flo

p/
s

mod2am: Dense matrix−matrix multiplication

C + MKL
Fortran

 Fig. 9. Mod2am results on a single Nehalem 2.53 GHz core [78].

Sparse matrix-vector multiplication

The single core sparse matrix-vector results [78] are shown on Figure 10. As

expected the performance is much lower. Sparse matrix-vector multiplication us-
ing compressed formats has a relatively low number of floating-point operations
compared to integer operations for address calculations and, for randomly gener-
ated sparse matrices, a random memory access pattern that tend to result in poor
cache behavior. The peak observed performance is about 13.6% of theoretical
peak (10.12.GF). Due to the randomness of the matrix sparsity the performance as
a function of matrix size does not follow a smooth progression unlike the case for
dense matrix multiplication. The sparse matrix was filled to 15% in all cases.

20 Lennart Johnsson

100 1000 10000
Matrix order

0

500

1000

1500

M
flo

p/
s

mod2as: Sparse matrix−vector multiplication

C+MKL
Fortran

Fig. 10. Mod2as results on a single Nehalem 2.53 GHz core [78].

FFT

The single core FFT results [78] are shown in Figure 11. The peak achieved

performance was 2.778 GF, 27.5% of peak. Unlike matrix multiplication and ma-
trix-vector multiplication complex-to-complex FFT computations do not have a
balanced number of additions and multiplications. Thus, for this type of FFT the
peak core performance of 10.12 GF is never attainable. Complex multiplication
requires 4 real multiplications and 2 real additions. A radix-4 computation requires
3 complex multiplications and 4 complex additions/subtractions. In a straightfor-
ward organization of the complex operations the complex multiplication results at
best in 6 arithmetic operations out of 8 potential hardware arithmetic operations,
i.e. 75% utilization, and a complex addition results in 2 out of four potential op-
erations, or 50% utilization. FFTs also have a somewhat complex memory refer-
ence patterns using strided access with different strides for different phases of the
algorithm. The strided access can result in poor cache behavior. In [86, 87] a per-
formance difference by more than a factor of 10 was observed for different strides
for a few different processors.

Error! No text of specified style in document. 21

10
2

10
3

10
4

10
5

10
6

FFT order

0

1000

2000

3000

M
flo

p/
s

mod2f: Fast Fourier Transform

C + MKL
Fortran

Fig. 11. Mod2f radix-4 complex-to-complex 1-D FFT on a single Nehalem 2.53
GHz core [78].

Random number generation

The single core random number results [78] are shown in Figure 12. Since the

random number generator use very few floating-point operations the performance
is measured in operations/s. The MKL library does not include a random number
generator so results are reported for a C code.

10
5

10
6

10
7

Sequence length

3600

3650

3700

3750

3800

M
eg

a−
op

s/
s

mod2h: Random Number generation

C only

Fig. 12. Mod2h random number generation results on a single Nehalem 2.53
GHz core [78].

22 Lennart Johnsson

2.2.2 Node results

The reference node has two sockets each with a quad-core 2.53 GHz Intel Neha-
lem CPU. Thus, eight threads can be run concurrently on the reference platform,
16.with hyper-threading [88] with two threads per core. In our tests we did not en-
able hyoer-threading since it is known to reduce performance in compute intensive
cases. Results for 1, 2, 4 and 8 threads are shown in Figures 13 - 16. The MKL
version used for the benchmarks supported multi-threading for dense matrix-
matrix and sparse matrix-vector multiplication, but not for the FFT. Thus, for the
FFT MPI was used to in effect create multiple threads on a reference node. How-
ever, at this time MKL does have multi-threaded FFT support [89]. For the ran-
dom number generator multiple instances were run since neither an MPI nor an
OpenMP version did exist, and was not developed

Matrix multiplication

The peak matrix multiplication performance achieved on eight cores using the

MKL was 76 GF, which is 93.9% of theoretical peak.

Error! No text of specified style in document. 23

Fig. 13. Mod2am results on a dual socket, 8-core Intel Nehalem 2.53 GHz node
with 24 GB memory [78]

Sparse matrix-vector multiplication

For sparse matrix-vector multiplication the performance is highly variable as

can be expected due to the randomness of the problem, with a performance peak
for four threads of close to 5% of theoretical peak performance. For eight threads
the performance is less variable and increases fairly monotonically with matrix
size to a peak efficiency of about 3%, Figure 14.

Fig. 14. Mod2as results on a dual socket, 8-core Intel Nehalem 2.53 GHz node
with 24 GB memory [78]

FFT

From Figure 15 it is apparent that the single node MPI code for the FFT is per-

forming poorly. Indeed the performance is much worse than the single thread code
regardless of the number of MPI processes on a node. Since these benchmarks
were carried out Intel has released a multi-threaded MKL FFT code [89] with
much improved performance also for a single thread..The results reported for a 2.8

24 Lennart Johnsson

GHz dual socket Nehalem are shown in Figure 16. The single thread performance
is about twice what we observed for the MKL version we used, and the multi-
threaded version using one thread per core has a peak performance about six times
higher than the single thread performance we measured. Using hyper-threading
with two threads per core results in a performance boost that for some sizes may
exceed 30% and result in an efficiency of up to about 25% for the node, similar to
our observed single core performance without hyper-threading..

Fig. 15. Mod2f results for on a dual socket, 8-core Intel Nehalem 2.53 GHz node
with 24 GB memory [78]

Error! No text of specified style in document. 25

Fig. 16. Performance for Intel’s recently released multi-threaded MKL FFT on a 2.8
GHz dual socket Nehalem platform [89].

Random number generation

For the random number generator the aggregate performance increases almost

in proportion to the number of instances run, as seen in Figure 17.

26 Lennart Johnsson

Fig. 17. Mod2h results on a dual socket, 8-core Intel Nehalem 2.53 GHz
node with 24 GB memory [78]

HPL

For HPL a best single node efficiency of close to 87% has been reported for the

Intel Nehalem, see e.g. [90, 91]. The measurements performed on the reference
platform are in line with these results.

2.2.3 Energy efficiency

In regards to energy efficiency matrix multiplication is known to exercise the CPU
heavily and hence result in high power consumption. The HPL benchmark that is
used for the Green500 [92] list depends heavily on matrix multiplication. For the
reference platform we measured a maximum power consumption of 303 W for
matrix multiplication [78], resulting in 251MF/W at the achieved 76GF. For HPL
a power efficiency of 230 MF/W was observed [78], which is in line with the ex-
pected power efficiency given the difference in efficiencies of matrix multiplica-
tion and HPL using the MKL. No power measurements were carried out for the
sparse matrix-vector multiplication, the FFT and the random number generation.
The FFT is fairly floating-point intensive, but not as intensive as matrix multipli-
cation, but relatively more memory reference intensive. On this basis we estimate
the maximum power consumption to about 250W for the FFT resulting in an esti-
mated power efficiency of 50 – 80 MF/W for the performance reported in Figure
16.

