

PAMELA – a satellite experiment studying antiparticles in the cosmic radiation

Mark Pearce KTH, Department of Physics

AlbaNova Instrumentation Seminar, 2007-05-03

<u>Overview</u>

- Cosmic rays (briefly...)
- PAMELA science programme
 - Indirect searches for dark matter with antiparticles
- Description of PAMELA instrument and performance
- Status since launch (15th June 2006)
- A first look at flight data
 - Orbital environment
 - Charge separation
 - Matter / antimatter separation
- Summary

The discovery of cosmic rays

- Victor Hess ascended to 5000 m in a balloon in 1912
- Noticed that his electroscope discharged more rapidly as altitude increased
- Not expected, as background radiation was thought to be terrestrial

Investigating cosmic rays

In space (>40km) \Rightarrow nuclei, protons, electrons and neutrinos (and antiparticles)

Smaller detectors but long duration. **PAMELA!**

In balloons (~40km) \Rightarrow nuclei, protons, pions, electrons, muons and neutrinos (and antiparticles)

Larger detectors but short duration. Atmospheric overburden ~5 g/cm². Almost all data on cosmic antiparticles from here.

On ground \Rightarrow mostly muons and neutrinos. (UHECR experiments).

'Infinite' size and duration but atmospheric overburden ~1000 g/cm²!

PAMELA pre-history

 Astromag/WiZard project (PAMELA precursor) on board of the Space Station Freedom – cancelled (Challenger disaster and 1st Gulf War)

• Meanwhile, balloon-borne experiments: MASS-89,91 TS-93 CAPRICE-94,97,98 (in collaboration with NASA) and then, space experiments*: NINA-1,2 SILEYE-1,2,3 ALTEA (building links to Russian Space Agency).

(*study of low energy nuclei and space radiation environment)

PAMELA science programme

- Search for dark matter
- Search for antimatter
- Study of cosmic-ray propagation
- Study solar physics and solar modulation
- Study of electron spectrum (local sources?)
- Study terrestrial magnetosphere

PAMELA sensitivity

	Energy range	Particles/3 years
Antiproton flux	80 MeV - 190 GeV	>3x10 ⁴
Positron flux	50 MeV – 270 GeV	>3x10 ⁵
Electron flux	up to 400 GeV	6x10 ⁶
Proton flux	up to 700 GeV	3x10 ⁸
Electron/positron flux	up to 2 TeV (from calorimeter)	
Light nuclei (up to Z=6)	up to 200 GeV/n He/Be/	C: 4 10 ^{7/4/5}
Antinuclei search	Sensitivity of 3x10 ⁻⁸ in He-	bar/He

→ Unprecedented statistics and new energy range for cosmic ray physics

 \rightarrow e.g. contemporary antiproton & positron energy, $E_{max} \approx 40 \text{ GeV}$

 \rightarrow Simultaneous measurements of many species

Comparison to balloon experiments

Taking into account live time and geometrical factor

1 HEAT-PBAR flight ~ 22.4 days PAMELA data 1 CAPRICE98 flight ~ 3.9 days PAMELA data

Antiparticles in cosmic rays

$$p_{CR} + p_{ISM} \rightarrow \overline{p} + p + p + p$$

Antiparticles as probes of dark matter

Aim: search for distortions in the antiproton and positron energy spectrum expected from purely secondary production

Antiprotons

AMS-01: space shuttle, 1998

Cosmic-ray Antimatter Search

"We must regard it rather an accident that the Earth and presumably the whole Solar System contains a preponderance of negative electrons and positive protons. It is quite possible that for some of the stars it is the other way about"

P. Dirac, Nobel lecture (1933)

Resurs-DK1 Satellite

 Main task: multi-spectral remote sensing of earth's surface

• Built by TsSKB Progress in Samara (Russia)

• Active life >3 years

 Data transmitted to ground via radio downlink

• PAMELA mounted inside a pressurized container

Mass: 6.7 tonnes Height: 7.4 m Solar array area: 36 m²

ГАГАРИНСКИЙ СТАРТ

12th April 1961

•

Orbital characteristics

- Quasi-polar (70.0°)
- Elliptical (350 km 600 km)
- PAMELA traverses the South Atlantic Anomaly
- At the South Pole PAMELA crosses the outer (electron) Van Allen belt
- Orbital tracking via on-board GLONASS or NORAD (used!)

