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Weather in Tokyo
(past 2 weeks)
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U(1) gauge theory

Quantum Electrodynamics =
U(l) gauge theory in 3+| dimensions
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Gauge invariance also allows

Lo = = = _9E - B €pvpo ' FP?

which breaks T-reversal and inversion symmetry
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Topological Term

In a closed space-time with periodic boundary conditions
Se = /d4x Lo = 0 X integer

O-term is a topological term;
B ~ 0 + 217 (in the bulk)

T-reversal invariance= 0 = 0, TT (mod 2TT)



Inducing a Magnetic Monopole with
Topological Surface States  (PRB 2008/

Xiao-Liang Qi,* Rundong Li," Jiadong Zang,® Shou-Cheng Zhang™ Science 2009)

Z, topological insulator

low-energy
effective theory

Electrodynamics with O=TT




O-term in Particle Physics

Similar term in QCD

Generic value of O : breaks T-reversal
(and thus CP symmetry)

= neutron will have electric dipole moment

(which is not observed)

Experimental bound: 6 < 5 x 10-'°

Why this is so small? - “strong CP problem”

cf.) CP violation in CKM matrix (weak interaction)
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Axion
Proposal (Peccei-Quinn 1977)

Introduce pseudoscalar, dynamical field
which couples to ¢, ,, F** F°

= 0 effectively becomes a dynamical field

Dynamical O-field relaxes into the lowest-energy

state, which is 6=0 restoration of CP symmetry

Quantum of dynamical O-field: new particle “axion”

not (yet) found in experiments, but a possible
component of “dark matter”

8



namre
PUBLISHED ONLINE:7 MARCH 2010 | DOI: 10.1038/NPHYS1534 phySlCS

ARTICLES

Dynamical axion field in topological
magnetic insulators

Rundong Li', Jing Wang'?, Xiao-Liang Qi' and Shou-Cheng Zhang'*

Z, topological insulator
(such as BixSes)
doped with magnetic
impurities (such as Fe)

“Topological Magnetic Insulator”

Figure 1| Crystal structure of Bi(Fe);Ses. Crystal structure of Bi(Fe);5es

fluctuations of magnetic order play
the role of dynamical axion field = srstrGesri duiie e e e

spin-ordering configuration giving rise tothe I's massis indicated by the
black arrow, which is antiferromagnetic along the z direction and
ferromagnetic within the xy plane.
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The insulator does not need to be
“topological” to have an “axion field”

Physics Letters A 372 (2008) 1141-1146

Relativistic analysis of magnetoelectric crystals:
Extracting a new 4-dimensional P odd and T odd pseudoscalar
from Cr,O3 data

Friedrich W. Hehl **!. Yuri N. Obukhov *?. Jean-Pierre Rivera”. Hans Schmid®

magnetoelectric effect « “axionic” O term

fluctuations of magnetic moments may give rise to
dynamical axion field [X-L. Qi, private commun.]
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Effective theory of TMI
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m: axion mass [ ~ 2 meV in BixSes-Fe (LIWQZ)]

V: velocity of axion mode = spin wave velocity



Instability in gauge theory

AdS/CFT correspondence

Nakamura-Ooguri-Park (2010):

instability in Maxwell theory + Chern-Simons term
in (4+1) dimensions

\/ dimensional reduction

Donos-Gauntlett / Bergman-Jokela-Lifschytz (201 |):
instability in axionic electrodynamics in (3+1) dimensions



AXxionic Polariton

4 )

TMI
E
Vs \//\) wavenumber k (//x)
> X

“Axionic polariton” (= coupled axion+EM field)
in background E-field
cf.) Li-Wang-Qi-Zhang considered axionic polariton
in background B-field

>
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Instability of Axionic Polariton

Dispersion of the axionic polariton in E-field:

w? = l:[(c’2 + vA)k? + m?]

+ %J[(C’2 — I — m?P? + dm?c*KPE?/E?

crit’

c’: speed of light in the TMI
¢ >>V (spin wave velocity of the axion field)

3 2
Eicrit = E\/(27[-) il

o 7

W acquires imaginary part if E>Ecri¢, for 0 <k <%J(EE_ )2 ~ 1.
(Instability!) -
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Where does it go!

Eventual fate of the system with the axionic instability ?

Z

A

Neumann b.c.
0,0 =0

(for simplicity)

(87

(9 qb)B — EoEO

(s

Uniform solution within TMI is allowed
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Energy density in TMI
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For given external field Eo, find the magnetic field
B which gives the groundstate!

= @ is automatically determined
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looks similar to 6=0 ?
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€0

O+0 breaks the
B < -B symmetry!

No SSB



10+

o 4 o))
1 T | T T T T | T

(Smeared) transition for 00

50
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Realization in TMI?

3 2
N

o 7

Using LWQ/Z-estimate for BiSes-Fe (m ~ 2 meV etc.)
Ecrie ~ 108 V/m (perhaps too large)

Axion mass may be made smaller by tuning the system
near the critical point of the magnetic order
g may also be made smaller?

For Ecric ~ 10> V/m and sample thickness ~ 10 nm

AV ~ | mV
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Surface Dirac mode?

If AV exceeds the surface mass gap ms, additional
screening due to the surface Dirac mode occurs
The dynamical axion gives an additional screening effect.

( ms~1 meV for BiSes-Fe [LQW/Z])

Can we separate the effect of dynamical axion field?
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Magnetic coating

p  gives mass to surface
Ferromagnet Dirac mode,
> 4 independently of the
bulk axion mass
TMI l

dynamical axion
effect may be
observed while fine-
Ferromagnet .
g ) tuning m—0

S\
v

Magnetic coating induces magnetic order at the
boundary, imposing Dirichlet b.c. ¢ = ¢,
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I” o

Using “trivial” insulator
Alternatively, we can use a topologically “trivial”
insulator with a dynamical axion field (such as Cr,03)

However, Cr,O3 has Coulomb repulsion U~5eV, which

may give axion mass of the same order
(too big)

— also need to fine-tune the axion mass towards zero
(close to quantum criticality between magnetic and
non-magnetic phases?)
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Dirichlet b.c.

o
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The solution is now z-dependent, but
it asymptotically approaches the
stationary solution for Neumann b.c,,
with the replacement § = —¢,
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Screening Length

¢
- 4
A = —¢o
b0 v
e if m ~ 0.0 meV

and exchange ~ | K
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Why screening!?

By generating B, screening charge is induced

¢ near the boundary, because of 09
4
V-E=p=xYa-B, (Wilczek 1987) ()
bo VxE= —9dB/ot, (3)
V-B=0, (4)
VxB=0E/d:+j+ x(aB+VaxE), (5)

where p,j are the ordinary (nonaxion) charge and
current. We see that there 1s an extra charge density

proportional to —Va- B, and current density proportion-
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Summary

Maxwell theory + dynamical axion has instability
under strong E-field

The resulting stable state corresponds to
complete screening of E above critical value

The screening accompanies (quasi-)SSB and
generation of B-field

Realization in “axionic” insulators:
challenging but possible in principle
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