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Abstract 
 
 
 

During the last few years the convergence in architecture for High-Performance 
Computing systems that took place for over a decade has been replaced by a di-
vergence. The divergence is driven by the quest for performance, cost-
performance and in the last few years also energy consumption that during the 
life-time of a system have come to exceed the HPC system cost in many cases. 
Mass market, specialized processors, such as the Cell Broadband Engine (CBE) 
and Graphics Processors, have received particular attention, the latter especially 
after hardware support for double-precision floating-point arithmetic was intro-
duced about three years ago. The recent support of Error Correcting Code (ECC) 
for memory and significantly enhanced performance for double-precision arithme-
tic in the current generation of Graphic Processing Units (GPUs) have further so-
lidified the interest in GPUs for HPC. 

 
In order to assess the issues involved in potentially deploying clusters with 

nodes consisting of commodity microprocessors with some type of specialized 
processor for enhanced performance or enhanced energy efficiency or both for 
science and engineering workloads, PRACE, the Partnership for Advanced Com-
puting in Europe, undertook a study that included three types of accelerators, the 
CBE, GPUs and ClearSpeed, and tools for their programming.  The study focused 
on assessing performance, efficiency, power efficiency for double-precision 
arithmetic and programmer productivity.  Four kernels, matrix multiplication, 
sparse matrix-vector multiplication, FFT, random number generation were used 
for the assessment together with High-Performance Linpack (HPL) and a few ap-
plication codes. We report here on the results from the kernels and HPL for GPU 
and ClearSpeed accelerated systems. The GPU performed surprisingly signifi-
cantly better than the CPU on the sparse matrix-vector multiplication on which the 
ClearSpeed performed surprisingly poorly. For matrix-multiplication, HPL and 
FFT the ClearSpeed accelerator was by far the most energy efficient device. 
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1. Introduction. 

 

1.1 Architecture and performance evolution  

 
High-Performance Computing (HPC) has traditionally driven high innovation in 
both computer architecture and algorithms.  Like many other areas of computing it 
has also challenged established approaches to software design and development. 
Many innovations have been responses to opportunities offered by the exponential 
improvements of capabilities of silicon based technologies, as predicted by 
“Moore’s Law”[1], and constraints imposed by the technology as well as packag-
ing constraints. Taking full advantage of computer system capabilities require ar-
chitecture aware algorithm and software design, and, of course, problems for 
which algorithms can be found that can take advantage of the architecture at hand. 
Conversely, architectures have historically been targeted for certain workloads. In 
the early days of electronic computers, even at the time transistor technologies re-
placed vacuum tubes in computer systems, scientific and engineering applications 
were predominantly based on highly structured decomposition of physical do-
mains and algorithms based on local approximations of continuous operators. 
Global solutions were achieved through a mixture of local or global steps depend-
ing on algorithm selected (e.g., explicit vs. implicit methods, integral vs. differen-
tial methods). In most cases methods allowed computations to be organized into 
similar operations on large parts of the domains and data accessed in a highly 
regular fashion. This fact was exploited by vector architectures, such as the very 
successful Cray-1 [2], and highly parallel designs such as the Illiac IV (1976) 
[3,4,5,6], the Goodyear MPP (Massively Parallel Processor) (1983) [7] with 
16,896 processors, the Connection Machine [8,9,10] CM-1 (1986) with 65,536 
processors and the CM-2 (1987) with 2048 floating-point accelerators,  These ma-
chines all were of the SIMD (Single Instruction Multiple Data) [11], data-parallel, 
or vector type, thus amortizing instruction fetch and decode over several, prefera-
bly large number of operands. The memory systems were designed for high 
bandwidth, which in the case of the Cray-1 [2] and the Control Data Corp. 6600 
[12,13] was achieved by optimizing it for access of streams of data (long vectors), 
and in the case of MPPs  through very wide memory systems. The parallel ma-
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chines with large numbers of processors had very simple processors, indeed only 
1-bit processors. (It is interesting to note that the data parallel programming model 
is the basis for Intel’s recently developed Ct technology [14,15] and was also the 
basis for RapidMind [16] acquired by Intel in 2009.) 

 
The emergence of the microprocessor with a complete CPU on a single chip 

[17,18,19,20] targeted for a broad market and produced in very high volumes of-
fered large cost advantages over high-performance computers designed for the 
scientific and engineering market and led to a convergence in architectures also 
for scientific computation. According to the first Top500 [21] list from June 1993, 
369 out of 500 systems (73.8%) were either “Vector” or “SIMD”, while by No-
vember 2010 only one Vector system appears on the list, and no SIMD system. 
Since vector and SIMD architectures were specifically targeting scientific and en-
gineering applications whereas microprocessors were, and still are, designed for a 
broad market, it is interesting to understand the efficiencies, measured as fraction 
of peak performance, achieved for scientific and engineering applications on the 
two types of platforms. The most readily available data on efficiencies, but not 
necessarily the most relevant,  is the performance measures reported on the 
Top500 lists based on High-Performance Linpack (HPL) [22] that solves dense 
linear systems of equations by Gaussian elimination. The computations are highly 
structured and good algorithms exhibit a high degree of locality of reference. For 
this benchmark, the average floating-point rate as a fraction of peak for all vector 
systems was 82% in 1993, Table 1, with the single vector system on the 2010 list 
having an efficiency of over 93%, Table 2.  The average HPL efficiency in 1993 
for “Scalar” systems was 47.5%, but improved significantly to 67.5% in 2010.  
The microprocessors, being targeted for a broad market with applications that do 
not exhibit much potential for “vectorization”, focused on cache based architec-
tures enabling applications with high locality in space and time to achieve good 
efficiency, despite weak memory systems compared to the traditional vector archi-
tectures. Thus, it is not all that surprising that microprocessor based systems com-
pare relatively well in case of the HPL benchmark. The enhanced efficiency over 
time for microprocessor based systems is in part due to increased on-chip memory 
in the form of three levels of cache in current microprocessors, and many added 
features to improve performance, such as, e.g., pipelining, pre-fetching and out-of-
order execution that add complexity and power consumption of the CPU, and im-
proved processor interconnection technologies.  Compiler technology has also 
evolved to make more efficient use of cache based architectures for many applica-
tion codes.  
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Processor 
Architecture Count Share % Rmax Sum (GF) Rpeak Sum 

(GF) 
Proces-

sor Sum 

Vector 334 66.80 % 650 792 1,242 

Scalar 131 26.20 % 408 859 15,606 

SIMD 35 7.00 % 64 135 54,272 

Totals 500 100% 1,122.84 1,786.21 71,120 

Table 1. June 1993 Top 500 list by process architecture [21] 

 
 

 

Processor 
Architecture Count Share 

% Rmax Sum (GF) Rpeak Sum (GF) Processor 
Sum 

Vector 1 0.20 % 122,400 131,072 1,280 

Scalar 497 99.40 % 43,477,293 64,375,959 6,459,463 

N/A 2 0.40 % 73,400 148280 11,584 

Totals 500 100% 43,673,092.54 64,655,310.70 6,472,327 

Table 2. November 2010 Top500 list by processor architecture [21] 

 
 
The scientific and engineering market also had a need for good visualization of 

simulated complex physical phenomena, or visualization of large complex data 
sets as occurring for instance in petroleum exploration.  Specialized processor de-
signs, like the LDS-1 [23] from Evans & Sutherland [24, 25] that initially targeted 
training simulators, evolved to also cover the emerging digital cinema market as 
well as engineering and scientific applications. As in the case of standard proces-
sors, semiconductor technology evolved to a point where much of the performance 
critical processing could be integrated on a single chip, such as the Geometry En-
gine [26,27] by Jim Clark who founded Silicon Graphics Inc [28] that came to 
dominate the graphics market until complete Graphics Processing Units (GPUs) 
could be integrated onto a single chip (1999) [29,30] at which time the cost had 
become sufficiently low that the evolution became largely driven by graphics for 
gaming with 432 million such units shipped in 2010 [31] (compared to about 350 
million PCs [32] and 9 million servers [33] according to the Gartner group). Thus, 
since in the server market two socket servers are most common, but four and even 
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8-socket servers are available as well, the volumes of discrete GPUs (as opposed 
to GPUs integrated with CPUs, e.g. for the mobile market) and CPUs for PCs and 
servers are almost identical.  Today, GPUs are as much of a mass market product 
as microprocessors are, and prices are comparable (from about a hundred dollars 
to about two thousand dollars depending on features).  

