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Topological states of matter

Insulating bulk and conducting edges

I Quantum Hall effect
Magnetic field á Chiral edge currents

(a) Spin-orbit coupling (b) Uniform magnetic field

á Quantised Hall conductivity
ä [Von Klitzing (1980)]

I Quantum spin Hall effect
Spin-orbit coupling á Helical edge currents

(a) Spin-orbit coupling (b) Uniform magnetic field

á Quantised spin Hall conductivity
ä [Theory: C. L. Kane and E. J. Mele (2005)]

ä [Experiment: Molenkamp group, Hasan group]
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Main Question

What happens if we have
a magnetic field and spin-orbit coupling?

Naive answer (from QSH perspective):
Breaking TR symmetry destroys QSH state

Actual answer (from QH perspective):
Study effect of SO coupling on QH states
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Honeycomb lattice – Model
Tight-binding model on a honeycomb lattice:

H = Hnn

+HZ +HI +HR

B

xy

z Hnn = −t
∑

〈i,j〉

(
eiθijc†icj

)

θij = 2π
e

h

∫ ri

rj

A · dl ∝ φ

gauge potentialflux per hexagon
B × area = Φ ≡ φh/e

HZ = −2πφλZ
∑

i

c†iσzci
Zeeman effect

HI = −itI
∑

〈〈i,j〉〉
eiθijνijc

†
iσzcj

intrinsic SO coupling

HR = −itR
∑

〈i,j〉
eiθijc†i (σxd

y
ij − σydxij)cj

Rashba SO coupling
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Bulk spectrum

I Let φ = p/q ∈ Q
I Harper’s equation á eigenvalues of 4q × 4q matrix

I 4q energy bands (dispersions)

E




Ψ1

Ψ2

Ψ3
...

Ψq−1

Ψq




=




D1 R1 0 · · · 0 R†q
R†1 D2 R2 · · · 0 0

0 R†2 D3 · · · 0 0
...

...
. . . . . . . . .

...
0 0 0 . . . Dq−1 Rq−1

Rq 0 0 . . . R†q−1 Dq







Ψ1

Ψ2

Ψ3
...

Ψq−1

Ψq



,

Dn =

(
2tIσ̂z sin

(
2πΦ(n+ 1

6) + k
)

+ 2πΦλZσ̂z t1̂− itRσ̂y
t1̂ + itRσ̂y −2tIσ̂z sin

(
2πΦ(n+ 1

6) + k
)

+ 2πΦλZσ̂z

)
,

Rn =

(
itIσ̂z

(
eiπΦ(n+ 2

3
) − e−iπΦ(n+ 2

3
)−ik) 0

eiπΦ(n+1)
(
t1̂− itRγ̂−

)
+ e−iπΦ(n+1)−ik(t1̂− itRγ̂+

)
−itIσ̂z

(
ei2πΦ(n+ 7

6
) − e−i2πΦ(n+ 7

6
)−ik)

)
,

γ̂± = ±
√

3
2 σ̂x + 1

2 σ̂y.
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Bulk spectrum

I Let φ = p/q ∈ Q
I Harper’s equation á eigenvalues of 4q × 4q matrix
I 4q energy bands (dispersions)

E/t

φ

−3

−2

−1

0

1

2

3

0 0.5 1

λZ = tI = tR = 0
Hofstadter butterfly

ä [D. R. Hofstadter, Phys.
Rev. B 14, 2239 (1976)]

ä [R. Rammal, J. Phys.
(Paris) 46, 1345 (1985)]

Topological invariant:
Hall conductivity σH

−24 −16 −8 0 8 16 24

σH [e2/h]
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Edge-state analysis

Compute dispersion in cylindrical geometry

x

y

z

−3

0

3
E/t

k

φ = 1/3
λZ = tI = tR = 0

〈y〉

Location 〈y〉
Direction ∂E

∂k

Spin 〈σx,y,z〉

Hall conductivities

charge [e2/h]:
σH = N↑ +N↓ = 2

spin [e/4π]:
σsp
H = N↑ −N↓ = 0
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Topological phases – B+ Intrinsic SO coupling
φ = 1/61

−0.5

0

0.5

E/t

k

tI/t = 0

ä [W. Beugeling, N. Goldman, and C. Morais Smith, Phys. Rev. B 86, 075118 (2012)]

Topological phases and phase transitions in two-dimensional fermionic lattices 8/27



Topological phases – B+ Intrinsic SO coupling
φ = 1/61

−0.5

0

0.5

k

tI/t = 0.01

Weak QSH phase
N↑ = 1, N↓ = −1

σH = 0
σsp
H = 2

Persists under TRS breaking!