2.3 nVidia C1060 GPUs

Matrix multiplication

For matrix multiplication on the C1060 nVidia’s CUBLAS was used in analogy
with using MKL on the reference platform. Since in many applications the data set
on which the computations are performed is allocated to the memory of the host
processor, subsets of data on which computations are to be performed need to be
transferred to the GPU memory and results transferred back. Thus, performance

Error! No text of specified style in document. 27

was measured both for the computations on the GPU itself with data fetched and
stored in its local memory and for the situation when data needs to be fetched
from the CPU memory and results stored in it. Figure 18 shows the results, with
the lower performance curve including the pre and post computation data transfers
between CPU memory and the GPU. Since matrix multiplication requires 2N3 op-
erations but only 3N2 data elements need to be transferred, the data transfer time
decreases in significance as N increases. The peak of the on GPU performance
with CUBLAS is about 82%, which drops to a peak of about 76% if data transfers
are included. These results are in agreement with the results reported in [93].

Fig. 18. Mod2am results on nVidia C1060 GPU with 78GF peak performance [77].

Sparse matrix-vector multiplication

For sparse matrix-vector multiplication the results are shown in Figure 19. It is

interesting to note that with the data on the GPU the peak observed performance is
about 9 GF, or about 11.5% of peak, a higher fraction of peak than on the CPU.
This result is in line with the results in [94]. However, if data needs to be fetched
from CPU memory and results transferred back, then the data transfer time domi-
nates and the efficiency drops to about 1%. For sparse matrix-vector multiplica-
tion both operation count and data transfer is of order O(N).

28 Lennart Johnsson

Fig. 19. Mod2as results on nVidia C1060 GPU with 78GF peak performance [77].

FFT

The FFT performance on the C1060 is shown in Figure 20. At the time of the

benchmark there was no double-precision CUDA FFT available so a complete
port of the mod2f FFT to CUDA was necessary resulting in a CUDA code with
about 3,000 lines. The peak performance achieved including data transfers to the
CPU memory was about 4 GF, about 5% of peak. At this time the nVidia CUFFT
is available and is reported to achieve close to 30 GF on a C1060 [95] excluding
data transfer. For FFT the operations count is O(NlogN), and thus the impact of
the data transfer expected to be less significant than for sparse matrix-vector mul-
tiplication but more significant than for matrix multiplication. The peak efficiency
of the single core Nehalem FFT is about 25%. The recently released multi-
threaded MKL FFT [89] has an improved single thread performance that is esti-
mated to about 5.4 GF for a single core of the reference platform and about 20 GF
for 16 threads on the reference platform, scaling the results in [89] with the ratios
of the clock frequencies of the reference platform and the platform in [89] (the
MKL hyper-threaded version performs better than the single thread per core ver-
sion) . Thus, the recent MKL release achieves about 54% efficiency on a single
core and a peak of about 25% on the node, while CUFFT achieves a peak effi-
ciency of about 38% on the C1060

Error! No text of specified style in document. 29

Fig. 20. Mod2f results in hand coded CUDA on nVidia C1060 GPU with 78GF peak
performance [77].

HPL

For HPL a peak efficiency for one Nehalem core and one C1060 GPU was

measured to be 59.5 GF, 68%, whereas the efficiency dropped to 52.5% using all
8 cores of the host and four C1060 GPUs [78]. The peak power efficiency was 270
MF/W. The single C1060 results are in line with what is reported in [93].

Energy efficiency

GPUs draw significant power with the C1060 having a specified max power of

188W [96] and an estimated typical power consumption of 160W. The Intel Ne-
halem CPU used for the reference platform has a maximum power dissipation of
80 W [97].

For the reference platform during maximum load for matrix multiplication the
CPUs account for about 50% of the power consumption of the reference platform.
With the C1060 reaching close to 60 GF for matrix multiplication, Figure 18, and
assuming the maximum specified power consumption for this case, the GPU
power efficiency is estimated at 300 MF/W. Similarly, for the CPUs alone, the
achieved performance using MKL was 76GF and assuming the maximum CPU
power consumption the CPU power efficiency is estimated to be 475 MF/W. The
fact that the GPU in case of HPL improves the combined energy efficiency is due

30 Lennart Johnsson

to the fact that the power consumption by the memory, fans, power supplies,
motherboard etc is already accounted for in the reference platform power effi-
ciency (that is about half of the CPU power efficiency).

2.4 ClearSpeed CSX700

Matrix multiplication

Matrix multiplication carried out on a single Multi-Threaded Array Processor
(MTAP) [79] of which there are two on a CSX700 is shown in Figure 21. For the
CSX700 the peak observed performance was 85 GF [77], or 88.5% of peak. For
the e780 with 8 CSX700 units the peak observed performance was 520 GF [77],
68% of peak.

Fig. 21. Mod2am results on one MTAP with a peak performance of 48 GF [78].

As is clear from Figure 21 the ClearSpeed performance is not significant in

comparison with the host CPU until the matrix dimensions are in the order of a
few thousands. The library [98] that comes with the ClearSpeed hardware recog-
nize this and leaves the multiplication of the matrices to be performed on the host
for small matrices. In fact, the software allows for load sharing between the host
and the ClearSpeed board. Figure 22 shows the aggregate performance for matrix
multiplication as a function of the host assist. The choice of matrix dimensions for

Error! No text of specified style in document. 31

the benchmark was compliant with the CSX700 unit working with tiles that for M
and N are multiples of 192 and for K a multiple of 288, for multiplication of an
MxK matrix by a KxM matrix. For other matrix shapes the CSX700 library parti-
tions the matrices into tiles compliant with these restrictions and has the host exe-
cute the remaining matrix parts for a correct result. For the matrix shapes studied
in this benchmark the maximum performance exceeds 130 GF at 42% host assist
for the largest M=N. The combined peak performance represents 71% of the
combined theoretical peak performance. This is lower than the peak efficiency for
the CSX700 card (88.5%) and the host (93.9%), but the matrices chosen for this
experiment did not maximize performance for either.

DGEMM performance on Ambre (K=1152)

50

60

70

80

90

100

110

120

130

140

0 10 20 30 40 50 60 70 80 90 100

Host assist (%)

G
Fl

op
s

M=N=5760

M=N=11520

M=N=17280

Fig. 22. Mod2am results on the reference platform equipped with a ClearSpeed
CSX700 accelerator as a function of the host assist percentage. Peak host
performance 80.96 GF, peak CSX700 performance 96 GF [78].

Sparse matrix-vector multiplication

The sparse matrix-vector performance is shown in Figure 23. The performance

is exceedingly poor with a peak performance of only close to 30 MF, or less than
0.1% of the peak performance. The MTAP has an architecture that favors streams,
like GPUs, but clearly its performance for random memory accesses is very poor.

32 Lennart Johnsson

Fig. 23. Mod2as results on one MTAP with a peak performance of 48 GF [78].

FFT

For complex-to-complex 1-D FFTs the results are shown in Table 6. The best

observed performance was 9.9 GF, 10.3% of peak. Comparing to the MKL per-
formance reported in [89] the reference node performs better than the CSX700,
but a CSX700 delivers a peak performance about twice that of a single core of the
reference platform. .

Table 6. Mordf results on the CSX700 with peak performance of 96 GF (48 GF per
MTAP) [78].