Principle of operation

PAMELA apparatus

Mass: 470 kg Size: 130 x 70 x 70 cm³ Power budget: 360 W

The magnet

Characteristics:

- 5 modules of permanent magnet (Nd-B-Fe alloy) in aluminum mechanics
- Cavity dimensions (162 x 132 x 445) cm³

→ GF ~ 21.5 cm²sr

- Magnetic shields
- 5mm-step field-map on ground:
 - B=0.43 T (average along axis),
 - B=0.48 T (@center)

The tracking system

Main tasks:

- Rigidity measurement
- Sign of electric charge
- dE/dx (ionisation loss)

Characteristics:

- 6 planes double-sided (x&y view) microstrip Si sensors
- 36864 channels
- Dynamic range: 10 MIP

Performance:

- Spatial resolution: ~3 μm (bending view)
- MDR ~1 TV/c (from test beam data)

The electromagnetic calorimeter

Main tasks:

- lepton/hadron discrimination
- e^{+/-} energy measurement

Characteristics:

- 44 Si layers (X/Y) + 22 W planes
- 16.3 X_o / 0.6 λ_L
- 4224 channels
- Dynamic range: 1400 mip
- Self-trigger mode (> 300 GeV; GF~600 cm² sr)

Performance:

- p/e⁺ selection efficiency ~ 90%
- p rejection factor ~10⁶
- e rejection factor > 10⁴
- Energy resolution ~5% @ 200 GeV

Electromagnetic and hadronic showers

Combined tracker + calorimeter performance

Non-interacting p 100 GeV/c

Interacting p 100 GeV/c

Interacting e⁻ 100 GeV/c

(CERN SpS testbeam 2003)

Performance:

 σ (paddle) ~ 110ps σ (ToF) ~ 330ps (for MIPs)

The anticounter shields

Main tasks:

 Rejection of events with particles interacting with the apparatus (off-line and second-level trigger)

Characteristics:

- Plastic scintillator paddles, 8mm thick
- 4 upper (CARD), 1 top (CAT), 4 side (CAS)

Performance:

• MIP efficiency > 99.9%

Anticounter purpose

• NB: background from self-veto

Anticoincidence systems

Examples of qualification tests

[QA]

[Vibrations]

[On-ground]

Neutron detector

Main tasks:

e/h discrimination at high-energy

Characteristics:

- 36 ³He counters:
- 3 He(n,p)T \rightarrow Ep=780 keV
- 1cm thick polyethylene moderators
- n collected within 200 µs time-window

Shower-tail catcher

Main tasks:

• Neutron Detector trigger

Characteristics:

• 1 plastic scintillator paddle, 1 cm thick

PAMELA milestones

- Launch from Baikonur: June 15th 2006.
- **'First light':** June 21st 2006, 0300 UTC.
- Detectors operated as expected (i.e.: no problems due to the launch).
- Tested different trigger and hardware configurations
- Commissioning phase ended successfully on July 11th 2006
- PAMELA in continuous data-taking mode since then
- As of ~now:
 - PAMELA has acquired data for ~220 days
 - 4 TB of raw data downlinked
 - ~480 million triggers recorded

Data acquisition details

- Trigger configurations:
 - High-radiation environment
 - \rightarrow (S21 AND S22) AND (S31 AND S32) + CALORIMETER
 - Low-radiation environment
 - \rightarrow (S11 OR S12) AND (S21 OR S22) AND (S31 OR S32) + CALORIMETER

- Trigger rate* ~25Hz
- Fraction of live time* ~ 75% (*outside radiation belts)
- Event size (compressed mode) ~ 5kB
 → 25 Hz x 5 kB/ev ~ 10 GB/day

Ground station

- Main Station: Research Centre for Earth Operative Monitoring "NtsOMZ" (Moscow, Russia);
 - Collected data stored in PAMELA mass-memory (2GB)
 - Download (PAMELA → satellite): 7-8 per day
 → 14-16 GB
 - Downlink (satellite→ ground) 2-3 sessions per day
 - Bit Error Rate <10⁻⁹
 - Real time 'Quicklook' at NtsOMZ
 - Corrective uplinks are possible

Main antenna in NTsOMZ

 Data distributed to MePHI (Moscow Engineering and Physics Institute) and then onto Europe via GridFTP.

Anticoincidence counting rate

Download @orbit 3754 - 15/02/2007 07:35:00 MWT

(S11*S12) [hit/time]

ND

ND

Antiparticle data analysis

- Data analysis is currently in full swing. **Top priority:** to reconstruct the energy spectra of antiprotons and positrons
- An experimental challenge!
 - e.g. reconstructing the antiproton flux ratio:

<u>Summary</u>

- **PAMELA** is currently conducting an indirect search for dark matter using antiparticles in the cosmic radiation.
- Other scientific goals being actively pursued include a search for antihelium, tests of cosmic ray propagation, and solar-terrestrial physics
- **PAMELA** is a complex instrument built by a European consortium which has gone through a progression of prototyping, tests with particle beams and space qualification tests, prior to production of the flight hardware
- Launched on June 15th 2006. In-orbit commissioning tests concluded successfully. **PAMELA** has been in continuous data taking mode since 11th July 2006. ~4 TB of data downlinked.
- Data analysis is on-going. We expect to air first public results (probably antiparticle flux ratios) after the summer.

[http://wizard.roma2.infn.it/pamela]