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A failing power law



The local energy problem : Drastic increase of leakage currents



(almost) twodimensional system of
„connecting wires“

Spend typically 1000 times more enery in
wires compared to transistors (as long as
leakage currents are still small)

Energy Problem
Use this network to perform logic
operations based on Boolean Algebra not
well suited to calculated some real world
probles (e.g. solve differential equations)

Architecture Problem

The structural energy problem



INTEL Quote : „Nanotechnology is here“ (90 nm Transistor)

The Yield Problem (Lithography and Production)



The design problem - Steve Trimberger (XILINX Corporation)

4th NASA/DoD Workshop on Evolvable Hardware 2001

FPGA 2100
Feature Size 100 pm (Atomsize)
Wafer Diameter 2 m
Chipsize 5 cm x 5 cm
Transistors 2.5 · 1014 (0.1 x Synapses in Brain)
Logic Gates 1 Billion
Clock Speed 60 GHz
Power Dissipation 200 kW (5 families)
Foundry Investment 1 Tera Dollar
Costs for 1 set of lithographic masks 1 Giga Dollar
Application Development  5 Centuries



Problem Summary

  The local energy problem (leakage currents) DEVICE

  The yield problem DEVICE

  The structural energy problem (connections) ARCHITECTURE

  The design problem (testability, simulatability) ARCHITECTURE



International Technology Roadmap for Semiconductors (ITRS)



Hans Moravec

Carnegie Mellon





Real Biology : Neurons - Synapses - Dendrites - Spikes

Action
Potential =
Spike



Ecitatory         Inhibitory postsynaptic potential

Typically 1000 - 10000 synaptic inputs per neuron

Excitation and Inhibition

Voltage
(mV)

Time (ms)

Threshold for firing



More than „Spikes“ - „Plasticity“ and „local learning“

Hebbian Learning : The strength of a synaptic link changes, if pre- and
post-synaptic timing are close (un-supervised, local learning)

• CLOSE (µs, ms, s, .....) ?

• WHAT kind of change ?

PRE- POST-synaptic neuron



POT

DEP

(Bi and Poo, Ann. Rev. Neurosci., 2001)

In vivo intracellular recording (Adult Visual Cortex)

Experimental Evidence for „Spike-Time-Dependent-Plasticity (STDP)“

Extremly strong time dependence of
facilitytion or depression of synaptic
strength

Neural circuits require asynchronous
MILLISECOND timing for long term
learning !

AFTER - BEFORE

„synaptic spike“

STDP



Modeling approaches

starting point: mathematical description

methods:
• analytical treatment

proof of general properties and limits

• numerical solution (general purpose or FPGA based simulation)
flexibility, parallel objects not obvious

• physical model
artificial nervous system, artificial parallel object = biological
objects

• biological model
“custom-made biological nervous system”



Metal (0.3 µm times 0.3 µm)

Insulator (Oxide)
(100 Atom Layers)

Semiconductor

5 Volt

„Switching“ of a MOS element and a synapse :

Energy in BOTH cases approximately 1 fJ

„Energy“  Heat

Heat/Time  Power Dissipation (kW)

Electronics vs. Biology on the device level - Not a big difference !



I(t) = u(t)/R + C⋅du/dt
u(t) : membrane potential
I(t) : input current
Using RC time-constant :

τm ⋅ du/dt = - u(t) + R⋅ I(t)

In addition :

„Spike-Generation“ and „Reset“ of u if u
= ϑ

random current at input

A somewhat biological neuron model (integrate-and-fire, IF)
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FACETS : Basic Idea, methodological approach and goals

Experimental Biology : Reverse Engineered Structural
and Functional Blueprint of the Neocortical Microcircuit

Modelling : Simulation of Microcircuits
with detailed cell modells

Circuits :Emulation in analog, fault-
tolerant, scalable, high speed VLSI

Common Goal : Study non-classical universal computing solutions



Concept : VLSI mixed-signal emulation

external
communication
purely digitalcustom-made

mixed signal neural 
network ASIC

on-chip loops

analog neural computation

• neural network implemented in custom-made neural network ASICs
• hardware mixed-signal approach: local analog computation

combined with high-speed state-of-the-art digital communication
• Basically : Follow natures example