Random number generation

Size 1 MTAP 2MTAP
256 2.8 5.7
512 3.4 6.7
1024 3.8 7.4
2048 4.2 9.4
4096 5.0 9.9
8192 3.7 7.9

Error! No text of specified style in document. 33

The performance for random number generation is shown in Figure 24 for a

single MTAP. The MTAP performance is about 10% lower than the performance
of a single core of the reference platform.

Fig. 24. Mod2h results on 1 MTAP.[78]

HPL

For HPL that depends heavily on matrix multiplication the CSX700 contributed

43.75 GF at 42% host assist, yielding an overall efficiency of 63%.[78]. The re-
sults on the manufacturer web site indicates a peak HPL performance of 56.1 GF
[99] corresponding to an efficiency of 58.4%.

Energy efficiency

In regards to energy efficiency the CSX700 was observed to consume about

10W in idle state (9.5 – 10.5 W observed) [78] and about 16 W performing matrix
multiplication [78]. Thus, with a peak matrix multiplication performance of 85
GF the power efficiency is about 5300 MF/W for the CSX700, while for HPL our
results yield in excess of 2700 MF/W for the CSX700 alone at a delivered rate of
43.75 GF and a combined power efficiency of 350 MF/W for the reference plat-
form with one CSX700.

34 Lennart Johnsson

For FFT the peak measured performance was 9.9 GF. The power consumption

for the FFT was not measured, but it clearly must be in the 10 – 16 W range [78]
resulting in a power efficiency in the 600 – 1000 MF/W range. For the reference
platform the idle power was measured to be about 140 W and the peak power
303W [78] resulting in a power efficiency range of 70 – 150 MF/W. Thus, though
the absolute performance for the CSX700 is inferior to the MKL multi-threaded
reference platform performance, the energy efficiency is a factor 6 - 8 times better.

For random number generation the aggregate performance for the reference

platform is about 4 times higher than the CSX700 performance, but the power
consumption is estimated to be 10 – 20 times higher and hence the CSX700 con-
siderably more power efficient.

2.5 Performance comparison

Figure 25 summarizes the performance results for matrix multiplication normal-
ized to the reference platform. The C1060 has slightly lower theoretical peak dou-
ble-precision performance (78GF) and the CSX700 has slightly higher theoretical
peak performance (96 GF) than the reference platform (81GF). The combined
peak performance of the reference platform and a CSX700 is close to 2.2 times
that of the reference platform itself, while adding a C1060 results in a node with
1.96 times the performance of the reference platform.

Error! No text of specified style in document. 35

Fig. 25. Mod2am performance on the nVidia C1060 GPU and ClearSpeed
CSX700 relative to the reference platform [78].

For sparse matrix-vector multiplication both the C1060 and CSX70 do not offer
any performance advantage, Figure 26.

Fig. 26. Mod2as performance on the nVidia C1060 GPU and
ClearSpeed CSX700 relative to the reference platform [78].

For the complex-to-complex 1-D radix-4 FFT the relative results we observed

are shown in Figure 27. However, since our measurements were made, a new ver-
sion of the MKL library has been released that improved the reference platform
performance with up to more than 7 times thus making the reference platform per-
formance superior to the CSX700. nVidia has also released a CUFFT version that
supports double-precision arithmetic and that achieves about 50% better perform-
ance than that of MKL on the reference platform.

36 Lennart Johnsson

Fig. 27. Mod2f relative performance using MKL version 10.1 on the reference

platform alone and with nVidia C1060 GPU or ClearSpeed CSX700 acceleration
[78]. MKL release 10.2 having a multi-threaded version of the FFT and improved
single core performance has resulted in the reference platform achieving about
twice the performance of the CSX700, and a new release of the CUFFT has re-
sulted in the C1060 achieving a peak performance about 50% higher than the ref-
erence platform.

For random number generation a single CSX700 MTAP has a performance

comparable to a single core of the reference platform. No random number genera-
tor was available for the C1060 at the time of the benchmark.

For HPL, a single core of the reference platform in combination with one

C1060 GPU was measured to yield 59.5 GF [78] corresponding to 68% efficiency
while all eight cores together with four C1060 resulted in a peak node perform-
ance of 206 GF out of a possible 393 GF corresponding to 52.5% efficiency.

We summarize our own measurements and some from the literature in Table 7

in order to compare efficiencies of the selected benchmarks on the different archi-
tectures, and the energy efficiencies of the devices in isolation and together as an
integrated system.

Host (81GF) C1060 (78GF) C1060
incl transf

CSX700
(96GF)

Host+CSX700

GF Eff.% GF Eff
%

GF Eff
%

GF Eff
%

GF Eff %

Mod2am 76 93.9 64 82.1 61 78.2 85 88.5 130 73.4
Mod2as 3.8 4.7 9 11.9 1 1.3 0.03 0 - -
Mod2f 20*[89] 24.7 30[95] 38.5 4 5.1 9.9 10.3 - -
HPL 87[90] 50[100] 64.1 52.5 56[99] 58.3 75* 42.4*

Table 7. Summary of peak performance and efficiency. (* denotes estimates.)

For the CSX700 the HPL performance is derived from [99]. This estimate

compares fairly well with estimating the performance from the CSX600 perform-

Error! No text of specified style in document. 37

ance reported in [101] by scaling the performance with the ratio of the peak per-
formances of the CSX700 and CSX600 units, thus assuming the same efficiency
for the units. For the host plus CSX700 HPL performance the number is estimated
from the measured performance of an eight node system with four CSX700 per
node [78]. The performance of one such node was measured at 206.25GF with
43.75GF contributed by each CSX700. Thus, in this in this configuration the four
CSX units in a node contributed 175GF to the node performance and the host
31.25 GF.

In regards to efficiency we notice that for matrix multiplication all three archi-

tectures do well, as expected, with the host having a slight advantage. For sparse
matrix-vector multiplication none does well, with the CSX700 performing by far
the worst. Surprisingly the C1060 perfromed better than the host, but in combina-
tion with the host the C1060 is not efficient due to the low computational intensity
of sparse matrix-vector multiplication (computations and data transfer are both of
order O(N)).

For the FFT the C1060 offers the best efficiency using the optimized CUFFT

from nVidia which has about 50% higher efficiency than the optimized MKL for
the reference platform (38.5% vs. 24.7%). The CSX700 efficiency is less than
half of that of the reference platform and about 25% of the efficiency of the
C1060.

The HPL performance as expected is somewhat lower than that of matrix mul-

tiplication on which it depends heavily, and the relative merits of the host, the
C1060 and the CSX700 are about the same with the CSX700 however ending up
with an efficiency about the same as that of the C1060.

2.6 Power efficiency comparison

As previously mentioned the peak performances of the reference platform, the
C1060 and the CSX700 are fairly comparable, but the efficiencies achieved on the
platforms are quite different and the maximum power consumption is also quite
different. We did not have the opportunity to carry out power measurements for all
benchmarks. Estimated values are marked with *. The results are summarized in
Table 8.

Host Host+C1060 Host+CSX700
GF W GF/W GF W GF/W GF W GF/W

Mod2am 76 303 0.251 130* 490* 0.265* 130 315* 0.410*

38 Lennart Johnsson

Mod2f 20*[89] 250* 0.080* 40* 420* 0.095* 25* 260* 0.096*
HPL 69* 303* 0.230 0.270 75* 315* 0.238*

Table 8. Power efficiency of the configurations evaluated.