 
With their design target having been efficient processing for computer graphics 

GPUs lend themselves to vector/stream processing. As in the case of the vector 
machines for scientific and engineering applications GPUs are optimized for ap-
plying the same operation to large amounts of (structured) data and have memory 
systems that support high execution rates. Over time GPUs have enhanced their 
floating-point arithmetic performance significantly and since 2008 also incorpo-
rated hardware support for double-precision floating-point operations and moved 
towards support of the IEEE floating-point standard. Double-precision floating-
point performance and compliance with the IEEE floating-point standard are criti-
cal for many scientific and engineering applications.  The evolution of GPU float-
ing-point performance since 2002 is shown in Figure 1 [34]. 

 

 
 
Fig. 1. Performance growth of GPUs and CPUs 2002 – 2010. [34] 

 
 

As seen in Figure 1, in 2003 the GPU single-precision floating-point perform-
ance was only modestly higher than that of common IA-32 [35] microprocessors 
by, e.g., AMD and Intel, and there was no hardware support for double-precision 
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floating-point arithmetic, so many application developers in science and engineer-
ing did not find the benefits of porting codes to GPUs sufficiently large to warrant 
the effort to do so. However, as is also apparent from the figure, the performance 
trajectories for GPUs have been quite different from those of CPUs, so that today 
a GPU may have 10 – 30 times higher single-precision performance than a CPU, 
with the AMD/ATI Radeon HD5870 [36,37] having a peak single-precision per-
formance of 2.7 TF (1012 flops/s (floating-point operations per second)).  More-
over, today GPUs not only support double-precision arithmetic, but the perform-
ance advantage compared to a CPU may be a factor of five or more.  

 
Good application performance also requires high memory bandwidth. Today, 

the memory bandwidth for high-end GPUs is about 150 GB/s [36, 37, 38, 39], 
which compares very favorably with that of IA-32 microprocessors by AMD and 
Intel that today has a memory bandwidth of 25 – 30+ GB/s. (The Intel Westmere-
EP 6-core CPU has three memory channels each with a peak data rate of 10.8 
GB/s (32.4 GB/s total with DDR3 1.333 GHz DIMMs [40], whereas the AMD 
Magny-Cours 8- and 12-core CPUs have a peak memory data rate of 28.8 GB/s 
across four channels for DDR3 1.333 GHz DIMMs due to limitations in the North 
Bridge [41].  Observed Stream [42] benchmark numbers are 20.5 GB/s [43] and 
17.9 GB/s [41] for the Intel Westmere-EP CPU and 27.5 GB/s  [44], 24.7 GB/s 
[41] and 19.4 GB/s [45] for the AMD Magny-Cours CPU (on a per CPU basis). 

 
Thus, today GPUs offer about five times the memory bandwidth and about a 

factor of five higher peak double-precision floating-point performance than IA-32 
microprocessors, and the cost is comparable. For instance, nVidia’s Tesla C2050 
lists for about $2,500, and the ATI FirePro 3D V9800 is priced similarly, com-
pared to a list price of $1,663 for the top-of-the line Intel Westmere-EP CPU (3.46 
GHz, 6-cores, 12 MB L3 cache) [40] whereas the top-of-the line AMD Magny-
Cours CPU has a list price of $1,514 (2.5 GHz, 12-cores, 12GB L3 cache) [46]. 
The lowest costs versions of CPUs may cost as little as 20% of the top-of-the line 
CPUs, comparable to the GPUs targeted for the low end consumer market.  

 
 
 

1.2 Energy efficiency 

 
Performance and cost-performance are the traditional measures affecting choice of 
technology and platforms for high-performance scientific and engineering applica-
tions. In recent years energy efficiency in computation has become another impor-
tant and sometimes deciding factor in the choice of platform. Since a few years 
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ago the life-time energy cost including cooling of servers has exceeded the cost of 
the server itself, Figure 2 [47].  

 

 
 
Fig. 2.  Evolution of US power and cooling costs for a standard IA-32 server [47] 

 
 

For microprocessors a large contribution to the performance gain from one 
generation to the next was increased clock frequency, until about a decade ago. 
The first microprocessor, the Intel 4004 [17, 18, 19, 20] introduced in 1971 had a 
clock frequency of 0.74 MHz. By the end of 2002, Intel introduced a Pentium 4 
clocked at 3.06 GHz using its Northwood core [48]. The clock frequency was fur-
ther increased to 3.4 GHz in a version available in early 2004 and further to 3.8 
GHz in the Prescott core introduced later that year.  (The 3.8 GHz Prescott Pen-
tium 4 is the highest clock frequency ever used in an Intel CPU.) Thus, over a pe-
riod of about 30 years clock frequencies for Intel microprocessors increased by a 
factor of about 5,000, followed by a slight decline since its peak in 2004, Figure 3. 
The evolution is similar for CPUs from AMD, though traditionally AMD CPUs 
have operated at somewhat lower clock rates, as shown in Figure 4, and lower 
power consumption. 
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Fig. 3.  Intel CPU clock rates 1971 – 2007. [49] 

 
 

 
Fig. 4. AMD and Intel CPU clock rates, 1993.- 2005. [50] 

 
 
The reason for the apparent limit on clock frequency is that, for CMOS tech-

nology, the dominating technology for microprocessors, the dynamic switching 
power P depends on voltage and clock frequency as P  cV2f. This relationship is 
due to the fact that CMOS is a charge transfer technology in which charges on 
gates of transistors effectively acting as capacitors are drained and restored in 
switching transistors on or off. The energy stored on a capacitor (gate) is  cV2. 
Furthermore, for CMOS the clock frequency f   V. Hence, the power dissipation 
increases very rapidly with the clock frequency. In fact, even though V typically 
has been reduced form one chip generation to the next, the power density for Intel 
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CPUs doubled for each generation as shown in Figure 5. The evolution of the 
power consumption for AMD CPUs [50] has been similar, Figure 6. In 1999 Fred 
Pollack of Intel stated in his keynote at Micro 32 that “We are on the Wrong side 
of a Square Law” [51] and concluded with a new goal for CPU design: “Double 
Valued Performance every 18 months, at the same power level”, something that 
the industry has largely adhered to since almost a decade ago.  

 
 

 
 

Fig. 5. Heat density of Intel CPUs, Source Shekhar Borkar, Intel. 
 
 

 
Fig. 6. Comparison of the power consumption of AMD and Intel IA-32 
CPUs [50]. 
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The energy per instruction for a range of Intel CPUs [52] is shown in Table 3. 
The approach taken to achieve “Double valued performance every 18 months, at 
the same power level” has been to introduce multi-core CPUs exploiting reduced 
feature sizes in CPU manufacturing, and slightly reducing the maximum clock 
frequencies. This approach has enabled “double valued performance” to continue 
for applications that can take advantage of parallelism, but at a cost in application 
porting and development, and a challenge for compiler developers. High parallel-
ism is becoming main stream, not only by increased core count per chip, but also 
by increased number of operations a core can perform in a single clock cycle, 
from one floating-point operation  per cycle about a decade ago for IA-32 designs 
to currently four and in the next generation eight, resulting in a capability to cur-
rently carry out 48 floating-point operations per cycle in the case of the AMD 12-
core chip. 

 
 
 
 

Product 
Normalized 
Performance 

Normalized 
Power 

EPI on 65 nm at 
1.33 volts (nJ) 

i486  1.0  1.0  10 
Pentium  2.0  2.7  14 
Pentium Pro  3.6  9  24 
Pentium 4 
(Willamette)  6.0  23  38 
Pentium 4 
(Cedarmill)  7.9  38  48 
Pentium M 
(Dothan)  5.4  7  15 
Core Duo 
(Yonah)  7.7  8  11 

Table 3. Energy per instruction for Intel CPUs [52]. 

