Conformal Field Theory of Composite Fermions in the QHE

Andrea Cappelli
(INFN and Physics Dept., Florence)

Outline

- Introduction: wave functions, edge excitations and CFT
- CFT for Jain wfs: Hansson et al. results
- CFT for Jain wfs: W-infinity minimal models
- independent derivation of Jain wfs from symmetry arguments
- CFT suggests non-Abelian statistics of quasi-holes

CFT descriptions of QHE

- equivalence of descriptions: analytic continuation from the circle, use map CFT \longleftrightarrow Chern-Simons theory in 2+1 dim
- general CFT is $U(1) \times$ neutral:
- wavefunctions: spectrum of anyons and braiding matrices
- edge correlators: physics of conduction experiments

Non-Abelian fractional statistics

- $\quad \nu=\frac{5}{2}$ described by Moore-Read "Pfaffian state" \sim Ising CFT \times U(1)
- Ising fields: I identity, ψ Majorana $=$ electron, σ spin field $=q$-hole
- fusion rules:

$$
\begin{array}{ll}
-\psi \cdot \psi=I & \text { electrons fuse into Bosonic bound state } \\
-\sigma \cdot \sigma=I+\psi & \text { 2 channels of fusion = } 2 \text { conformal blocks } \\
\langle\sigma(0) \sigma(z) \sigma(1) \sigma(\infty)\rangle=a_{1} F_{1}(z)+a_{2} F_{2}(z) \quad \text { hypergeometric }
\end{array}
$$

\longrightarrow state of 4 anyons is two-fold degenerate (Moore, Read '91)

- statistics of anyons ~ analytic continuation
$\longrightarrow 2 \times 2$ unitary matrix

$$
\begin{aligned}
& \binom{F_{1}}{F_{2}}\left(z e^{i 2 \pi}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{F_{1}}{F_{2}}(z) \\
& \binom{F_{1}}{F_{2}}\left(1+(z-1) e^{i 2 \pi}\right)=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\binom{F_{1}}{F_{2}}(z)
\end{aligned}
$$

- Topological Quantum Computation (Nayak et al. '07)

Jain composite fermion

$$
\Psi_{\nu=\frac{1}{p+1}}=\prod_{i<j}\left(z_{i}-z_{j}\right)^{p} \prod_{i<j}\left(z_{i}-z_{j}\right)=\prod_{i<j}\left(z_{i}-z_{j}\right)^{p} \Psi_{\nu=1}, \quad p \text { even }
$$

- Correspondence

$$
\begin{aligned}
& \text { FQHE } \\
& \frac{N_{\Phi}}{N_{e}}=\frac{1}{\nu}=p+1 \\
& B
\end{aligned}
$$

IQHE

$$
\begin{aligned}
\frac{1}{\nu^{*}} & =1 \\
B^{*} & =B-p \rho \Phi_{o}
\end{aligned}
$$

- generalize to n filled Landau levels

$$
\frac{1}{\nu}=p+\frac{1}{n}
$$

$$
\frac{1}{\nu^{*}}=\frac{1}{n}
$$

$$
\Psi_{\nu=\frac{n}{n p+1}}=\mathcal{P}_{L L L} \prod_{i<j}\left(z_{i}-z_{j}\right)^{p} \Psi_{\nu^{*}=n}
$$

- composite fermion: quasiparticle feeling the reduced B^{*}
- many experimental confirmations - no definite theory
- $\Psi_{\nu=\frac{n}{n p+1}}$ written directly in LLL using projection $\bar{z}_{i} \rightarrow \partial_{z_{i}}$ in $\Psi_{\nu^{*}=n}$
(Jain, Kamilla '97)

CFT for Jain: Hansson et al._('07-10)

$$
\Psi_{\nu=\frac{2}{2 p+1}}=\mathcal{A}\left[\prod^{N / 2} w_{i j}^{p+1} \partial_{z_{1}} \cdots \partial_{z_{N / 2}} \prod_{i j}^{N / 2} z_{i j}^{p+1} \prod^{N / 2}\left(z_{i}-w_{j}\right)^{p}\right] \quad \begin{aligned}
\frac{1}{\nu} & =p+\frac{1}{2} \\
w_{i j} & =w_{i}-w_{j} \\
z_{i j} & =z_{i}-z_{j}
\end{aligned}
$$