ä [W. Beugeling, N. Goldman, and C. Morais Smith, Phys. Rev. B 86, 075118 (2012)]
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Topological phases – B+ Zeeman
φ = 1/61

−0.5

0

0.5

E/t

k

λZ/t = 0

ä [W. Beugeling, N. Goldman, and C. Morais Smith, Phys. Rev. B 86, 075118 (2012)]
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Topological phases – B+ Zeeman
φ = 1/61

−0.5

0

0.5

k

λZ/t = 0.5

Weak QSH phase

Spin-imbalanced QH phase

N↑ = −1, N↓ = 1

σH = 0
σsp
H = −2

N↑ = 1, N↓ = 3

σH = 4
σsp
H = −2

ä [W. Beugeling, N. Goldman, and C. Morais Smith, Phys. Rev. B 86, 075118 (2012)]
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Equivalence of intrinsic SO and Zeeman at LLL

−0.5

0

0.5

k

tI/t = 0.01

Intrinsic SO

k

λZ/t = 0.5

Zeeman

Linearised Hamiltonians:

Ψ†(σ↑↓
z ⊗ 1

AB ⊗ 1
KK′

)ΨΨ†(σ↑↓
z ⊗ σABz ⊗ σKK′

z )Ψ

Eigenstates in LLL (n = 0):

(0, 0, ψ↑,A,K′ , ψ↓,A,K′ , ψ↑,B,K , ψ↓,B,K , 0, 0)

In both cases:

ψ†
↑,A,K′ψ↑,A,K′ − ψ†

↓,A,K′ψ↓,A,K′ + ψ†
↑,B,Kψ↑,B,K − ψ†

↓,B,Kψ↓,B,K
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Topological phases – B+ Rashba SO coupling

HR = −itR
∑
〈i,j〉

eiθij c†i (σxd
y
ij − σydxij)cj

σx, σy á spin-z not conserved

I Low energy, low flux: No gap at zero energy
Spin degeneracy lifted á Splitting of LL

I High energy, high flux (e.g., φ = 7/15 ≈ 1/2, E/t ≈
√

3)

1.6

1.8
E/t

k

tR → 0

1.6

1.8

k

tR/t = 0.2
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Spin manipulation with Rashba SO coupling

HR = −itR
∑
〈i,j〉

eiθij c†i (σxd
y
ij − σydxij)cj

−4

−2.5
E/t

k

φ = 1/3
tR/t = 1, λZ/t = 0.5

xy

z

I spin eigenstates ⊥ x̂ (edge/momentum)
I spin manipulation by tuning Fermi energy

ä [N. Goldman, W. Beugeling, and C. Morais Smith, EPL 97, 23003 (2012)]
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Topological phase transitions

Topological phases are interesting,
but what about transitions between them?
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Topological phase transitions
Phase transition driven by ISO (φ = 1/3, λZ/t = 0.5, tR = 0)

0.8

1.6
E/t

k

tI/t = 0.35

N↑ = 1, N↓ = −1

weak QSH

σH = 0
σsp
H = 2

k

tI/t ≈ 0.43

gap closes

k

tI/t = 0.5

N↑ = 1, N↓ = 2

spin-imbalanced QH

σH = 3
σsp
H = −1

ä [N. Goldman, W. Beugeling, and C. Morais Smith, EPL 97, 23003 (2012)]
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Topological phase transitions
Variation of ISO drives many top. phase transitions

EF/t

tI/t

−4

−3

−2

−1

0

1

2

3

4

0 0.5 1

−1

+1

−1

+1

−1

+1

−1

+1

+1

+1

+1

+3

+2

+1

−1

−2

−3

−1

−1

−1

−1

0

0

+1

+1 −1

+1

+1

+1

−3

−4

−2

+2

+4

+3

−1

−1

−1

+1

+2

−2

−1

φ = 1/3, λZ = 0

N↑ N↓

Observation:

At phase transitions,

number of edge states N↑, N↓

changes by ±3, ±6

(a multiple of q; φ = p/q)

Reason:

There are q copies of

magnetic BZ in the full BZ

ä [W. Beugeling, N. Goldman, and C. Morais Smith, Phys. Rev. B 86, 075118 (2012)]
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Topological phase transitions

Are there other mechanisms to drive topological phase
transitions?

Yes
Real NNN hopping will do the trick!