 
 
The power consumption of CMOS processors, as mentioned above, raises 

steeply with the clock frequency, and of course the number of transistors.  The 
most recent IA-32 CPU by Intel, the 6-core Westmere-EP CPU,  (3.46 GHz, 1.17 
billion transistors, 240 mm2 in 32 nm technology) [53] and by AMD, the 8- and 
12-core Magny-Cours CPU (2.5 GHz, 2 billion transistors, 692mm2 in 45 nm 
technology) [41] both dissipates up to 130 -140W in their highest clock rate ver-
sions, while the current generation GPUs from AMD/ATI (0.825 GHz, 2.15 bil-
lion transistors, 334 mm2 in 40nm technology) [36,54] and nVidia (0.575 GHz, 3 
billion transistors, 550mm2 also in 40 nm technology) [38,55] both have a maxi-
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mum power rating of 225W. But, since the GPUs have a peak double-precision 
performance about five times higher than that of the IA-32 CPUs, the GPUs still 
may deliver higher energy efficiency for applications. We summarize this infor-
mation in Table 4. 

 

Table 4. Some chip characteristics for CPU and GPU processors. (* limited to 28.8 
GB/s by the Northbridge) 

 
 

 Estimates of the peak double-precision floating-point rate per W at the chip 
level is shown in Table 5 [56] for a few processors. The table shows an advantage 
by a factor of 2.5 to about 4 of GPUs over CPUs. Thus, GPUs in addition to offer-
ing potentially higher performance and lower cost-performance in regards to 
hardware cost, GPUs also have the potential to offer a further cost advantage by 
being more energy efficient and more environmentally friendly despite their 
higher power rating. 
 

 
ARM Coretx-9 ATOM AMD 12-core Intel 6-core ATI 9370 

Cores W GF/W Cores W GF/W Cores W GF/W Cores W GF/W Cores W GF/W 

4 ~2 ~0.5 2 2+ ~0.5 12 115 ~0.9 6 130 ~0.6 1600 225 ~2.3 
 

nVidia Fermi TMS320C6678 IBM BQC ClearSpeed CX700 

Cores W GF/W Cores W GF/W Cores W GF/W Cores W GF/W 

512 225 ~2.3 8 10 ~4 16 ~50 ~4 192 10 ~10 

Table 5. Estimates of theoretical performance/W for some processor alternatives 
[56]. 

 

 nm Trans. 
(Billions) 

Die 
mm2 Cores Memory 

BW GB/s 
I/O BW 
 GB/s 

GF 
DP W 

Nehalem-EP 45 0.731 263 4 3x10.8 2x25.6 53.3 130 
Westmere-EP 32 1.17 240 6 3x10.8 2x25.6 83.0 130 

AMD Magny-Cour 45 2 692 12 4x10.8* 4x25.6 120.0 137 
Tesla C1060 65 1.4 576 240 102.4 8 77.8 188 
Tesla C2050 40 3 550 448 144 8 515.2 225 
ATI HD5870 40 2.15 334 1600 153.6 8 544 225 
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The potential for higher energy efficiency than that of IA-32 CPUs is indeed 
real as demonstrated by measurements for HPL. The Green500 list ranks systems 
on the Top500 list based on their HPL energy efficiency. On the November 2010 
list eight of the ten most energy efficient systems use some form of accelerator, 
with five using GPUs and three using the Cell Broadband Engine (CBE)[57, 58, 
59]. Systems using GPUs ranked 2nd, 3rd, 8th, 9th, and 10th.  The IBM Blue Gene/Q 
to be delivered late in 2011 or 2012 ranked 1st with an energy efficiency of 1,684 
MF/W. Compared to the Blue Gene/P, its predecessor, the BG/Q has double the 
execution width of each core, and twice the number of cores per node.  Few de-
tails are available at this time. The most energy efficient GPU accelerated system 
achieved an efficiency of 958 MF/W, while the most energy efficient system using 
the CBE for acceleration achieved 773 MF/W [60].  This system used an experi-
mental interconnection network connecting nodes via the CBE internal high-speed 
bus. Non-accelerated systems using the latest generation IA-32 CPUs achieved an 
energy efficiency of about 350 – 400 MF/W for HPL. 

 

 
 

Fig. 7. The 10 most energy efficient systems on the November 2010 Top500 list [18] 
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1.3 GPU integration and Programming 

 
Programming and code generation for both CPUs and GPUs today requires effec-
tive exploitation of parallelism for high efficiency. IA-32 CPUs support common 
programming languages, such as C, C++, Fortran, etc with a choice of mature 
compilers that generate efficient code. GPUs on the other hand with a quite differ-
ent memory architecture and different instruction set have traditionally required 
specialized and sometimes proprietary languages and compilers.  This fact, and 
the lack of architectural support for many operations commonly used in science 
and engineering applications have been a limiting factor on their wide-spread 
adoption. However, the hardware support for general purpose use of GPUs is im-
proving rapidly, thus lowering the barrier towards wide adoption.  The good dou-
ble-precision arithmetic performance and support for IEEE arithmetic are also im-
portant factors in today’s strong interest in GPUs.  However, GPUs are not stand-
alone processors and requires a host, which typically for HPC applications is a 
common microprocessor. GPUs are “add-on” units typically integrated into the 
system using the I/O bus of the CPU. This bus can be a performance bottleneck in 
many cases since data needs to move between the CPU memory and the smaller 
but faster GPU memory for many applications. As GPUs become integrated onto 
CPU chips this bottleneck will disappear, but at least initially the GPUs integrated 
with CPUs on the same chip will not have their own high bandwidth memory sys-
tem one of the key advantages of today’s GPUs. In future generation CPUs the 
role of GPUs or stream processors may very well change for the scientific and en-
gineering market and stream or vector architectures taking on the primary role, as 
in the case of Intel’s Many Integrated Core (MIC) CPUs [61].  

 
To alleviate some of the programming issues associated with having to produce 

code for both CPUs and GPUs in a heterogeneous node the Open Computing Lan-
guage [62], OpenCL, was conceived with version 1.0 published in December 2008 
and version 1.1 in September 2010 [63]. OpenCL has been developed by the 
Khronos Group that also developed OpenGL. Because of the potential benefits of 
being an Open Standard, OpenCL was included in the assessment despite the fact 
that only prerelease compilers were available.   

 

1.4 Concurrency comparison between CPUs and GPUs 

  
On-chip parallelism is increasing rapidly for both CPUs and GPUs. The current 
generation CPUs can carry out up to about 50 double-precision floating-point op-
erations concurrently (48 for the AMD 12 core Magny-Cours CPUs) whereas 
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GPUs can carry out in the order of 500 – 600 double-precision floating-point op-
erations concurrently (640 for the AMD/ATI HD5870 and FirePro 3D 
V9800GPUs). Though the concurrency for GPUs is about 10 times higher than for 
CPUs, the peak performance difference is smaller because the GPUs operate at 
lower clock frequency (e.g. max 2.5 GHz for the AMD 12-core CPU versus max 
0.825 GHz for the AMD/ATI GPU)).  As silicon technologies evolve to allow for 
smaller feature sizes enabling more transistors to be put on the same die, chip de-
signers so far has used the increased capability for additional cores, increased on-
chip memory, and less often for execution units of increased width. However, for 
CPUs the next generation from both AMD and Intel will double the width of the 
execution units as well as increase the number of cores, thus significantly increas-
ing the peak capabilities, and bringing the parallelism required for peak perform-
ance of a IA-32 chip to a level of 100 operations or more. Over about a decade the 
number of floating-point operations per cycle per core will have increased from 
one to eight. Hence, though there will be a difference in the degree of parallelism 
to be expressed and managed, both CPUs and GPUs will have comparable chal-
lenges in regards to concurrency.  In regards to the viability of GPUs for “general 
purpose” scientific and engineering computations Shalf et al at LBNL [64] made 
the interesting observation that only 80 instructions out of the close to 300 instruc-
tions on IA-32 platforms were used across a broad range of codes.  
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2. Highlights of a PRACE study of accelerated IA-32 
servers. 

 

2.1 Background 

 
The potential performance, cost/performance and energy efficiency advantages 

of GPUs are significant, but the programming, and in particular the code porting 
challenges, are also quite significant. In order to assess the benefits and the code 
porting challenges PRACE, the Partnership for Advanced Computing in Europe 
[65], undertook an evaluation of GPU accelerated servers during the second half 
of 2008 and 2009. The evaluation was made from a data center perspective, i.e., 
the perspective that codes to be run on a GPU accelerated system could largely 
only be ported with modest effort using tools targeting heterogeneous node archi-
tectures, and not be completely rewritten or hand optimized. Furthermore, the fo-
cus was on double-precision arithmetic performance since the intent was to evalu-
ate the merits of GPU accelerated nodes across “all” codes used at partner centers. 
The tools evaluated were HMPP (Hybrid Multi-core Parallel Programming) [66, 
67] from CAPS [68], RapidMind [69, 70] and to a lesser degree the Portland 
Group Inc’s (PGIs) Accelerator Compilers [71, 72] because the PGI products were 
not available at the time this evaluation started, and OpenCL, as already men-
tioned. For the GPU test systems the results were compared with nVidia’s CUDA 
[73, 74] whenever possible. In addition to nVidia C1060 accelerated servers, 
ClearSpeed [75] CSX700 [76] accelerated systems were also assessed, as were 
systems with CBEs.  However, since IBM has decided not to continue with the 
CBE we do not include results related to it.  