• Individual network modules used as building blocks, each module
hosts one ANN ASIC and all main components to interface it

• use high-speed links to connect the modules via a backplane

• Separate neural computation from setup / monitoring / control /
readout

• Use Wafer Scale Integration for neural computation part

Stage 1

Stage 2



A „scalable, very-large-scale, mixed-signal, massively-parallel, high-
speed, flexible, biologically plausible“ neural computation system

scalable : Clearly defined stackable components, no size or distance-dependent
communication quality, digital long range communication

very-large-scale : Possibility to approach the numerical complexity of the visual cortex

mixed-signal : analog computational elements (neurons, synapses), digital (event-based)
medium and long-range communication

massively parallel : Obviously ....

high-speed : Time compression of factor 100.000 beyond biological real-time. Possibility
to study all biologically relevant dynamics in convenient laboratory time scales. 1 ms
becomes 10 ns, 1 year becomes 5 minutes.

flexible : user configuration of neuron and synapse parameters, implementation of
diversity, programmable medium and long range connectivity, on chip-storage and update
of synaptic weights.

biologically plausible : based on inputs from biological measurements

Desired features of the FACETS Hardware



synapses:

pk,l(t) exponential onset and decay (spike shape)
gk,l 0  to gmax with 4 bit (8 bit) resolution

effective membrane time-constant cm /gtotal is time-dependent

current source, no voltage dependence

Stage 1 FACETS Model : Conductance-based Network Model

sum over excitatory
synapse currents k

sum over inhibitory
synapse currents l

Voltage dependent part, changes membrane
conductance

membrane
current

leakage
current

( ) ( ) ( )!! "+"+"=
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Specifications of the Stage 1 FACETS VLSI Model

fully analog network core

continuous time network operation

short-term synaptic depression and facilitation: analog on-chip

Spike Time Dependent Plasticity measurement in each synapse,
weight update performed digitally

programmable model parameters (individually or group-wise):
 reversal potentials: excitatory, inhibitory and leakage (Ex, Ei,  El)

 threshold voltage level Vth and comparator speed

 reset potential (Vreset) and leakage conductance (gleak)

 synapse parameters: rise time, fall time, maximum conductance (trise, tfall,
gk,l max)

A New VLSI Model of Neural Microcircuits Including Spike Time Dependent Plasticity, Johannes Schemmel, Karlheinz
Meier, Eilif Muller, Proceedings of the 2004 International Joint Conference on Neural  Networks (IJCNN'04),  IEEE
Press, pp. 1711-1716, 2004



Chip Specifications

 technology: UMC 180 nm, 6 metal layers, 1 polysilicon layer

 chip size: 5 x 5 mm2 (Europractice constraints)

 384 neurons, 100k synapses

 scale factor 100k : 10 ns chip-time equals 1 ms real-time

 fast analog outputs (about 400 MHz bandwidth) to monitor
selected membrane potentials

 internal storage for model parameters (about 4k values)

A New VLSI Model of Neural Microcircuits Including Spike Time Dependent Plasticity, Johannes Schemmel, Karlheinz
Meier, Eilif Muller, Proceedings of the 2004 International Joint Conference on Neural  Networks (IJCNN'04),  IEEE
Press, pp. 1711-1716, 2004



Digital Network Model

Event based communication between different model neurons
Two network models transport events from neuron x to neuron y:

1. on-chip:
• dedicated electrical connections transport the output from neuron x to the

input of neuron y
• continuous time
• constant delay

2. off-chip
• event based external interface
• digitized event time (150ps resolution)
• variable delay, can be compensated by external routing logic
• two bi-directional 800 MByte/s links
• Hypertransport physical layer specification
• transport protocol allows for daisy-chaining of multiple chips



Overview of the Network Implementation

A New VLSI Model of Neural Microcircuits Including Spike Time Dependent Plasticity, Johannes Schemmel, Karlheinz
Meier, Eilif Muller, Proceedings of the 2004 International Joint Conference on Neural  Networks (IJCNN'04),  IEEE
Press, pp. 1711-1716, 2004



Stage I Analog Neural Network Chip

analog output buffers
analog power supply

direct event inputs

synapse drivers

 LVDS Receivers

LVDS Transmitters

384 neurons and STDP

digital control with
parameter and event

buffer SRAMs

core power supplies
misc. digital IO:

clk, configuration, etc.