Adding a CSX700 to a node increases its maximum power consumption by

abut 5%, while the C1060 increases it with more than 60%. For matrix multiplica-
tion the CSX700 resulted in a total node performance of 130 GF in our tests and
hence the power efficiency increased from about 250 MF/W to about 410 MF/W.
The power efficiency for the CSX700 itself is about 5.3 GF/W (85GF, 16W)
whereas for the Nehalem itself is about 0.475GF/W (76 GF, 160W).

The power estimates for the FFT assumes about 80% (250W) of maximum

power for the reference platform. The C1060 in itself has a power efficiency of
about 0.175 GF/W (30GF, 170*W) whereas the Nehalem itself has a power effi-
ciency of about 0.155 GF/W (10*GF, 65*W). The CSX700 itself has significantly
higher power efficiency; about 0.700 GF/W (10GF, 14*W)

For HPL the power efficiency improves for a host with accelerator compared to

the host itself, as expected from the results for matrix multiplication. The marginal
improvement for a host with CSX700 is surprising. Considering the CPU itself it
has a power efficiency of about 0.440 GF/W (35GF, 80*W), whereas the C1060
itself is estimated to 0.265 GF/W (50GF, 190*W) and the CSX700 is estimated to
3GF/W (45*GF,15*W).

The power efficiency of the CSX700 is a factor of 4 –10 higher than that of the

CPU itself for matrix multiplication, FFT and HPL, but unfortunately for FFT and
HPL the relatively low fraction of peak realized cause the total platform power ef-
ficiency to increase only marginally for a host combined with a single CSX700.
The C1060 power efficiency for matrix multiplication, 0.34GF/W (64GF, 190*W)
is less than that of the Nehalem, which is also the case for HPL, but the power ef-
ficiency is slightly higher for the FFT.

Error! No text of specified style in document. 39

3. Programming Tools Assessment

3.1 HMPP (Hybrid Multi-core Parallel Programming)

The Hybrid Multi-core Parallel Programming (HMPP) preprocessor by CAPS [66,
67, 102] use directives inserted into the source code to control code generation.
The directives have the form of special comments in Fortran and pragmas in C.
Using the directives the HMPP preprocessor directs the code generation to be
made for the desired device by a compiler for that device. The HMPP preproces-
sor generates the code necessary to manage the data transfers between the host and
accelerators and seeks to optimize it. By using directives an annotated code can be
compiled by any compiler for any desired platform and hence the annotated code
is as portable as the original code. The HMPP preprocessor has a fallback mecha-
nism should an executable code fail to be generated for a particular target accel-
erator. Should that be the case code is generated for the host by the compiler used
for it. The HMPP directives are designed to target functions (codelets) that can be
executed on accelerators and for optimizing the data transfers between the host
and accelerators.

The architecture of the preprocessor is shown in Figure 28 in which two back-

ends of current interest are shown. The HMPP memory model is illustrated in
Figure 29. Our focus was on the CUDA back-end because the OpenCL specifica-
tion was just released at the time of this study. Our target was the nVidia C1060
GPU as accelerator for IA-32 servers. The test platform had dual socket quad-core
2.8 GHz Intel Harpertown CPUs. Initially the HMPP Workbench 1.5.3 was used,
later release 2.1.0sp1 when it became available. For the host the Intel compiler
version 11.1 was used and for the C1060 the CUDA 2.3 environment.

40 Lennart Johnsson

Fig. 28. The architecture of the HMPP preprocessor [66].

Fig. 29. The HMPP memory model (HWA = HardWare Accelerator) [67]

An example of the use of the HMPP directives is shown in Figure 30.

Error! No text of specified style in document. 41

// simple codelet declara-

tion
#pragma hmpp Hmxm codelet,

args[a;b].io=in,
args[c].io=out,
args[a].size={m,l},
args[b].size={l,n},
args[c].size={m,n}, TARGET=CUDA

void mxm(int m, int l, int
n, const double a[m][l], const
double b[l][n],
double c[m][n])

{ int i, j, k;
 for (i = 0; i < m; i++)

{
 for (j = 0; j < n;

j++) {
 c[i][j] = 0.0;}}
 for (i = 0; i < m; i++)

{
 for (k = 0; k < n;

k++) {
 for (j = 0; j <

l; j++) {
 c[i][k] =

c[i][k] + a[i][j] * b[j][k];}}}

// usage of the codelet
#pragma hmpp Hmxm advancedload,

args[a;b], args[a].size={m,l},
args[b].size={l,n}

for (i = 0; i < nrep; i++) {
#pragma hmpp Hmxm callsite,

args[a;b].advancedload=true
#pragma hmpp Hmxm callsite
 mxm(m, l, n, (double

(*)[m]) a, (double (*)[n]) b, (dou-
ble (*)[n]) c);

}
#pragma hmpp Hmxm delegatedstore,

args[c]

Fig. 30. Illustration of use of HMPP pragma’s for definition and use of codelets [78].

The result of using HMPP for matrix multiplication for the C1060 is shown in

Figure 31 and for sparse matrix-vector multiplication in Figure 33. These two rou-
tines were the only two ported during the course of this study. For matrix multipli-
cation the CUDA code generated by HMPP for a “simple” port has a performance
of 60 – 75% of the CUBLAS performance as seen by comparing Figures 31 and
18, which is a very good result for a small effort. However, after code optimiza-
tion using good knowledge of the target architecture and HMPP performance
comparable to, or even better than, that of CUBLAS was obtained, as seen in Fig-
ure 32.

42 Lennart Johnsson

MOD2AM

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

100 1000 10000
problem size

CPU (NHM MKL 4
threads)
HMPP 1 C1060 DP

M
FL

O
P

Fig. 31. Mod2am performance on the C1060 using HMPP [78].

Fig. 32. Optimized performance of matrix multiplication using HMPP com-
pared to CUBLAS for the C1060 [77].

Error! No text of specified style in document. 43

MOD2AS

-500
0

500
1000
1500
2000
2500
3000
3500
4000
4500

100 1000 10000
problem size

M
FL

O
P

CPU (NHM MKL 4
threads)
HMPP 1 C1060 DP

Fig. 33. Mod2as results on the C1060 using HMPP [78].

The lessons learned from the limited use of HMPP are [78]:

Modifying a code to use HMPP to generate a functional code for a GPU is sim-

ple. The resulting performance may be quite good for a modest effort, or fairly
poor depending on the nature of the computations. For “optimal” performance on
a GPU the original code is likely to require modification, unless designed to work
well on a streaming architecture.

• Some constructions (such as reductions) are difficult to parallelize and do not

perform well on GPUs (or many other highly parallel architectures, some of
which have special hardware for reduction operations).

• Producing optimized code for heterogeneous node architectures requires in-
depth knowledge of the hardware (not specific to HMPP or GPUs)

• Astute directives for code generation (such as loop reordering, loop fusion, etc.)
are a great help to boost performance.

• The performance of codes generated by using HMPP can be equal to or better
than that offered by vendor libraries, which is very encouraging.