- result based on non-trivial algebraic identites
- recover Abelian two-component edge theory

$$
K=\left(\begin{array}{cc}
p+1 & p \\
p & p+1
\end{array}\right)
$$

$$
\Psi_{\nu=\frac{2}{2 p+1}}=\mathcal{A}\left[\left\langle\left(\partial_{z_{1}} V_{+}\right) \cdots\left(\partial_{z_{N / 2}} V_{+}\right) V_{-} \cdots V_{-}\right\rangle\right]
$$

(Wen, Zee; Read,....)

$$
V_{ \pm}=e^{i \sqrt{p+\frac{1}{2}} \varphi} e^{ \pm i \frac{1}{\sqrt{2}} \phi}
$$

- but there is more:

- \mathcal{A} : two fermions $V_{+}, V_{-} \longrightarrow$ one fermion
- descendant fields needed for non-vanishing result, yield correct "shift"
- Next: find improved CFT that complete the derivation

W-infinity symmetry

Area-preserving diffeomorphisms of incompressible fluid
$\int d^{2} x \rho(x)=N=\rho_{o} A$

- W-infinity symmetry can be implemented in the edge CFT
- CFT with higher currents characteristic of 1d fermions (+ bosonization)

$$
W^{k}=: \bar{F}\left(\partial_{z}\right)^{k} F:, \quad W^{0}=J, \quad W^{1}=: J^{2}: \sim H, \quad W^{2}=: J^{3}:, \quad \cdots
$$

- representations completely known \longrightarrow classification (V.Kac, A. Radul '92)
- $c=n$ generically reproduce Abelian theories $\widehat{U(1)}^{n}$ with K matrices
- but special representations for enhanced symmetry $\widehat{U(1)} \times \widehat{S U(n)_{1}}$

W-infinity minimal models

- repres. with extended symmetry are degenerate and allow for a projection: W_{∞} minimal models (A.C., Trugenberger, Zemba '93-'99)
- these edge theories reproduce Jain fillings, $\nu=\frac{n}{p n \pm 1}$ with usual K matrices for charge and statistics
- extra projection of $S U(n)$ amounts to keeping edge excitations completely symmetric w.r.t. layer exchanges:
- single electron excitation
- reduced multiplicities of edge states
- non-Abelian statistics of quasi-particles \& electron (????)

FATAL?..........NO!!

Ex: $c=2$ minimal model

$$
\begin{array}{ll}
\widehat{U(1)} \times \widehat{S U(2)_{1}} \longrightarrow \widehat{U(1)} \times \frac{\widehat{S U(2)_{1}}}{}=\widehat{U U(1)} \times \text { Vir } \\
c=2, \quad \frac{1}{\nu}=p+\frac{1}{2} \quad \text { Vir = SU(2) Casimir subalgebra }
\end{array}
$$

- take edge excitations symmetric w.r.t. two layers only
- neutral part is described by the Virasoro minimal model for $c \rightarrow 1$
- fields characterized by dimension $h=\frac{k^{2}}{4}$ i.e. total spin $s=\frac{k}{2} ;$ NO s_{z}
- electron has $s=\frac{1}{2}$
- identify two vertex operators by Dotsenko-Fateev screening operators

$$
V_{ \pm}=e^{ \pm \frac{i}{\sqrt{2}} \phi}, \quad s_{z}= \pm \frac{1}{2}, \quad V_{-} \sim V_{+}=Q_{+} V_{-}, \quad Q_{+}=J_{0}^{+}=\oint d u J^{+}(u)
$$

Derivation of Jain wf in Hansson et al, form

- extend W-infinity minimal models from edge to bulk
- 4-el. wf has two channels, $\left\{\frac{1}{2}\right\} \times\left\{\frac{1}{2}\right\}=\{0\}+\{1\}$, given by choices of C_{i}

$$
\Psi=\left\langle\oint_{C_{1}} J^{+} \oint_{C_{2}} J^{+} V_{-}\left(z_{1}\right) V_{-}\left(z_{2}\right) V_{-}\left(z_{3}\right) V_{-}\left(z_{4}\right)\right\rangle
$$

- impose antisymm of electrons $\longrightarrow \Psi=0$
- consider descendant with same charge: $J_{0}^{+} \rightarrow J_{-1}^{+}, J_{-1}^{+} V_{-} \sim \partial_{z} V_{+}$

$$
\Psi^{\prime}=\left\langle J_{-1}^{+} V_{-}\left(z_{1}\right) J_{-1}^{+} V_{-}\left(z_{2}\right) V_{-}\left(z_{3}\right) V_{-}\left(z_{4}\right)\right\rangle+\text { perm }=\Psi_{\text {Jain }}
$$

Underlying theory of Jain wf is W-infinity minimal model + Fermi statistics for electrons

Indipendent, exact derivation of Jain state from symmetry principles \longrightarrow universality, robustness, etc.