Two synapse arrays
2 x 192 x 256= 100k

5 
m

m



Experimental Setup



High-level software interfaces

Different user demands:
• An interpreter-based interface with huge scripting power for efficient
generation and operation of large experimental setups (Python)
• A convenient graphical user interface (C++)



1  sec

5 0
inhib itory
inputs

2 0 0
excitatory
inputs

Neuron

Single Neuron Bombardment Setup



Hardware

NEST 
Software

1 0 0  m s

2 ,5  µs

Equivalence between Hardware and Software



̃ N
-1

N = number of correlated spike pairs necessary to trigger a weight change
dt = time between pre- and postsynaptic spike

dt
1 0 0  ns

Measured STDP Modification Function
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FACETS Stage 1 Network Overview

netlist of model neural network

mapping
software

FACETS stage-1 network hardware

routing /
switching

logic

A (12)                 13                       10                   B (9)

routing /
switching

logic

routing /
switching

logic

routing /
switching

logic

physical layer, isochronous network of point-to-point connections at 3.125 GBit/s



1 „crate“ :

25 kNeurons, 6.4 MSynapses

0.25 mm3 cortex

Not much scaling beyond this is economically plausible (50 k€/crate)

Stage 1 : Crate System

FPGA

Connectors for 
daug hter card 
extension

1 6  network modules in one backplane



Control and
Communication
Plane

Control and
Communication
FPGA

Control and
Communication
ASIC

Neural
Network
Wafer (20 cm)

Cooling and
Support Base

Stage 2 Technology Step : Neural Processing Unit, 5x105 Neurons, 109 Synapses

Idea : Separate Neural Circuits and Monitoring/Readout/Control



Closed Unit



Process Technology UMC 180 nm CMOS  

Wafer Siz e  20 cm 

Synapse Siz e  10 !m
2
 

Synapses per Wafe r  10
9
 

Synapse-to-Neuron Ratio 1000-2000 

Neurons per Wafe r  5.0 10
5
 

Power of single neuron/synapse system 1 – 50 !W 

Power of single NPU incl. digital overhe a d  about 100 W 

 

 

Specifications

Challenge :

FAULT TOLERANCE (a
biological feature !)

Neuron model :

To be defined

Adaptation, failing synapses,
.....

FACETS project is needed !



High density Die-to-Die wafer-
scale next-neighbour
communication, analog
(multiplexed)

On-Wafer medium range
communication, digital,
event-based

External Read-Out, Monitoring
and Control
•read selected membrane potentials
(analog)

•read event sequences (digital)

•set medium/long range connections

•set neuron/synapse parameters

•Input data streams

•Output data streams

•Long term features
learning/development/evolution

Connectivity, Control, Communication

NPU

PCB
DNC

ANC

FPGA

NPU-to-NPU long range
communication, digital, event-
based



Wafer-Scale-Integration : The Communication Challenge

Synapse area in 180 nm CMOS : 10 µm x 10 µm, synapse density : 10.000/mm2

10 Hz biological rate -> on-chip : 1 MHz/synapse, 1 THz/cm2

Information Flow on an 8 inch wafer (16 bits per event) : 2.5 Petabytes/s

Reticle size : 25 mm x 25 mm -> no connections beyond this from UMC

Fraction of events crossing reticle border : 0.2 (assumption)

Events passing through a given reticle border : 1.25·1010 events/mm/s Events
must be routed from synapse A to synapse B, need connections :

• constant propagation delay

• slowly changing routing topology (long term plasticity)

• use programmable topoloy for different circuits

Solution : One connection per synapse : connection based routing :

1.25·1010/mm/s·10-6 = 1.25·104 connections/mm

NOT possible with conventional wire bonding !