3.2 RapidMind

The RapidMind Multi-Core Development Platform [103, 104] was designed for
application code portability across platforms, including multi-core CPUs, GPUs
and the CBE [57]. About a year after this study was initiated RapidMind was ac-

44 Lennart Johnsson

quired by Intel and the RapidMind technology integrated with Intel’s Ct technol-
ogy [14, 15, 104,105] and some of it recently released as part of Intel’s Array
Building Blocks (ArBB) [107, 108, 109]. RapidMind targeted a data parallel pro-
gramming model (as did Ct) but did support task-parallel operations. RapidMind
added special types and functions to C++ enabling a programmer to define opera-
tions (functions) on streams (special arrays). By the freedom to define array opera-
tions RapidMind supported more powerful array operations than, e.g., those avail-
able in Fortran. Data dependencies and data workflows could be easily described
and information necessary for an efficient parallelization included. The compiler
and the runtime environment had sufficient information to decide how to auto-
parallelize code.

We report results using RapidMind to generate code for the C1060 for matrix

multiplication, Figure 34, sparse matrix-vector multiplication, Figure 35, and the
radix-4 complex-to-complex 1-D FFT, Figure 36. As can be seen from Figure 34
RapidMind only achieves about 25% of the performance of CUBLAS. The “sim-
ple” version was created by adding 20 lines of RapidMind code to the mod2am
code from EuroBen. The GPU-optimized code made use of code downloaded
from the RapidMnd developer web site. For sparse matrix-vector multiplication
RapidMind again achieved about a quarter of the performance of CUBLAS, and
for the FFT it achieved about 20% of the performance of our CUDA code. Using
RapidMind a first executable was fairly easy to generate, but to achieve good per-
formance significant work and insight into RapidMind and the target architectures
was necessary. A more in-depth discussion of the RapidMind porting effort can be
found in [110]

Fig. 34. . Mod2am results using RapidMind compared to using
CUDA on the C1060 and MKL on the reference platform [78].

Error! No text of specified style in document. 45

Fig. 35. Mod2as results using RapidMind compared to CUDA on the
C1060 and MKL on the reference platform [78].

Fig. 36. Mod2f results using RapidMind compared to CUDA on the C1060
and MKL with one thread on the reference platform [78].

3.3 PGI Accelerator Compilers

46 Lennart Johnsson

PGI in 2009 released enhanced versions of their C and Fortran compilers that use
directives to control code generation for specialized hardware [71, 72] like GPUs
using a similar approach to the one used for the HMPP preprocessor. We investi-
gated the PGI accelerator compiler capabilities on the matrix multiplication and
sparse matrix-vector multiplication EuroBen codes. The results are shown in Fig-
ures 37 and 38. For matrix multiplication the generated code achieved a peak per-
formance slightly in excess of 8GF, or 11% of the peak C1060 performance. On
the host platform the PGI compiler generated code achieved at best 17% of theo-
retical peak. For the sparse matrix-vector multiplication it is interesting to note
that he PGI compiler generated code achieves a performance comparable to that of
MKL. However, on the GPU the performance of the PGI generated code is sig-
nificantly lower than that of the CUBLAS, see Figure 19.

Fig. 37. Mod2am results using the PGI Accelerator C compiler for the
C1060 [78].

Error! No text of specified style in document. 47

Fig. 38. Mod2as results using the PGI Accelerator C compiler for the
C1060 [78].

3.4 Programming Tools Comparison

The CAPS HMPP preprocessor as well as the PGI Accelerator Compiler and
RapidMind were immature tools at the time of this study. OpenCL was also in-
cluded but the beta compilers available during this effort were buggy and the port-
ing efforts had significant problems. For matrix multiplication, which is ideal for
many architectures, including GPUs, and a function for which many compilers
perform well, the GPU codes generated by RapidMind and the PGI Accelerator
Compiler were not good. The performance achieved was at best about 20% and
11% of peak, respectively. The CAPS HMPP preprocessor did better and after an
optimization effort generated code that performed comparable to the CUBLAS, a
very good result. For sparse matrix-vector multiplication all tools generated poor
code for the C1060 with a peak performance of much less than 1% of peak and a
factor 5 – 10 worse than CUBLAS. The PGI Accelerator Compiler generated good
code though for the host (comparable in performance to MKL).

Clearly, producing code that performs well is a very important aspect of a pro-

gramming tool for HPC. However, ease of use including debugging is also impor-
tant for productivity [111] as determined in the DARPA High Productivity Com-

48 Lennart Johnsson

puting Systems program [112]. Measuring productivity is difficult since many
hard to measure factors may influence the outcome, such as the programmers ex-
perience with similar programming tasks, familiarity with the tools, platform etc,
and the extent to which code needs to be modified or entirely redesigned, rewritten
and debugged. Though the number of lines of code is a debated measure it is gen-
erally agreed that error rates and debugging time are likely to increases with in-
creased code size, and that fewer lines of code is an indication of the expressive-
ness and quality of a language. Thus, for the porting efforts undertaken the
number of lines of code was measured, and so was the time to produce and debug
the code, and in some cases optimize it. Though there is much uncertainty in the
data it nevertheless appears true that languages and programming models targeting
expressiveness do result in shorter codes [113].

Table 9 shows a sample of the measurements. The lines of codes reported are

true but unfortunately misleading in that the HMPP code includes several versions
that were produced in attempting to get good performance [78]. But the code size
for one version is nevertheless larger than for RapidMind. The reported time for
RapidMind, which include learning the tool, does show that the learning curve can
be significant for new tools that address a complex programming situation.

Lines of code Development time Performance
(% of peak)

mod2am mod2as mod2am mod2as mod2am mod2as
CAPS HMPP 976 979 5 0.5 78.99 0.09
RapidMind 30 27 18.5 12 19.85 0.29

Table 9. Programmer productivity measurements for mod2am and mod2as using
CAPS HMPP and RapidMind.

Error! No text of specified style in document. 49

4 Conclusions

Though double-precision arithmetic performance was not a strong point for GPU
at the time of the evaluation, the expected evolution of GPU performance and pro-
grammability and potential advantage in energy efficiency made it interesting for
PRACE to evaluate GPUs as accelerators for future HPC systems, in particular
from a programming and energy efficiency point of view. The programming is-
sues associated with heterogeneous node architectures and the streaming architec-
ture of GPUs are likely to remain as support for double-precision arithmetic and
programming flexibility in future generations of GPUs improve. This expectation
has already been realized to some degree since our study was undertaken.

In regards to the fraction of peak performance achieved for the Nehalem CPU,

and the C1060 and the CSX700 by themselves, the Nehalem performed the best
for matrix multiplication with an efficiency of 93.9%, with the CSX700 being
second at 88.5% and the C1060 being third at 82.1%. From an energy perspective
the CSX700 outperformed the CPU by a factor of more than 11 and the C1060 by
an estimated factor of more than 15. For HPL the differences were somewhat less
dramatic with the CSX700 having a power efficiency about 7 times higher than
the Nehalem CPU and a power efficiency more than 10 times that of the C1060.
For FFT, the C1060 with a good library implementation achieved a peak effi-
ciency of close to 40%, about 50% better than the CPU. The CSX700 did not per-
form well and only achieved 25% efficiency. However, because it only consumes
less than 10% of the power of the C1060, it still had the best power efficiency, es-
timated at more than three times that of the C1060. The estimated power effi-
ciency of the Nehalem for FFT was about half of that of the C1060, but the Neha-
lem CPU itself has comparable power efficiency. The C1060 performed
surprisingly well on the sparse matrix-vector multiplication benchmark and indeed
performed significantly better than the CPU, and should also, despite its high
power consumption have a power efficiency much better than the CPU. The
CSX700 performed very poorly on the sparse matrix-vector multiplication.