(assuming φ 6= 0)

HI = −itI
∑

〈〈i,j〉〉
eiθijνijc

†
iσzcj

cf. intrinsic SO coupling

HNNN = −tNNN

∑

〈〈i,j〉〉
eiθijc†icj

real NNN hopping
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Topological phase transitions
Phase transition driven by NNN (φ = 1/3, λZ = tR = tI = 0)

1.5

2.0
E/t

k

tNNN/t = 0.18

N↑ = N↓ = −1

QH (σH = −2)

k

tNNN/t = 0.2

gap closes

k

tNNN/t = 0.22

N↑ = N↓ = 2

QH (σH = +4)

Spin degeneracy á Transitions between QH (chiral) phases

With φ 6= 0, ISO tI 6= 0: Tuning NNN á Transitions also
between nonchiral phases

With φ = 0: No phase transitions driven by NNN!
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Topological phase transitions in the Lieb lattice

Γ

Y

X

M

kya

kxa

A B

C

t

t′

a

(a) (b)

y

x

Hk = H0
k ⊗ 12×2 +HISO

k ⊗ σz
in the basis Ψ̂k ≡ (Ψ̂k,↑, Ψ̂k,↓)

[Ψ̂k,σ ≡ (ĉA,k,σ, ĉB,k,σ, ĉC,k,σ)]

and with

H0
k =

 0 −2tcx −2tcy
−2tcx 0 −4tNNNcxcy
−2tcy −4tNNNcxcy 0



HISO
k = 4itI

0 0 0
0 0 −sxsy
0 sxsy 0



(sµ ≡ sin(kµa/2), cµ ≡ cos(kµa/2))tI = 0, tNNN = 0

tI 6= 0, tNNN = 0tI = 0, tNNN 6= 0

ä [W. Beugeling, J. C. Everts, and C. Morais Smith, arXiv:1207.6545]
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ä [W. Beugeling, J. C. Everts, and C. Morais Smith, arXiv:1207.6545]
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TPTs driven by real NNN hopping in the Lieb lattice
No magnetic field (á TRS á helical phases)
ISO coupling tI/t = 0.45 opens gaps

−2

0

2
E/t

k

tNNN/t = 0.4

upper gap:

lower gap:

N↑ = −N↓ = 1

N↑ = −N↓ = 1

QSH (σsp
H = 2)

QSH (σsp
H = 2)

k

tNNN/t = 0.5

closes

N↑ = −N↓ = 1

QSH (σsp
H = 2)

(only ↑ shown; ↓ follows from TRS)
k

tNNN/t = 0.75

N↑ = −N↓ = −1

N↑ = −N↓ = 1

QSH (σsp
H = −2)

QSH (σsp
H = 2)

Directions of edge states in upper gap are inverted
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TPTs driven by real NNN hopping in the Lieb lattice
Phase diagram:

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

N lower
↑ Nupper

↑

+1

−1

+1

−1

−1

+1

+1

−1

−1

+1

+1

−1

tI/t

tNNN/t

TRS á Ngap
↑ = −Ngap

↑

σsp
H (gap) = Ngap

↑ −Ngap
↓ = 2Ngap

↑

(gap = lower, upper)

QSH gaps with σsp
H = ±2

ä [W. Beugeling, J. C. Everts, and C. Morais Smith, arXiv:1207.6545]
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Topological phase transitions – summary

ä [W. Beugeling, J. C. Everts, and C. Morais Smith, arXiv:1207.6545]

We have topological phase transitions in:
I Honeycomb lattice (φ 6= 0)

I driven by ISO coupling
I driven by real NNN hopping

I Lieb lattice (φ = 0)
I driven by real NNN hopping

I Kagome lattice (φ = 0) (not shown)
I driven by ISO coupling
I driven by real NNN hopping
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Experimental realisations

How to observe these phases and phase transitions?
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Experimental realisations – Condensed Matter

Low-flux limit: |φ| . 10−3

I Graphene
RSO

ISO

Zeeman

tR/t ∼ 0.01 – 0.1

tI/t ∼ 10−6 – 10−4

λZ/t ∼ g ∼ 1

I 2D topological insulators (e.g., Hg(Cd)Te quantum wells)
RSO

ISO

Zeeman

tR/t ∼ 10−2

tI/t ∼ 10−2

λZ/t ∼ g ∼ 10 – 50

ä [C. Brüne et al., Phys. Rev. Lett. 106, 126803 (2011)]
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Experimental realisations – Artificial lattices
Patterns on a substrate emulating “real” honeycomb lattices:

I Array of quantum dots on GaAs

500 nm

Lattice constant ∼ 100 nm á high flux
Possible problem: Small hopping parameter

ä [G. De Simoni et al., Appl. Phys. Lett. 97, 132113 (2010)]