 
The reference platform for the evaluations was a dual socket server equipped with 
Intel Nehalem 2.53 GHz quad-core CPUs and 3GB DDR3 memory per core.  The 
theoretical peak performance per core of this reference platform thus was 10.12 
GF/s. The choice of the Nehalem CPU for the reference platform was motivated 
by the dominance of Intel EM64T on the November 2009 Top500 [21] list on 
which this processor family  accounted for 79% of the CPUs, see Figure 8, and the 
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Nehalem CPU being the most recent EM64T CPU from Intel at the time of this 
evaluation.  

 

 
 

Fig. 8. November 2009 Top500 [21] processor family statistics. 

 
 
GPU evaluations were made on dual socket, quad-core 2.8 GHz Intel Harper-

town servers with two nVidia Tesla servers for each node and two C1060 cards for 
each Tesla server. The Tesla servers were connected to the hosts over PCI Express 
Gen2 16x (8GB/s) for each node.  The C1060 has 30 stream processors each with 
eight single-precision (SP) Floating-Point Units (FPUs) and one double-precision 
(DP) FPU. The peak SP performance is 624 GF and the peak DP performance is 
78 GF.   

 
ClearSpeed results were obtained from two platforms; 1) dual socket 2.53 GHz 

Intel Nehalem servers with 4GB/core with a ClearSpeed-Petapath e710 unit for 
each server connected via PCI express Gen2 16x [77,78]., 2)  dual socket 2.67 
GHz Nehalem servers with 3 GB/core and ClearSpeed-Petapath e740 and e780 
units, one per CPU socket, connected via PCI express Gen 2 16x [77,78]. The 
ClearSpeed-Petapath units use 1, 4 or 8 ClearSpeed CSX700 units, each with a 
peak double-precision arithmetic performance of 96 GF. A ClearSpeed CSX700 is 
in turn made up of two Multi-Threaded Array Processors (MTAPs) [79], each 
with a peak performance of 48 GF, double-precision. 

 
The benchmarks used for the evaluations were a few kernels common in scien-

tific and engineering applications: dense matrix multiplication, solution of dense 
systems of linear equations (HPL), sparse matrix-vector multiplication, FFT and 
random number generation. This selection was based on a study of application 
codes used at PRACE partner sites [80]. These kernels also represent a subset of 
Phil Colella’s well known “Seven Dwarf’s” [81] described in [82]. The bench-
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mark software used for these functions was EuroBen [83], except for the linear 
system solution for which High-Performance Linpack (HPL) [22] was used. The 
EuroBen routines used were  

 
• mod2am for dense matrix-matrix multiplication C=AxB   
• mod2as for sparse matrix-vector multiplication c=Axb with the matrix in Com-

pressed Sparse Row (CSR) format  
• mo2f for 1-D complex-to-complex Fast Fourier Transform using a radix-4 al-

gorithm 
• mod2h for random number generation. 
•  
• All benchmarks were based on C codes. 

 

2.2 Results for the Reference Platform. 

 
For the reference platform we report both single core and eight core results. The 
memory system supports a single core well, but not fully all four cores on a CPU 
for memory intensive applications. Furthermore, a node has NUMA (Non-
Uniform Memory Access) [84] characteristics in that in a node each CPU with 
four cores has its own memory not directly accessible by the cores on the other 
CPU in a two socket system. 

 

2.2.1 Single core results 

 
Matrix multiplication 

 
The single core dense matrix multiplication using mod2am calling Intel’s Math 
Kernel Library (MKL) [85] is shown in Figure 9. The peak achieved performance 
is 9.387 GF, 92.8% of peak [78]. 
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       Fig. 9. Mod2am results on a single Nehalem 2.53 GHz core [78]. 

 
Sparse matrix-vector multiplication 
 
The single core sparse matrix-vector results [78] are shown on Figure 10. As 

expected the performance is much lower.  Sparse matrix-vector multiplication us-
ing compressed formats has a relatively low number of floating-point operations 
compared to integer operations for address calculations and, for randomly gener-
ated sparse matrices, a random memory access pattern that tend to result in poor 
cache behavior. The peak observed performance is about 13.6% of theoretical 
peak (10.12.GF). Due to the randomness of the matrix sparsity the performance as 
a function of matrix size does not follow a smooth progression unlike the case for 
dense matrix multiplication. The sparse matrix was filled to 15% in all cases. 
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Fig. 10. Mod2as results on a single Nehalem 2.53 GHz core [78]. 

 

 
FFT 
 
The single core FFT results [78] are shown in Figure 11. The peak achieved 

performance was 2.778 GF, 27.5% of peak. Unlike matrix multiplication and ma-
trix-vector multiplication complex-to-complex FFT computations do not have a 
balanced number of additions and multiplications. Thus, for this type of FFT the 
peak core performance of 10.12 GF is never attainable. Complex multiplication 
requires 4 real multiplications and 2 real additions. A radix-4 computation requires 
3 complex multiplications and 4 complex additions/subtractions. In a straightfor-
ward organization of the complex operations the complex multiplication results at 
best in 6 arithmetic operations out of 8 potential hardware arithmetic operations, 
i.e. 75% utilization, and a complex addition results in 2 out of four potential op-
erations, or 50% utilization.  FFTs also have a somewhat complex memory refer-
ence patterns using strided access with different strides for different phases of the 
algorithm. The strided access can result in poor cache behavior. In [86, 87] a per-
formance difference by more than a factor of 10 was observed for different strides 
for a few different processors. 
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Fig. 11. Mod2f radix-4 complex-to-complex 1-D FFT on a single Nehalem 2.53 
GHz core [78]. 

 
 

Random number generation 
 
The single core random number results [78] are shown in Figure 12. Since the 

random number generator use very few floating-point operations the performance 
is measured in operations/s.  The MKL library does not include a random number 
generator so results are reported for a C code. 
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Fig. 12. Mod2h random number generation results on a single Nehalem 2.53 
GHz core [78]. 
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2.2.2 Node results 

 
The reference node has two sockets each with a quad-core 2.53 GHz Intel Neha-
lem CPU. Thus, eight threads can be run concurrently on the reference platform, 
16.with hyper-threading [88] with two threads per core. In our tests we did not en-
able hyoer-threading since it is known to reduce performance in compute intensive 
cases. Results for 1, 2, 4 and 8 threads are shown in Figures 13 - 16.  The MKL 
version used for the benchmarks supported multi-threading for dense matrix-
matrix and sparse matrix-vector multiplication, but not for the FFT. Thus, for the 
FFT MPI was used to in effect create multiple threads on a reference node. How-
ever, at this time MKL does have multi-threaded FFT support [89]. For the ran-
dom number generator multiple instances were run since neither an MPI nor an 
OpenMP version did exist, and was not developed 

 
Matrix multiplication 
 
The peak matrix multiplication performance achieved on eight cores using the 

MKL was 76 GF, which is 93.9% of theoretical peak.  
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Fig. 13. Mod2am results on a dual socket, 8-core Intel Nehalem 2.53 GHz node 
with 24 GB memory [78] 

 
Sparse matrix-vector multiplication 
 
For sparse matrix-vector multiplication the performance is highly variable as 

can be expected due to the randomness of the problem, with a performance peak 
for four threads of close to 5% of theoretical peak performance.  For eight threads 
the performance is less variable and increases fairly monotonically with matrix 
size to a peak efficiency of about 3%, Figure 14. 