In regards to an integrated system as expected the data transfers between the

CPU memory and the accelerators have a significant impact on the benefit for less
compute intensive tasks, such as FFT and in particular sparse matrix-vector multi-
plication. For compute intensive tasks such as matrix multiplication and HPL the
accelerators offers both a performance boost and improved power efficiency,

50 Lennart Johnsson

while for computations such as FFT the performance improvement may be less
but a power efficiency improvement may still be possible because “shared infra-
structure”, such as memory, is included in the host measures.

For all the power efficiency measurements and estimate we caution that results

can easily be misleading depending on the intended objective. Measuring total
power consumption and performance is fairly straightforward, but in attempting to
assess what to expect for future generation systems it is necessary to have obser-
vations for the various components themselves, since the components are likely to
change in different ways. Component energy measurements are difficult and may
require hardware modification, in particular for current measurements.

 The programming tools that were evaluated were all immature, with OpenCL

being so immature that reliable results were not obtained. For HMPP and Rapid-
Mind creating a usable code was quite simple and only required a modest learning
effort, but creating an efficient code required a measurable effort requiring good
knowledge of both the tool and the architecture of the target devices.

Acknowledgements

The results reported here are due to efforts by many members of the PRACE Pre-
paratory Phase Work Package 8 and documented in a deliverable to the European
Commission under grant agreement RI-211528 within the EU Commission’s in-
frastructure initiative INFRA-2007-2.2.2.1. Support for this effort has also been
received from SNIC, the Swedish National Infrastructure for Computing a meta-
center for HPC under the Swedish Research Council which is gratefully acknowl-
edged.

Error! No text of specified style in document. 51

References

4004 Single Chip 4-Bit P-Channel Microprocessor (1987): Intel Corporation. [17]
AMD Opteron™ Processor Pricing (2011) Advanced Micro Devices, Inc. Retrieved May 2,

2011, from http://www.amd.com/us/products/pricing/Pages/server-
opteron.aspxAdvanced Micro Devices, Inc. [46]

ATI Radeo HD 5870 Graphics Advanced Micro Devices, Inc. Retrieved May 2, 2011, from
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-
5870/Pages/ati-radeon-hd-5870-overview.aspx#2Advanced Micro Devices, Inc. [37]

CAPS) CAPS enterprise, from http://www.caps-entreprise.com/index.phpCAPS enterprise
[68]

Cell (2011, April 28) Wikipedia, from
http://en.wikipedia.org/w/index.php?title=Cell&oldid=426379510Wikipedia [58]

ClearSpeed ClearSpeed Technology, from http://www.clearspeed.com/ClearSpeed Tech-
nology [75]

Comparison of AMD graphics processing units (2011, May 2) Wikipedia, from
http://en.wikipedia.org/w/index.php?title=Comparison_of_AMD_graphics_processing
_units&oldid=427053994Wikipedia [36]

Comparison of Nvidia graphics processing units (2011, May 3) Wikipedia, from
http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_unitsWikipe
dia [38]

Connection Machine (2011, April 25) Wikipedia, from
http://en.wikipedia.org/wiki/Connection_MachineWikipedia [8]

CSX700 Datasheet (2011). (06-PD-1425 Rev 1E). [79]
CSX700 Processor (2011). [76]
CUDA (2011, May 2) Wikipedia, from

http://en.wikipedia.org/w/index.php?title=Special:Cite&page=CUDA&id=427059959
Wikipedia [73]

CUDA Case Studies (2009). [95]
CXSL User Guide (2010). (06-RM-1305), 54. [98]
EuroBen Benchmark EuroBen, from http://www.euroben.nl/index.phpEuroBen [83]
Evans & Sutherland (2011, March 18) Wikipedia, from

http://en.wikipedia.org/wiki/Evans_%26_SutherlandWikipedia [26]
Evans & Sutherland) Evans & Sutherland, from http://www.es.com/Evans & Sutherland

[24]
Flynn's Taxonomy (2011, May 4) Wikipedia, from

http://en.wikipedia.org/wiki/Flynn's_taxonomyWikipedia [11]
GeForce 256 NVIDIA Corporation Retrieved May 2, 2011, from

http://www.nvidia.com/page/geforce256.htmlNVIDIA Corporation [30]
Goodyear MPP (2011, April 25) Wikipedia, 2011, from

http://en.wikipedia.org/wiki/Goodyear_MPPWikipedia [7]
GPU shipments report by Jon Peddie Research Jon Peddie Research, from

http://jonpeddie.com/publications/market_watch/Jon Peddie Research [31]

52 Lennart Johnsson

Graphics processing unit (2011, May 4) Wikipedia, from
http://en.wikipedia.org/w/index.php?title=Graphics_processing_unit&oldid=42715259
2Wikipedia [29]

HMPP Open Standard (2011, February 23) Wikipedia, from
http://en.wikipedia.org/w/index.php?title=HMPP_Open_Standard&oldid=415481893
Wikipedia [67]

HP Challenge Benchmark Record (2011) University of Tennessee Retrieved May 2, 2011,
from http://icl.cs.utk.edu/hpcc/hpcc_record.cgi?id=403University of Tennessee [43]

HPC Challenge Benchmark Record (2011) University of Tennessee, from
http://icl.cs.utk.edu/hpcc/hpcc_record.cgi?id=434University of Tennessee [45]

Hybrid Multi-core Parallel Programming Workbench,) CAPS Enterprise, from
http://www.caps-entreprise.com/fr/page/index.php?id=49&p_p=36CAPS Enterprise
[66]

IA-32 (Intel Architecture 32-bit) (2011, April 29) Wikipedia, from
http://en.wikipedia.org/wiki/IA-32Wikipedia [35]

ILLIAC IV (2011, April 25) Wikipedia Retrieved May 2, 2011, from
http://en.wikipedia.org/wiki/ILLIAC_IVWikipedia [5]

ILLIAC IV System Characteristics and Programming Manual (1972). Burroughs Corpora-
tion. [6]

ILLIAC IV Burroughs Corporation, from
http://archive.computerhistory.org/resources/text/Burroughs/Burroughs.ILLIAC%20IV
.1974.102624911.pdfBurroughs Corporation [3]

Intel 4004 (2011, April 2) Wikipedia, from
http://en.wikipedia.org/wiki/Intel_4004Wikipedia [20]

Intel 56XX Series Products (Formerly Westemere-EP_) Intel Corporation Retrieved May
2, 2011, from http://ark.intel.com/ProductCollection.aspx?codeName=33174Intel Cor-
poration [40]

Intel Hyper-Threading Technology (Intel HT Technology)) Intel Corporation, from
http://www.intel.com/technology/platform-technology/hyper-threading/index.htmIntel
Corporation [88]

Intel Math Kernel Library Intel Corporation, from http://software.intel.com/en-
us/articles/intel-mkl/Intel Corporation [85]