Almost possible with additional process step : wafer scale integration

Post-processing (metallization) on top of CMOS process



Digital PCB (Motherboard) Functionality

 Low latency event network for digital event routing, non-local connections

 maximum delay for inter-area communication : 50 ns (5 ms biology)

 delay between distant cortical areas : 500 ns maximum (50 ms biology)

Pathway for 500 ns . Source neuron - TDC - PCB - routing on source PCB -
routing to target PCB - routing on target PCB - DTC - Target synapse

 Digitization of selected analog membrane potentials

 Trigger functionality for event analysis (e.g. detection of correlated firing,
selected cortical area readout)

 Statistical analysis for on board data reduction

 Power monitoring and defect management

 Interface for superstructures



Wafer

Network Reticle (ANC) Network Reticle (ANC)

Metal-Link

Bonds Wafer -  PCB

Multilayer PCB´s

DNC DNC

Cooling and Support

Mechanical Structure and Connectivity

Spacer Spacer



FACETS Long Term Goal : Building Superstructures

Example for 5 x 5 x 5
Superstructure with 108

Neurons and 1011 Synapses

Major Engineering Effort
(Power, Mechanical Structure)

Major Software Effort
(Monitoring, Set-up and Control)

Major Effort in Model Building
and Concepts for Experiments

1000 mm3 of Cortex

10% of VI



4 seconds of 30 neurons in a monkey brain (Krüger,Aiple 1988)



W. Maass,  T. Natschläger, and H. Markram. Real-time computing without  stable states : A new framework for
neural computation based on  perturbations. Neural Computation, 14(11):2531-2560, 2002.

Liquid Computing - Liquid State Machine (LSM)

1. „Liquid“

2. „Readout“



Operation of a Liquid State Machine (LSM) (W. Maass)

135 (15x3x3) randomly
connected IF neurons, 20%
inhibitory

Randomly chosen synaptic
strengths

2 Poisson-distributed
pulsetrains u und v

0.5 seconds

Compare distances d of
input and output pulse trains

Output distance > Input
distance

Separation without
dedictaed set-up

Universality

quasi-instantaneous availability of results :  „Any-Time-Computing“



Memory Curve (3bit time-delayed parity)

N= 2 5 6
k= 6
var= 0 .1 4
b ias= 0
reps= 5 0

Edge of Chaos Computation in Mixed-Mode VLSI - "A Hard Liquid“, Felix Scürmann, Karlheinz Meier, Johannes Schemmel
In Lawrence K. Saul and Yair Weiss and Leon Bottou, editors, Proc. of NIPS 2004,  Advances in Neural Information Processing Systems 17,
MIT Press, Cambridge, MA, 2005.



5 0  networks per data point ,  sigm a <  0 .3 5  b it

N= 2 5 6 ,  b ias= 0
order chaoscrit ical

Edge of Chaos Computation in Mixed-Mode VLSI - "A Hard Liquid“, Felix Schürmann, Karlheinz Meier, Johannes Schemmel
In Lawrence K. Saul and Yair Weiss and Leon Bottou, editors, Proc. of NIPS 2004,  Advances in Neural Information Processing Systems 17,
MIT Press, Cambridge, MA, 2005.

Mean MC (3-bit time delayed parity)



FACETS : Complementarity Supercomputers and VLSI - Complexity vs. Speed

Speed w.r.t. biological real-time10-3
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FACETS VLSI Approach (up to
108 neurons)

12.000 node
FACETS
BlueGene

40 node PIV

16 node PIII

B
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Neocortex (1012 neurons)

V1 (109 neurons)



Why FACETS Hardware ?

Two Answers :

I. Research tool for neuroscience : Bridge the gap
in timescales from milliseconds to years

II. New type of information processing : Use low
yield, low power, make use of self-organisation
(learning)

www.facets-project.org

www.kip.uni-heidelberg.de/vision