Jain wf vs. Pfaffian wf

$$
\Psi_{\nu=\frac{2}{2 p+1}}=\mathcal{A}\left[\prod^{N / 2} w_{i j}^{p+1} \partial_{z_{1}} \cdots \partial_{z_{N / 2}} \prod_{i j}^{N / 2} z_{i j}^{p+1} \prod^{N / 2}\left(z_{i}-w_{j}\right)^{p}\right], \quad \frac{1}{\nu}=p+\frac{1}{2}
$$

- reminds of Paffian state in Abelian version (A.C, Georgiev, Todorov '01)

$$
\Psi_{\text {Pfaff }}=\mathcal{A}\left[\prod^{N / 2} w_{i j}^{M+2} \prod^{N / 2} z_{i j}^{M+2} \prod^{N / 2}\left(z_{i}-w_{j}\right)^{M}\right], \quad M \text { odd, } \quad K=\left(\begin{array}{cc}
M+2 & M \\
M & M+2
\end{array}\right)
$$

- same vanishing behaviour:

$$
\begin{array}{ll}
\Psi \sim z_{12}^{p-1}\left(z_{13}^{2} z_{14}^{2} \cdots\right), & \frac{1}{\nu}=p+\frac{1}{2} \\
\Psi \sim\left(z_{12} z_{13} z_{23}\right)^{p-1}\left(z_{14}^{2} z_{15}^{2} \cdots\right), & \frac{1}{\nu}=p+\frac{1}{3}
\end{array}
$$

$\longrightarrow \underline{p=1 \text { Jain is excited state of the } M=0 \text { Pfaffian }}$

- same pairing?
cf. Simon, Rezayi, Cooper '07:
- fractional statistics?

Non-Abelian statistics of quasiholes

- smallest q-hole, e.g. $Q=\frac{1}{5}$ at $\nu=\frac{2}{5}$, has neutral part $s=\frac{1}{2}$:
\longrightarrow two components $s_{z}= \pm \frac{1}{2}$ identified by the projection $H_{+} \sim J_{0}^{+} H_{-}$
q -holes in two layers are identified in W minimal models
- fusion $\left\{\begin{array}{l}H_{ \pm} H_{ \pm} \sim H_{s=1} \\ H_{+} H_{-} \sim H_{s=0}=I\end{array}\right.$ two channels \longrightarrow non-Abelian statistics
- first non-trivial case is 4 q-holes: three independent states

$$
\begin{aligned}
& \Psi_{(12,34)}=\mathcal{A}_{z_{i}}\left\langle H_{+}\left(\eta_{1}\right) H_{+}\left(\eta_{2}\right) H_{-}\left(\eta_{3}\right) H_{-}\left(\eta_{4}\right) \prod V_{e}\left(z_{i}\right)\right\rangle+(+\leftrightarrow-) \\
& \Psi_{(13,24)}=\mathcal{A}_{z_{i}}\langle(+-+-)\rangle, \quad \Psi_{(14,23)}=\mathcal{A}_{z_{i}}\langle(+--+)\rangle
\end{aligned}
$$

- they trasform among themselves under monodromy
\longrightarrow multidimensional representation

Remarks

- $2 k$ quasiholes have quantum dimension $d_{k} \sim \frac{2^{2 k}}{\sqrt{k}}$ (but not Rational CFT)
- other Jain q-holes, $\langle(++++)\rangle$, odd no., antisymm combinations, are projected out in the W minimal theory
- need suitable energetics to achieve this (as in Pfaffian)
- entaglement spectrum does not seem to show projection
- but edge is consistently non-Abelian (long-distance physics)
- Jain quasi-particles (after Hansson et al.) do fit in the W minimal theory (zero Km. product)

Conclusions

- CFT + W-infinity symmetry rederive Jain states \longrightarrow independently of composite fermion picture
- Jain states are consistent \& universal
- same CFT hints at non-Abelian q-hole excitations
- open problems:
- which model Hamiltonian?
- relation to Gaffnian and mode counting
- experimental tests:
- thermopower, if measure can be extended to higher B
- puzzles in known experiments?