Intel Processor Clock Speed (MHz)), from
http://smoothspan.files.wordpress.com/2007/09/clockspeeds.jpg [49]

Intel Xeon Processor E5540) Intel Corporation, from
http://ark.intel.com/Product.aspx?id=37104&processor=E5540&spec-
codes=SLBF6Intel Corporation [97]

Intel(R) Array Building Blocks for Linux OS, User's Guide (2011). (324171-006US), 74.
[109]

Intel(R) Array Building Blocks Virtual Machine, Specification (2011). (324820-002US),
118. [108]

Intel's Ct Technology Code Samples (2010) Intel, from http://software.intel.com/en-
us/articles/intels-ct-technology-code-samples/Intel [106]

Introducing Intel many Integrated Core Architecture) Intel Corporation, from
http://www.intel.com/technology/architecture-silicon/mic/index.htmIntel Corporation
[61]

Error! No text of specified style in document. 53

LDS-1/PDP-10 Display System. In ESC Corporation (Ed.). Salt Lake City: Evans & Suth-
erland Computer Corporation. [23]

Linpack, ClearSpeed (2010) CleerSpeed Technology Limited, from
http://www.clearspeed.com/applications/highperformancecomputing/hpclinpack.phpCl
eerSpeed Technology Limited [99]

Memory Bandwidth (STREAM) – Two-Socket Servers (including AMD Opteron™ 6100
Series Processors) (2011) Advanced Micro Devices, Inc. Retrieved May 2, 2011, from
http://www.amd.com/us/products/server/benchmarks/Pages/memory-bandwidth-
stream-two-socket-servers.aspxAdvanced Micro Devices, Inc. [44]

Non-Uniform Memory Access (2011, May 1) Wikipedia, from
http://en.wikipedia.org/wiki/Non-Uniform_Memory_AccessWikipedia [84]

OpenCL - The open standard for parallel programming of heterogeneous systems (2011)
Khronos Group, from http://www.khronos.org/opencl/Khronos Group [62]

Pentium 4 (2011, May 3) Wikipedia Retrieved May 2, 2011, from
http://en.wikipedia.org/wiki/Pentium_4Wikipedia [48]

PGI Accelerator Programming Model for Fortran & C (2010). 36. [72]
Portland Group Inc. Accelerated Compilers) STMicroelectronics from

http://www.pgroup.com/resources/accel.htmSTMicroelectronics [71]
PRACE PRACE, from http://www.prace-ri.eu/PRACE [65]
PRACE Preparatory Phase Project, Deliverable 8.3.1, Technical Component Assess-ment

and Development Report (2009). [77]
Productivity benefits of Intel Ct Technology (2010) Intel Corporation, from

http://software.intel.com/en-us/articles/productivity-benefits-of-intel-ct-
technology/Intel Corporation [105]

RapidMind (2011, April 29) Wikipedia, from
http://en.wikipedia.org/wiki/RapidMindWikipedia [16]

RapidMind (2011, April 29) Wikipedia, from
http://en.wikipedia.org/wiki/RapidMindWikipedia [69]

Silicon Graphics (2011, March 29) Wikipedia, from
http://en.wikipedia.org/wiki/Silicon_GraphicsWikipedia [28]

Sophisticated library for vector parallelism, Intel Array Building Blocks: A Flexible Paral-
lel Programming Model for Multicore and Many-Core Architectures) Intel Corpora-
tion, from http://software.intel.com/en-us/articles/intel-array-building-blocks/Intel
Corporation [107]

Tesla C1060 Computing Processor Board Specification (2010). (BD-04111-001_v06). [96]
Tesla C2050/C2070 GPU Computing Processor (2010): NVIDIA Corporation. [39]
The Cell project at IBM Research IBM, from http://www.research.ibm.com/cell/IBM [59]
The Cray-1 Computer System (1976). Minnesota: Cray Research, Inc. [2]
The Green 500: ranking the world’s most energy-efficient supercomputers (2010) The

Green500 Retrieved May 2, 2011, from www.green500.orgThe Green500 [92]
The Intel 4004, A Big Deal Then, A Big Deal Now) Intel Corporation Retrieved May 2,

2011, from
http://www.intel.com/about/companyinfo/museum/exhibits/4004/facts.htmIntel Corpo-
ration [18]

The OpenCL Specification Version: 1.1 (2010). 379. [63]
Top 500) Top500.org, from http://www.top500.org/Top500.org [21]

54 Lennart Johnsson

What is CUDA? (2011) NVIDIA Corporation, from
http://www.nvidia.com/object/what_is_cuda_new.htmlNVIDIA Corporation [74]

Writing Applications for the GPU Using the RapidMind™ Development Platform (2006).
7. Retrieved from
http://www.cs.ucla.edu/~palsberg/course/cs239/papers/rapidmind.pdf [70]

A. Ali, Johnsson, L, & Mirkovic, D (2007). Empirical Auto-tuning Code Generator for
FFT and Trigonometric Transforms. Paper presented at the 5th Workshop on Optimi-
zations for DSP and Embedded Systems, 2007 International Symposium on Code
Generation and Optimization, San Jose, CA. [87]

A. Ghuloum, TS, G. Wu, X. Zhou, J. Fang, P. Guo, B. So, M. Rajagopalan, Y.Chen, B.
Chen. (2007). Future-Proof Data Parallel Algorithms and Software on Intel® Multi-
Core Architecture. Intel Technology Journal, 11(4). [15]

A. Petitet, RCW, J. Dongarra, A. Cleary (2008). HPL - A Portable Implementation of the
High-Performance Linpack Benchmark for Distributed-Memory Computers University
of Tennessee Computer Science Department Retrieved May 2, 2011, from
http://www.netlib.org/benchmark/hpl/University of Tennessee Computer Science De-
partment [22]

Alan D. Simpson, MB, Jon Hill (2008). [80]
Anwar Ghuloum, ES, Jesse Fang, Gansha Wu, Zin Zhou (2007). Ct: A Flexible Parallel

Programming Model for Tera-scale Architectures. [14]
Asanovic, K, Bodik, R, Catanzaro, BC, Gebis, JJ, Husbands, P, Keutzer, K, . . . Yelick, KA

(2006). The Landscape of Parallel Computing Research: A View from Berkeley.
(UCB/EECS-2006-183). [82]

Belady, CL. (2007). In the Data Center, Power and Cooling Costs More Than the IT
Equipment It Supports. Electronics Cooling. [47]

Bell, BS (2009). RV870 Architecture FS Media, Inc., from
http://www.firingsquad.com/hardware/ati_radeon_hd_5870_performance_preview/pag
e3.aspFS Media, Inc. [54]

Christadler, I, & Weinberg, V (2010). RapidMind: Portability across Architectures and its
Limitations. Paper presented at the Facing the Multi-core Challenge (Conference Pro-
ceedings), , Heidelberg. [110]

Clark, J. (1980). A VLSI Geometry Processor for Graphics. Computer Magazine, 13(7), 59-
68. [26]

Clark, J. (1982). The Geometry Engine: A VLSI Geometry Systems for Graphics. Com-
puter Graphics, 16(3), 127-133. [27]