 

 
 

Fig. 14. Mod2as results on a dual socket, 8-core Intel Nehalem 2.53 GHz node 
with 24 GB memory [78] 

 
 
FFT 
 
From Figure 15 it is apparent that the single node MPI code for the FFT is per-

forming poorly. Indeed the performance is much worse than the single thread code 
regardless of the number of MPI processes on a node.  Since these benchmarks 
were carried out Intel has released a multi-threaded MKL FFT code [89] with 
much improved performance also for a single thread..The results reported for a 2.8 
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GHz dual socket Nehalem are shown in Figure 16.  The single thread performance 
is about twice what we observed for the MKL version we used, and the multi-
threaded version using one thread per core has a peak performance about six times 
higher than the single thread performance we measured. Using hyper-threading 
with two threads per core results in a performance boost that for some sizes may 
exceed 30% and result in an efficiency of up to about 25% for the node, similar to 
our observed single core performance without hyper-threading..  

 
 

Fig. 15. Mod2f results for on a dual socket, 8-core Intel Nehalem 2.53 GHz node 
with 24 GB memory [78] 
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Fig. 16. Performance for Intel’s recently released multi-threaded MKL FFT on a 2.8 
GHz dual socket Nehalem platform [89]. 

 
 
 
Random number generation 
 
For the random number generator the aggregate performance increases almost 

in proportion to the number of instances run, as seen in Figure 17. 
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Fig. 17. Mod2h results on a dual socket, 8-core Intel Nehalem 2.53 GHz 
node with 24 GB memory [78] 

 
 
HPL 
 
For HPL a best single node efficiency of close to 87% has been reported for the 

Intel Nehalem, see e.g. [90, 91]. The measurements performed on the reference 
platform are in line with these results. 

 

2.2.3 Energy efficiency 

 
In regards to energy efficiency matrix multiplication is known to exercise the CPU 
heavily and hence result in high power consumption.  The HPL benchmark that is 
used for the Green500 [92] list depends heavily on matrix multiplication.  For the 
reference platform we measured a maximum power consumption of 303 W for 
matrix multiplication [78], resulting in 251MF/W at the achieved 76GF.  For HPL 
a power efficiency of 230 MF/W was observed [78], which is in line with the ex-
pected power efficiency given the difference in efficiencies of matrix multiplica-
tion and HPL using the MKL. No power measurements were carried out for the 
sparse matrix-vector multiplication, the FFT and the random number generation. 
The FFT is fairly floating-point intensive, but not as intensive as matrix multipli-
cation, but relatively more memory reference intensive. On this basis we estimate 
the maximum power consumption to about 250W for the FFT resulting in an esti-
mated power efficiency of 50 – 80 MF/W for the performance reported in Figure 
16. 

 

2.3 nVidia C1060 GPUs 

 
Matrix multiplication 
 

For matrix multiplication on the C1060 nVidia’s CUBLAS was used in analogy 
with using MKL on the reference platform. Since in many applications the data set 
on which the computations are performed is allocated to the memory of the host 
processor, subsets of data on which computations are to be performed need to be 
transferred to the GPU memory and results transferred back.  Thus, performance 
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was measured both for the computations on the GPU itself with data fetched and 
stored in its local memory and for the situation when data needs to be fetched 
from the CPU memory and results stored in it.  Figure 18 shows the results, with 
the lower performance curve including the pre and post computation data transfers 
between CPU memory and the GPU. Since matrix multiplication requires 2N3 op-
erations but only 3N2 data elements need to be transferred, the data transfer time 
decreases in significance as N increases.  The peak of the on GPU performance 
with CUBLAS is about 82%, which drops to a peak of about 76% if data transfers 
are included. These results are in agreement with the results reported in [93]. 
  

 
Fig. 18. Mod2am results on nVidia C1060 GPU with 78GF peak performance [77]. 

 
 
Sparse matrix-vector multiplication 
 
For sparse matrix-vector multiplication the results are shown in Figure 19. It is 

interesting to note that with the data on the GPU the peak observed performance is 
about 9 GF, or about 11.5% of peak, a higher fraction of peak than on the CPU. 
This result is in line with the results in [94]. However, if data needs to be fetched 
from CPU memory and results transferred back, then the data transfer time domi-
nates and the efficiency drops to about 1%. For sparse matrix-vector multiplica-
tion both operation count and data transfer is of order O(N). 
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Fig. 19. Mod2as results on nVidia C1060 GPU with 78GF peak performance [77]. 

 
 
FFT 
 
The FFT performance on the C1060 is shown in Figure 20.  At the time of the 

benchmark there was no double-precision CUDA FFT available so a complete 
port of the mod2f FFT to CUDA was necessary resulting in a CUDA code with 
about 3,000 lines. The peak performance achieved including data transfers to the 
CPU memory was about 4 GF, about 5% of peak. At this time the nVidia CUFFT 
is available and is reported to achieve close to 30 GF on a C1060 [95] excluding 
data transfer. For FFT the operations count is O(NlogN), and thus the impact of 
the data transfer expected to be less significant than for sparse matrix-vector mul-
tiplication but more significant than for matrix multiplication. The peak efficiency 
of the single core Nehalem FFT is about 25%. The recently released multi-
threaded MKL FFT [89] has an improved single thread performance that is esti-
mated to about 5.4 GF for a single core of the reference platform and about 20 GF 
for 16 threads on the reference platform, scaling the results in [89] with the ratios 
of the clock frequencies of the reference platform and the platform in [89] (the 
MKL hyper-threaded version performs better than the single thread per core ver-
sion) . Thus, the recent MKL release achieves about 54% efficiency on a single 
core and a peak of about 25% on the node, while CUFFT achieves a peak effi-
ciency of about 38% on the C1060  
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Fig. 20. Mod2f results in hand coded CUDA on nVidia C1060 GPU with 78GF peak 
performance [77]. 

 
 
HPL 
 
For HPL a peak efficiency for one Nehalem core and one C1060 GPU was 

measured to be 59.5 GF, 68%, whereas the efficiency dropped to 52.5% using all 
8 cores of the host and four C1060 GPUs [78]. The peak power efficiency was 270 
MF/W. The single C1060 results are in line with what is reported in [93].  

 
Energy efficiency 
 
GPUs draw significant power with the C1060 having a specified max power of 

188W [96] and an estimated typical power consumption of 160W.  The Intel Ne-
halem CPU used for the reference platform has a maximum power dissipation of 
80 W [97].  

For the reference platform during maximum load for matrix multiplication the 
CPUs account for about 50% of the power consumption of the reference platform.  
With the C1060 reaching close to 60 GF for matrix multiplication, Figure 18, and 
assuming the maximum specified power consumption for this case, the GPU 
power efficiency is estimated at 300 MF/W.  Similarly, for the CPUs alone, the 
achieved performance using MKL was 76GF and assuming the maximum CPU 
power consumption the CPU power efficiency is estimated to be 475 MF/W.  The 
fact that the GPU in case of HPL improves the combined energy efficiency is due 
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to the fact that the power consumption by the memory, fans, power supplies, 
motherboard etc is already accounted for in the reference platform power effi-
ciency (that is about half of the CPU power efficiency).  

 

2.4 ClearSpeed CSX700 

 
Matrix multiplication 
 

Matrix multiplication carried out on a single Multi-Threaded Array Processor 
(MTAP) [79] of which there are two on a CSX700 is shown in Figure 21.  For the 
CSX700 the peak observed performance was 85 GF [77], or 88.5% of peak. For 
the e780 with 8 CSX700 units the peak observed performance was 520 GF [77], 
68% of peak. 

 

 
Fig. 21. Mod2am results on one MTAP with a peak performance of 48 GF [78]. 

 
 
As is clear from Figure 21 the ClearSpeed performance is not significant in 

comparison with the host CPU until the matrix dimensions are in the order of a 
few thousands. The library [98] that comes with the ClearSpeed hardware recog-
nize this and leaves the multiplication of the matrices to be performed on the host 
for small matrices.  In fact, the software allows for load sharing between the host 
and the ClearSpeed board.  Figure 22 shows the aggregate performance for matrix 
multiplication as a function of the host assist. The choice of matrix dimensions for 
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the benchmark was compliant with the CSX700 unit working with tiles that for M 
and N are multiples of 192 and for K a multiple of 288, for multiplication of an 
MxK matrix by a KxM matrix. For other matrix shapes the CSX700 library parti-
tions the matrices into tiles compliant with these restrictions and has the host exe-
cute the remaining matrix parts for a correct result. For the matrix shapes studied 
in this benchmark the maximum performance exceeds 130 GF at 42% host assist 
for the largest M=N.  The combined peak performance represents 71% of the 
combined theoretical peak performance. This is lower than the peak efficiency for 
the CSX700 card (88.5%) and the host (93.9%), but the matrices chosen for this 
experiment did not maximize performance for either. 
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Fig. 22. Mod2am results on the reference platform equipped with a ClearSpeed 
CSX700 accelerator as a function of the host assist percentage. Peak host 
performance 80.96 GF, peak CSX700 performance 96 GF [78]. 