I “Molecular graphene”
Pattern created by repulsion of CO molecules deposited on Cu(111)

b z (Å) 0.50

2 nm

Lattice constant ∼ 1 nm á higher flux than graphene
Choice of substrate á SO coupling?
High control of lattice parameters (STM)

ä [K. K. Gomes, W. Mar, W. Ko, F. Guinea,

and H. C. Manoharan, Nature 483, 306 (2012)]
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Experimental realisations – Ultracold atoms

Ultracold atoms (optical lattice with synthetic gauge fields)
I High flux
I Tunability of the parameters
I Absence of disorder

ä [D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003)]

ä [K. Osterloh et al., Phys. Rev. Lett. 95, 010403 (2005)]

ä [F. Gerbier and J. Dalibard, New J. Phys. 12, 033007 (2010)]

ä [A. Bermudez et al., Phys. Rev. Lett. 105, 190404 (2010)]

ä [N. Goldman et al., Phys. Rev. Lett. 105, 255302 (2010)]

ä [N. Goldman et al., Phys. Rev. Lett. 108, 255303 (2012)]
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Conclusion

In the honeycomb lattice, the interplay of B,
ISO, RSO and Zeeman effect creates

I rich variety of topological phases
I variable spin direction

Topological phase transitions
I driven by ISO, real NNN
I in honeycomb, Lieb, kagome lattices

Various realisations possible

ä [N. Goldman, W. Beugeling, and C. Morais Smith, EPL 97, 23003 (2012)]

ä [W. Beugeling, N. Goldman, and C. Morais Smith, Phys. Rev. B 86, 075118 (2012)]

ä [W. Beugeling, J. C. Everts, and C. Morais Smith, arXiv:1207.6545]
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Topological invariants

Dispersion in ribbon geometry

Count

N↑, N↓
# of edge states in gap

An,k = i 〈ψn,k|∇|ψn,k〉 (Berry conn.)

Fn,k = ∂xAy − ∂yAx (Berry curv.)

∫
BZ

dk

C↑,n, C↓,n

Chern numbers of bulk bands

Nσ =
∑

occupied bands n

Cσ,n

bulk-boundary correspondence
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Topological phase transitions – Chern numbers
Phase transition driven by ISO (φ = 1/3, λZ/t = 0.5, tR = 0)

0.8

1.6
E/t

k

tI/t = 0.35

N↑ = 1, N↓ = −1

weak QSH

σH = 0
σsp
H = 2

k

tI/t ≈ 0.43

gap closes

k

tI/t = 0.5

N↑ = 1, N↓ = 2

spin-imbalanced QH

σH = 3
σsp
H = −1

C↓ = 0

C↓ = 1

C↓ = 1

C↓ = 3

C↓ = −2

ä [N. Goldman, W. Beugeling and C. Morais Smith, EPL 97, 23003 (2012)]
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TPTs driven by real NNN hopping in the Lieb lattice
No magnetic field (á TRS á helical phases)
ISO coupling tI/t = 0.45 opens gaps

−2

0

2
E/t

k

tNNN/t = 0.4

upper gap:

lower gap:

N↑ = −N↓ = 1

N↑ = −N↓ = 1

QSH (σsp
H = 2)

QSH (σsp
H = 2)

k

tNNN/t = 0.5

closes

N↑ = −N↓ = 1

QSH (σsp
H = 2)

(only ↑ shown; ↓ follows from TRS)
k

tNNN/t = 0.75

N↑ = −N↓ = −1

N↑ = −N↓ = 1

QSH (σsp
H = −2)

QSH (σsp
H = 2)

C↑ = 1

C↑ = 0

C↑ = −1

C↑ = 1

C↑ = −2

C↑ = 1

Directions of edge states in upper gap are inverted
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Lieb lattice with dimerisation term
Dimerisation:
Change NN hopping t to t+ α and t− α alternatingly.

á Phase diagram (α/t = 0.3):

−1.0

−0.5

0

0.5

1.0

−1.0 −0.5 0 0.5 1.0

(−1, 2,−1) (1, 0,−1) (1,−2, 1)

(1,−2, 1) (−1, 0, 1) (−1, 2,−1)

(0, 0, 0)

t′/t

λ
IS

O
/
t

(0, 1,−1)

(1,−1, 0)

(−1, 1, 0)

(0,−1, 1)

−1

0

1

−1 0 1
t′/t

λ
IS

O
/
t

No full gap at filling:

1
3

2
3

(a) (b)

ä [W. Beugeling, J. C. Everts, and C. Morais Smith, arXiv:1207.6545]
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