Colella, P (2004). Defining Software Requirements for Scientific Computing. [81]
Dolbeau, R, Bihan, S, & Bodin, F (2007). HMPP: A Hybrid Multi-core Parallel Program-

ming Environment. Paper presented at the roceedings of the Workshop on General
Purpose Processing on Graphics Processing Units (GPGPU 2007), Boston.
http://www.caps-entreprise.com/upload/ckfinder/userfiles/files/caps-hmpp-gpgpu-
Boston-Workshop-Oct-2007.pdf [100]

Dolbeau, R, Bihan, S, & Bodin, F (2007). HMPP: A Hybrid Multi-core Parallel Program-
ming Environment. Paper presented at the Proceedings of the Workshop on General
Purpose Processing on Graphics Processing Units (GPGPU 2007), Boston. [102]

Error! No text of specified style in document. 55

Dongarra, J, Graybill, R, Harrod, W, Lucas, R, Lusk, E, Luszczek, P, . . . Tikir, M. (2008).
DARPA's HPCS Program: History, Models, Tools, Languages. Advances in Com-
puters, 72, 1-100. [112]

E. Phillips, MF (2010). CUDA Accelerated Linpack on Clusters, E. Phillips. [93]
Ed Grochowski, MA Energy per Instruction Trends in Intel® Microprocessors. [52]
Erbacci, G, Cavazzoni, C, Spiga, F, & Christadler, I (2009). Report on Petascale Software

Libraries and Programming Models. Deliverable 6.6(RI-211528), 163. [113]
Feldman, M (2009). Benchmark Challenge: Nehalem versus Istanbul, HPC Wire. HCP

Wire. Retrieved from http://www.hpcwire.com/hpcwire/2009-06-
18/benchmark_challenge_nehalem_versus_istanbul.html [90]

Gelas, JD (2008). Linpack: Intel’s Nehalem versus AMD Shanghai. Anandtech. Retrieved
from http://www.anandtech.com/show/3470 [91]

Gelas, JD (2010). AMD's 12-core "Magny-Cours" Opteron 6174 vs. Intel's 6-core Xeon
Anandtech, from http://www.anandtech.com/show/2978Anandtech [41]

Hills, WD (1989). The Connection Machine. Cambridge: MIT Press. [9]
Homberg, W (2009). Network Specification and Software Data Structures for the eQPACE

Architecture Jülich Supercomputing Center (JSC), from http://www2.fz-
juelich.de/jsc/juice/eQPACE_Meeting/Jülich Supercomputing Center (JSC) [60]

John Shalf, DD, Leonid Oliker, Michael Wehner (2006). Green Flash: Application Driven
System Design for Power Efficient HPC. Paper presented at the Salishan Conference
on High-Speed Computing. [64]

Johnsson, L (2011). Overview of Data Centers Energy Efficiency Evolution. In SR I
Ahmad (Ed.), Handbook of Green Computing: CRC Press. [56]

Kanellos, M (2001). Intel's Accidental Revolution. CNET News. Retrieved from CNET
News website: [19]

Kennedy, K, Koelbel, C, & Schreiber, R. (2004). Defining and Measuring the Productivity
of Programming Languages. International Journal of High Performance Computing
Applications, 18(4), 441-448. [111]

Kozin, IN (2008). Evaluation of ClearSpeed Accelerators for HPC. 15. [101]

Matsuoka, S, & Dongarra, J TESLA GPU Computint. [94]
McCalpin, JD). STREAM: Sustainable Memory Bandwidth in High-Performance Com-

puters University of Virginia Retrieved May 2, 2011, from
http://www.cs.virginia.edu/stream/University of Virginia [42]

McCool, MD. (2007). RapidMind Multi-core Development Platform. CASCON Cell Work-
shop. [104]

McCool, MD. (2008). Developing for GPUs, Cell, and Multi-core CPUs Using a Unified
Programming Model. The Linux Journal. [103]

Mirkovic, D, Mahasoom, R, & Johnsson, L (2000). An Adaptive Software Library for Fast
Fourier Transforms. Paper presented at the 2000 International Conference on Super-
computing, Santa Fe, NM. [86]

Moore, GE. (1965). Craming more components onto integrated circuits. Electronics, 38(8),
114-117. [1]

Introduction to Parallel GPU Computing, Center for Scalable Application Development
Software (2010 July 26-29). [34]

56 Lennart Johnsson

Petrov, V, & Fedorov, G (2010). MKL FFT performance – comparison of local and distrib-
uted-memory implementations. Intel Software Network. Retrieved from
http://software.intel.com/en-us/articles/mkl-fft-performance-using-local-and-
distributed-implementation/ [89]

Pettey, C. (2011). Gartner Says Worldwide PC Shipments in Fourth Quarter of 2010 Grew
3.1 Percent; Year-End Shipments Increased 13.8 Percent: Gartner, Inc. Retrieved from
http://www.gartner.com/it/page.jsp?id=1519417. [32]

Pettey, C, & Stevens, H (2011). Gartner Says 2010 Worldwide Server Market Returned to
Growth with Shipments Up 17 Percent and Revenue 13 Percent Gartner, Inc. Re-
trieved May 2, 2011, from http://www.gartner.com/it/page.jsp?id=1561014Gartner,
Inc. [33]

Pollack, F (1999). New Microarchitecture Challenges in the Coming Generations of CMOS
Process Technologies. Paper presented at the Proceedings of the 32nd Annual
IEEE/ACM International Symposium on Microarchitecture, Haifa, Israel. [51]

Ramnath Sai Sagar, JL, Aad van der Steen, Iris, & Christadler, HH (2010). PRACE Pre-
paratory Phase Project Deliverable 8.3.2, Final technical report and archi-tecture pro-
posal. [78]

Shimpi, AL (2010). New Westmere Details Emerge: Power Efficiency and 4/6 Core Plans
AnandTech, Inc., from http://www.anandtech.com/show/2930AnandTech, Inc. [53]

Team, TsG (2005). The Mother of All CPU Charts 2005/2006 Bestofmedia Network, from
http://www.tomshardware.com/reviews/mother-cpu-charts-
2005,1175.htmlBestofmedia Network [50]

Thelen, E (2003). The Connection Machine -1-2-5 Ed-Thelen.org Retrieved May 2, 2011,
from http://ed-thelen.org/comp-hist/vs-cm-1-2-5.htmlEd-Thelen.org [10]

Thelen, E (2005). ILLIAC IV Ed-Thelen.org Retrieved May 2, 2011, from http://ed-
thelen.org/comp-hist/vs-illiac-iv.htmlEd-Thelen.org [4]

Thomas Chen, RR, Jason Dale, Eiji Iwata (2005). Cell Broadband Engine Architecture and
its first implementation. Retrieved from
https://www.ibm.com/developerworks/power/library/pa-cellperf/ [57]

Thornton, JE (1963). Considerations in Computer Design - Leading Up to the Control Data
6600. [13]

Thornton, JE (1970). The Design of a Computer: The Control Data 6600. Glenview: Scott,
Foresman and Company. [12]

Valich, T (2010). nVidia GF100 Architecture: Alea iacta est. Retrieved from
http://www.brightsideofnews.com/print/2010/1/18/nvidia-gf100-architecture-alea-
iacta-est.aspx [55]