 
 
 
 
Sparse matrix-vector multiplication 
 
The sparse matrix-vector performance is shown in Figure 23. The performance 

is exceedingly poor with a peak performance of only close to 30 MF, or less than 
0.1% of the peak performance. The MTAP has an architecture that favors streams, 
like GPUs, but clearly its performance for random memory accesses is very poor.  
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Fig. 23. Mod2as results on one MTAP with a peak performance of 48 GF [78]. 

 
 
FFT 
 
For complex-to-complex 1-D FFTs the results are shown in Table 6. The best 

observed performance was 9.9 GF, 10.3% of peak.  Comparing to the MKL per-
formance reported in [89] the reference node performs better than the CSX700, 
but a CSX700 delivers a peak performance about twice that of a single core of the 
reference platform. . 

  
 
 
 
 
 
 

Table 6. Mordf results on the CSX700 with peak performance of 96 GF (48 GF per 
MTAP) [78]. 

 
 
 
 
 
Random number generation 

Size 1 MTAP 2MTAP 
256 2.8 5.7 
512 3.4 6.7 
1024 3.8 7.4 
2048 4.2 9.4 
4096 5.0 9.9 
8192 3.7 7.9 
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The performance for random number generation is shown in Figure 24 for a 

single MTAP. The MTAP performance is about 10% lower than the performance 
of a single core of the reference platform. 

 

 
Fig. 24. Mod2h results on 1 MTAP.[78] 

 
 
 
 
HPL 
 
For HPL that depends heavily on matrix multiplication the CSX700 contributed 

43.75 GF at 42% host assist, yielding an overall efficiency of 63%.[78]. The re-
sults on the manufacturer web site indicates a peak HPL performance of 56.1 GF 
[99] corresponding to an efficiency of 58.4%. 

 
Energy efficiency 
 
In regards to energy efficiency the CSX700 was observed to consume about 

10W in idle state (9.5 – 10.5 W observed) [78] and about 16 W performing matrix 
multiplication [78].  Thus, with a peak matrix multiplication performance of 85 
GF the power efficiency is about 5300 MF/W for the CSX700, while for HPL our 
results yield in excess of 2700 MF/W for the CSX700 alone at a delivered rate of 
43.75 GF and a combined power efficiency of 350 MF/W for the reference plat-
form with one CSX700. 
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For FFT the peak measured performance was 9.9 GF.  The power consumption 

for the FFT was not measured, but it clearly must be in the 10 – 16 W range [78] 
resulting in a power efficiency in the 600 – 1000 MF/W range.  For the reference 
platform the idle power was measured to be about 140 W and the peak power 
303W [78] resulting in a power efficiency range of 70 – 150 MF/W.  Thus, though 
the absolute performance for the CSX700 is inferior to the MKL multi-threaded 
reference platform performance, the energy efficiency is a factor 6 - 8 times better. 

 
For random number generation the aggregate performance for the reference 

platform is about 4 times higher than the CSX700 performance, but the power 
consumption is estimated to be 10 – 20 times higher and hence the CSX700 con-
siderably more power efficient. 

 

2.5 Performance comparison 

 
Figure 25 summarizes the performance results for matrix multiplication normal-
ized to the reference platform. The C1060 has slightly lower theoretical peak dou-
ble-precision performance (78GF) and the CSX700 has slightly higher theoretical 
peak performance (96 GF) than the reference platform (81GF). The combined 
peak performance of the reference platform and a CSX700 is close to 2.2 times 
that of the reference platform itself, while adding a C1060 results in a node with 
1.96 times the performance of the reference platform.  
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Fig. 25. Mod2am performance on the nVidia C1060 GPU and ClearSpeed 
CSX700 relative to the reference platform [78]. 

 
 
 

For sparse matrix-vector multiplication both the C1060 and CSX70 do not offer 
any performance advantage, Figure 26. 

 

 
Fig. 26. Mod2as performance on the nVidia C1060 GPU and 
ClearSpeed CSX700 relative to the reference platform [78]. 

 
 
 
For the complex-to-complex 1-D radix-4 FFT the relative results we observed 

are shown in Figure 27.  However, since our measurements were made, a new ver-
sion of the MKL library has been released that improved the reference platform 
performance with up to more than 7 times thus making the reference platform per-
formance superior to the CSX700. nVidia has also released a CUFFT version that 
supports double-precision arithmetic and that achieves about 50% better perform-
ance than that of MKL on the reference platform. 
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Fig. 27. Mod2f relative performance using MKL version 10.1 on the reference 

platform alone and with nVidia C1060 GPU or ClearSpeed CSX700 acceleration 
[78]. MKL release 10.2 having a multi-threaded version of the FFT and improved 
single core performance has resulted in the reference platform achieving about 
twice the performance of the CSX700, and a new release of the CUFFT has re-
sulted in the C1060 achieving a peak performance about 50% higher than the ref-
erence platform. 

 
 
 
For random number generation a single CSX700 MTAP has a performance 

comparable to a single core of the reference platform.  No random number genera-
tor was available for the C1060 at the time of the benchmark. 

 
For HPL, a single core of the reference platform in combination with one 

C1060 GPU was measured to yield 59.5 GF [78] corresponding to 68% efficiency 
while all eight cores together with four C1060 resulted in a peak node perform-
ance of 206 GF out of a possible 393 GF corresponding to 52.5% efficiency. 

 
We summarize our own measurements and some from the literature in Table 7 

in order to compare efficiencies of the selected benchmarks on the different archi-
tectures, and the energy efficiencies of the devices in isolation and together as an 
integrated system. 

 
 
 
 
 
 

Host (81GF) C1060 (78GF) C1060 
incl transf 

CSX700 
(96GF) 

Host+CSX700  

GF Eff.% GF Eff 
% 

GF Eff 
% 

GF Eff 
% 

GF Eff % 

Mod2am 76 93.9 64 82.1 61 78.2 85 88.5 130 73.4 
Mod2as 3.8 4.7 9 11.9 1 1.3 0.03 0 - - 
Mod2f 20*[89] 24.7 30[95] 38.5 4 5.1 9.9 10.3 - - 
HPL  87[90] 50[100] 64.1  52.5 56[99] 58.3 75* 42.4* 

 
Table 7. Summary of peak performance and efficiency. (* denotes estimates.) 

 

    
For the CSX700 the HPL performance is derived from [99]. This estimate 

compares fairly well with estimating the performance from the CSX600 perform-
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ance reported in [101] by scaling the performance with the ratio of the peak per-
formances of the CSX700 and CSX600 units, thus assuming the same efficiency 
for the units. For the host plus CSX700 HPL performance the number is estimated 
from the measured performance of an eight node system with four CSX700 per 
node [78].  The performance of one such node was measured at 206.25GF with 
43.75GF contributed by each CSX700. Thus, in this in this configuration the four 
CSX units in a node contributed 175GF to the node performance and the host 
31.25 GF.  

 
In regards to efficiency we notice that for matrix multiplication all three archi-

tectures do well, as expected, with the host having a slight advantage. For sparse 
matrix-vector multiplication none does well, with the CSX700 performing by far 
the worst. Surprisingly the C1060 perfromed better than the host, but in combina-
tion with the host the C1060 is not efficient due to the low computational intensity 
of sparse matrix-vector multiplication (computations and data transfer are both of 
order O(N)). 

 
For the FFT the C1060 offers the best efficiency using the optimized CUFFT 

from nVidia which has about 50% higher efficiency than the optimized MKL for 
the reference platform (38.5% vs. 24.7%).  The CSX700 efficiency is less than 
half of that of the reference platform and about 25% of the efficiency of the 
C1060. 

 
The HPL performance as expected is somewhat lower than that of matrix mul-

tiplication on which it depends heavily, and the relative merits of the host, the 
C1060 and the CSX700 are about the same with the CSX700 however ending up 
with an efficiency about the same as that of the C1060. 

 

2.6 Power efficiency comparison 

 
As previously mentioned the peak performances of the reference platform, the 
C1060 and the CSX700 are fairly comparable, but the efficiencies achieved on the 
platforms are quite different and the maximum power consumption is also quite 
different. We did not have the opportunity to carry out power measurements for all 
benchmarks. Estimated values are marked with *.  The results are summarized in 
Table 8. 

 
Host Host+C1060 Host+CSX700    
GF W GF/W GF W GF/W GF W GF/W 

Mod2am 76 303 0.251 130* 490* 0.265* 130 315* 0.410* 
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Mod2f 20*[89] 250* 0.080* 40* 420* 0.095* 25* 260* 0.096* 
HPL 69* 303* 0.230   0.270 75* 315* 0.238* 

 
Table 8. Power efficiency of the configurations evaluated. 

 

 
Adding a CSX700 to a node increases its maximum power consumption by 

abut 5%, while the C1060 increases it with more than 60%.  For matrix multiplica-
tion the CSX700 resulted in a total node performance of 130 GF in our tests and 
hence the power efficiency increased from about 250 MF/W to about 410 MF/W. 
The power efficiency for the CSX700 itself is about 5.3 GF/W (85GF, 16W) 
whereas for the Nehalem itself is about 0.475GF/W (76 GF, 160W). 

 
The power estimates for the FFT assumes about 80% (250W) of maximum 

power for the reference platform. The C1060 in itself has a power efficiency of 
about 0.175 GF/W (30GF, 170*W) whereas the Nehalem itself has a power effi-
ciency of about 0.155 GF/W (10*GF, 65*W).  The CSX700 itself has significantly 
higher power efficiency; about 0.700 GF/W (10GF, 14*W) 

 
For HPL the power efficiency improves for a host with accelerator compared to 

the host itself, as expected from the results for matrix multiplication. The marginal 
improvement for a host with CSX700 is surprising.  Considering the CPU itself it 
has a power efficiency of about 0.440 GF/W (35GF, 80*W), whereas the C1060 
itself is estimated to 0.265 GF/W (50GF, 190*W) and the CSX700 is estimated to 
3GF/W (45*GF,15*W). 

 
The power efficiency of the CSX700 is a factor of 4 –10 higher than that of the 

CPU itself for matrix multiplication, FFT and HPL, but unfortunately for FFT and 
HPL the relatively low fraction of peak realized cause the total platform power ef-
ficiency to increase only marginally for a host combined with a single CSX700. 
The C1060 power efficiency for matrix multiplication, 0.34GF/W (64GF, 190*W) 
is less than that of the Nehalem, which is also the case for HPL, but the power ef-
ficiency is slightly higher for the FFT. 
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3. Programming Tools Assessment 

 

3.1 HMPP (Hybrid Multi-core Parallel Programming) 

 
The Hybrid Multi-core Parallel Programming (HMPP) preprocessor by CAPS [66, 
67, 102] use directives inserted into the source code to control code generation. 
The directives have the form of special comments in Fortran and pragmas in C. 
Using the directives the HMPP preprocessor directs the code generation to be 
made for the desired device by a compiler for that device. The HMPP preproces-
sor generates the code necessary to manage the data transfers between the host and 
accelerators and seeks to optimize it. By using directives an annotated code can be 
compiled by any compiler for any desired platform and hence the annotated code 
is as portable as the original code. The HMPP preprocessor has a fallback mecha-
nism should an executable code fail to be generated for a particular target accel-
erator. Should that be the case code is generated for the host by the compiler used 
for it. The HMPP directives are designed to target functions (codelets) that can be 
executed on accelerators and for optimizing the data transfers between the host 
and accelerators. 

 
The architecture of the preprocessor is shown in Figure 28 in which two back-

ends of current interest are shown.  The HMPP memory model is illustrated in 
Figure 29. Our focus was on the CUDA back-end because the OpenCL specifica-
tion was just released at the time of this study.  Our target was the nVidia C1060 
GPU as accelerator for IA-32 servers. The test platform had dual socket quad-core 
2.8 GHz Intel Harpertown CPUs. Initially the HMPP Workbench 1.5.3 was used, 
later release 2.1.0sp1 when it became available. For the host the Intel compiler 
version 11.1 was used and for the C1060 the CUDA 2.3 environment. 
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Fig. 28. The architecture of the HMPP preprocessor [66]. 
 
 

 
 

Fig. 29. The HMPP memory model (HWA = HardWare Accelerator) [67] 

 
 
 
 
 
 
 
 
An example of the use of the HMPP directives is shown in Figure 30.  
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// simple codelet declara-

tion 
#pragma hmpp Hmxm codelet, 

args[a;b].io=in, 
args[c].io=out, 
args[a].size={m,l}, 
args[b].size={l,n}, 
args[c].size={m,n}, TARGET=CUDA 

void mxm(int m, int l, int 
n, const double a[m][l], const 
double b[l][n],  
double c[m][n]) 

{    int i, j, k; 
    for (i = 0; i < m; i++) 

{ 
        for (j = 0; j < n; 

j++) { 
            c[i][j] = 0.0;}} 
    for (i = 0; i < m; i++) 

{ 
        for (k = 0; k < n; 

k++) { 
            for (j = 0; j < 

l; j++) { 
                c[i][k] = 

c[i][k] + a[i][j] * b[j][k];}}} 

// usage of the codelet 
#pragma hmpp Hmxm advancedload, 

args[a;b], args[a].size={m,l}, 
args[b].size={l,n} 

for (i = 0; i < nrep; i++) { 
#pragma hmpp Hmxm callsite, 

args[a;b].advancedload=true 
#pragma hmpp Hmxm callsite 
          mxm(m, l, n, (double 

(*)[m]) a, (double (*)[n]) b, (dou-
ble (*)[n]) c); 

} 
#pragma hmpp Hmxm delegatedstore, 

args[c] 

 

Fig. 30. Illustration of use of HMPP pragma’s for definition and use of codelets [78]. 

 
The result of using HMPP for matrix multiplication for the C1060 is shown in 

Figure 31 and for sparse matrix-vector multiplication in Figure 33. These two rou-
tines were the only two ported during the course of this study. For matrix multipli-
cation the CUDA code generated by HMPP for a “simple” port has a performance 
of 60 – 75% of the CUBLAS performance as seen by comparing Figures 31 and 
18, which is a very good result for a small effort.  However, after code optimiza-
tion using good knowledge of the target architecture and HMPP performance 
comparable to, or even better than, that of CUBLAS was obtained, as seen in Fig-
ure 32.    
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Fig. 31. Mod2am performance on the C1060 using HMPP [78]. 

 
 

 
Fig. 32. Optimized performance of matrix multiplication using HMPP com-
pared to CUBLAS for the C1060 [77]. 
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Fig. 33. Mod2as results on the C1060 using HMPP [78]. 

 
 
The lessons learned from the limited use of HMPP are [78]:  
 
Modifying a code to use HMPP to generate a functional code for a GPU is sim-

ple. The resulting performance may be quite good for a modest effort, or fairly 
poor depending on the nature of the computations. For “optimal” performance on 
a GPU the original code is likely to require modification, unless designed to work 
well on a streaming architecture.  
 
• Some constructions (such as reductions) are difficult to parallelize and do not 

perform well on GPUs (or many other highly parallel architectures, some of 
which have special hardware for reduction operations).  

• Producing optimized code for heterogeneous node architectures requires in-
depth knowledge of the hardware (not specific to HMPP or GPUs) 

• Astute directives for code generation (such as loop reordering, loop fusion, etc.) 
are a great help to boost performance.  

• The performance of codes generated by using HMPP can be equal to or better 
than that offered by vendor libraries, which is very encouraging. 
 

3.2 RapidMind 

 
The RapidMind Multi-Core Development Platform [103, 104] was designed for 
application code portability across platforms, including multi-core CPUs, GPUs 
and the CBE [57]. About a year after this study was initiated RapidMind was ac-
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quired by Intel and the RapidMind technology integrated with Intel’s Ct technol-
ogy [14, 15, 104,105] and some of it recently released as part of Intel’s Array 
Building Blocks (ArBB) [107, 108, 109].  RapidMind targeted a data parallel pro-
gramming model (as did Ct) but did support task-parallel operations.  RapidMind 
added special types and functions to C++ enabling a programmer to define opera-
tions (functions) on streams (special arrays). By the freedom to define array opera-
tions RapidMind supported more powerful array operations than, e.g., those avail-
able in Fortran. Data dependencies and data workflows could be easily described 
and information necessary for an efficient parallelization included. The compiler 
and the runtime environment had sufficient information to decide how to auto-
parallelize code.  

 
We report results using RapidMind to generate code for the C1060 for matrix 

multiplication, Figure 34, sparse matrix-vector multiplication, Figure 35, and the 
radix-4 complex-to-complex 1-D FFT, Figure 36. As can be seen from Figure 34 
RapidMind only achieves about 25% of the performance of  CUBLAS.  The “sim-
ple” version was created by adding 20 lines of RapidMind code to the mod2am 
code from EuroBen.  The GPU-optimized code made use of code downloaded 
from the RapidMnd developer web site. For sparse matrix-vector multiplication 
RapidMind again achieved about a quarter of the performance of CUBLAS, and 
for the FFT it achieved about 20% of the performance of our CUDA code. Using 
RapidMind a first executable was fairly easy to generate, but to achieve good per-
formance significant work and insight into RapidMind and the target architectures 
was necessary. A more in-depth discussion of the RapidMind porting effort can be 
found in [110] 

 
 

 
 

Fig. 34. . Mod2am results using RapidMind compared to using 
CUDA on the C1060 and MKL on the reference platform [78]. 
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Fig. 35. Mod2as results using RapidMind compared to CUDA on the 
C1060 and MKL on the reference platform [78]. 

 

 
 

Fig. 36. Mod2f results using RapidMind compared to CUDA on the C1060 
and MKL with one thread on the reference platform [78]. 

 
 
 
 

3.3 PGI Accelerator Compilers 
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PGI in 2009 released enhanced versions of their C and Fortran compilers that use 
directives to control code generation for specialized hardware [71, 72] like GPUs 
using a similar approach to the one used for the HMPP preprocessor. We investi-
gated the PGI accelerator compiler capabilities on the matrix multiplication and 
sparse matrix-vector multiplication EuroBen codes. The results are shown in Fig-
ures 37 and 38. For matrix multiplication the generated code achieved a peak per-
formance slightly in excess of 8GF, or 11% of the peak C1060 performance.  On 
the host platform the PGI compiler generated code achieved at best 17% of theo-
retical peak. For the sparse matrix-vector multiplication it is interesting to note 
that he PGI compiler generated code achieves a performance comparable to that of 
MKL.  However, on the GPU the performance of the PGI generated code is sig-
nificantly lower than that of the CUBLAS, see Figure 19. 

 

 
 

Fig. 37. Mod2am results using the PGI Accelerator C compiler for the 
C1060 [78]. 
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Fig. 38. Mod2as results using the PGI Accelerator C compiler for the 
C1060 [78]. 

 

3.4 Programming Tools Comparison 

 
The CAPS HMPP preprocessor as well as the PGI Accelerator Compiler and 
RapidMind were immature tools at the time of this study.  OpenCL was also in-
cluded but the beta compilers available during this effort were buggy and the port-
ing efforts had significant problems. For matrix multiplication, which is ideal for 
many architectures, including GPUs, and a function for which many compilers 
perform well, the GPU codes generated by RapidMind and the PGI Accelerator 
Compiler were not good. The performance achieved was at best about 20% and 
11% of peak, respectively.  The CAPS HMPP preprocessor did better and after an 
optimization effort generated code that performed comparable to the CUBLAS, a 
very good result.  For sparse matrix-vector multiplication all tools generated poor 
code for the C1060 with a peak performance of much less than 1% of peak and a 
factor 5 – 10 worse than CUBLAS. The PGI Accelerator Compiler generated good 
code though for the host (comparable in performance to MKL). 

 
Clearly, producing code that performs well is a very important aspect of a pro-

gramming tool for HPC.  However, ease of use including debugging is also impor-
tant for productivity [111] as determined in the DARPA High Productivity Com-
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puting Systems program [112]. Measuring productivity is difficult since many 
hard to measure factors may influence the outcome, such as the programmers ex-
perience with similar programming tasks, familiarity with the tools, platform etc, 
and the extent to which code needs to be modified or entirely redesigned, rewritten 
and debugged. Though the number of lines of code is a debated measure it is gen-
erally agreed that error rates and debugging time are likely to increases with in-
creased  code size, and that fewer lines of code is an indication of the expressive-
ness and quality of a language.  Thus, for the porting efforts undertaken the 
number of lines of code was measured, and so was the time to produce and debug 
the code, and in some cases optimize it. Though there is much uncertainty in the 
data it nevertheless appears true that languages and programming models targeting 
expressiveness do result in shorter codes [113]. 

 
Table 9 shows a sample of the measurements. The lines of codes reported are 

true but unfortunately misleading in that the HMPP code includes several versions 
that were produced in attempting to get good performance [78].  But the code size 
for one version is nevertheless larger than for RapidMind.  The reported time for 
RapidMind, which include learning the tool, does show that the learning curve can 
be significant for new tools that address a complex programming situation.  

 
 
 
 

Lines of code Development time Performance  
(% of peak) 

 

mod2am mod2as mod2am mod2as mod2am mod2as 
CAPS HMPP 976 979 5 0.5 78.99 0.09 
RapidMind 30 27 18.5 12 19.85 0.29 

Table 9. Programmer productivity measurements for mod2am and mod2as using 
CAPS HMPP and RapidMind. 
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4 Conclusions 

 
Though double-precision arithmetic performance was not a strong point for GPU 
at the time of the evaluation, the expected evolution of GPU performance and pro-
grammability and potential advantage in energy efficiency made it interesting for 
PRACE to evaluate GPUs as accelerators for future HPC systems, in particular 
from a programming and energy efficiency point of view. The programming is-
sues associated with heterogeneous node architectures and the streaming architec-
ture of GPUs are likely to remain as support for double-precision arithmetic and 
programming flexibility in future generations of GPUs improve. This expectation 
has already been realized to some degree since our study was undertaken. 

 
In regards to the fraction of peak performance achieved for the Nehalem CPU, 

and the C1060 and the CSX700 by themselves, the Nehalem performed the best 
for matrix multiplication with an efficiency of 93.9%, with the CSX700 being 
second at 88.5% and the C1060 being third at 82.1%. From an energy perspective 
the CSX700 outperformed the CPU by a factor of more than 11 and the C1060 by 
an estimated factor of more than 15. For HPL the differences were somewhat less 
dramatic with the CSX700 having a power efficiency about 7 times higher than 
the Nehalem CPU and a power efficiency more than 10 times that of the C1060. 
For FFT, the C1060 with a good library implementation achieved a peak effi-
ciency of close to 40%, about 50% better than the CPU. The CSX700 did not per-
form well and only achieved 25% efficiency.  However, because it only consumes 
less than 10% of the power of the C1060, it still had the best power efficiency, es-
timated at more than three times that of the C1060. The estimated power effi-
ciency of the Nehalem for FFT was about half of that of the C1060, but the Neha-
lem CPU itself has comparable power efficiency. The C1060 performed 
surprisingly well on the sparse matrix-vector multiplication benchmark and indeed 
performed significantly better than the CPU, and should also, despite its high 
power consumption have a power efficiency much better than the CPU. The 
CSX700 performed very poorly on the sparse matrix-vector multiplication. 

 
In regards to an integrated system as expected the data transfers between the 

CPU memory and the accelerators have a significant impact on the benefit for less 
compute intensive tasks, such as FFT and in particular sparse matrix-vector multi-
plication. For compute intensive tasks such as matrix multiplication and HPL the 
accelerators offers both a performance boost and improved power efficiency, 
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while for computations such as FFT the performance improvement may be less 
but a power efficiency improvement may still be possible because “shared infra-
structure”, such as memory, is included in the host measures. 

 
For all the power efficiency measurements and estimate we caution that results 

can easily be misleading depending on the intended objective.  Measuring total 
power consumption and performance is fairly straightforward, but in attempting to 
assess what to expect for future generation systems it is necessary to have obser-
vations for the various components themselves, since the components are likely to 
change in different ways. Component energy measurements are difficult and may 
require hardware modification, in particular for current measurements. 

 
 The programming tools that were evaluated were all immature, with OpenCL 

being so immature that reliable results were not obtained.  For HMPP and Rapid-
Mind creating a usable code was quite simple and only required a modest learning 
effort, but creating an efficient code required a measurable effort requiring good 
knowledge of both the tool and the architecture of the target devices. 
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