Instability in Magnetic Materials with a Dynamical Axion Field

Masaki Oshikawa (ISSP, University of Tokyo)

with Hirosi Ooguri (Caltech/Kavli IPMU) Phys. Rev. Lett. 108, 161803 (2012)

Kavli IPMU

Hirosi Ooguri

Weather in Tokyo (past 2 weeks)

22	23	24	25	26	27	28
22/19	29/21	32/24	33/25	35/27	34/27	33/28
29 33/27	30 33/28	31 34/27	1	2	3	4

8月						
日	月	火	水	木	金	土
29	30	31	1 33/27	2 35/27	3 34/27	4 32/26
5 34/27	6	7	8	9	10	11

U(I) gauge theory

Quantum Electrodynamics = U(I) gauge theory in 3+I dimensions

$$\mathcal{L}_{\mathrm{EM}} = rac{1}{8\pi} (ec{E}^2 - ec{B}^2) \propto F_{\mu\nu} F^{\mu
u}$$

Gauge invariance also allows

$$\mathcal{L}_{\theta} = \frac{\alpha}{4\pi^2} \theta \vec{E} \cdot \vec{B} \propto \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}$$

which breaks T-reversal and inversion symmetry

Topological Term

In a closed space-time with periodic boundary conditions

$$S_{\theta} = \int d^4x \ \mathcal{L}_{\theta} = \theta \times \text{integer}$$

 θ -term is a topological term; $\theta \sim \theta + 2\pi$ (in the bulk)

T-reversal invariance $\Rightarrow \theta = 0, \pi \pmod{2\pi}$

Inducing a Magnetic Monopole with **Topological Surface States** (PRB 2008/

Xiao-Liang Qi, Rundong Li, Jiadong Zang, Shou-Cheng Zhang *

Science 2009)

Z₂ topological insulator

low-energy effective theory

Electrodynamics with $\theta = \pi$

θ-term in Particle Physics

Similar term in QCD

Generic value of θ : breaks T-reversal (and thus CP symmetry)

⇒ neutron will have electric dipole moment (which is not observed)

Experimental bound: $\theta < 5 \times 10^{-10}$

Why this is so small? - "strong CP problem" cf.) CP violation in CKM matrix (weak interaction)

Axion

Proposal (Peccei-Quinn 1977)

Introduce pseudoscalar, dynamical field which couples to $\epsilon_{\mu\nu\rho\sigma}F^{\mu\nu}F^{\rho\sigma}$

 $\Rightarrow \theta$ effectively becomes a dynamical field

Dynamical θ -field relaxes into the lowest-energy state, which is θ =0 restoration of CP symmetry

Quantum of dynamical θ -field: new particle "axion"

not (yet) found in experiments, but a possible component of "dark matter"

Dynamical axion field in topological magnetic insulators

Rundong Li1, Jing Wang1,2, Xiao-Liang Qi1 and Shou-Cheng Zhang1*

Z₂ topological insulator (such as Bi₂Se₃) doped with magnetic impurities (such as Fe)

"Topological Magnetic Insulator"

fluctuations of magnetic order play the role of dynamical axion field

Figure 1 | Crystal structure of Bi(Fe)₂ Se₃. Crystal structure of Bi(Fe)₂ Se₃ with three primitive lattice vectors denoted as $\mathbf{t}_{1,2,3}$. A quintuple layer with Se1-Bi(Fe)1-Se2-Bi(Fe) 1'-Se1' is indicated in the orange rectangle. The spin-ordering configuration giving rise to the Γ₅ mass is indicated by the black arrow, which is antiferromagnetic along the z direction and ferromagnetic within the xy plane.

The insulator does not need to be "topological" to have an "axion field"

Physics Letters A 372 (2008) 1141–1146

Relativistic analysis of magnetoelectric crystals: Extracting a new 4-dimensional P odd and T odd pseudoscalar from Cr_2O_3 data

Friedrich W. Hehl a,*,1, Yuri N. Obukhov a,2, Jean-Pierre Rivera b, Hans Schmid b

magnetoelectric effect \leftrightarrow "axionic" θ term

fluctuations of magnetic moments may give rise to dynamical axion field [X-L. Qi, private commun.]

Effective theory of TMI

$$\mathcal{L} = \frac{1}{8\pi} \left(\epsilon \vec{E}^2 - \mu^{-1} \vec{B}^2 \right) + \frac{\alpha}{4\pi^2} (\theta + \phi) \vec{E} \cdot \vec{B} +$$
$$+ g^2 J \left((\partial_t \phi)^2 - \nu_i^2 (\partial_i \phi)^2 - m^2 \phi^2 \right)$$

m: axion mass [\sim 2 meV in Bi₂Se₃-Fe (LWQZ)]

V: velocity of axion mode = spin wave velocity

Instability in gauge theory

AdS/CFT correspondence

Nakamura-Ooguri-Park (2010):

instability in Maxwell theory + Chern-Simons term in (4+1) dimensions

Donos-Gauntlett / Bergman-Jokela-Lifschytz (2011): instability in axionic electrodynamics in (3+1) dimensions

Axionic Polariton

"Axionic polariton" (= coupled axion+EM field)
in background E-field
cf.) Li-Wang-Qi-Zhang considered axionic polariton
in background B-field

Instability of Axionic Polariton

Dispersion of the axionic polariton in E-field:

$$\omega^{2} = \frac{1}{2}[(c'^{2} + \nu^{2})k^{2} + m^{2}]$$

$$\pm \frac{1}{2}\sqrt{[(c'^{2} - \nu^{2})k^{2} - m^{2}]^{2} + 4m^{2}c'^{2}k^{2}E^{2}/E_{\text{crit}}^{2}},$$

c': speed of light in the TMI
c' >> V (spin wave velocity of the axion field)

$$E_{\rm crit} = \frac{m}{\alpha} \sqrt{\frac{(2\pi)^3 g^2 J}{\mu}}$$

 ω acquires imaginary part if $E > E_{crit}$, for $0 < k < \frac{m}{\nu} \sqrt{\left(\frac{E}{E_{crit}}\right)^2} - 1$. (Instability!)

Where does it go?

Eventual fate of the system with the axionic instability?

Uniform solution within TMI is allowed

Energy density in TMI

$$\mathcal{H} = \frac{1}{8\pi\epsilon} \frac{(\epsilon_0 E_0 - \alpha\theta B/\pi)^2}{1 + c'^2 B^2 / E_{\text{crit}}^2} + \frac{1}{8\pi\mu} B^2$$

For given external field E_0 , find the magnetic field B which gives the groundstate!

 \Rightarrow Φ is automatically determined

$$\theta = 0$$

$$E_0 = 0.9 \frac{\epsilon}{\epsilon_0} E_{\text{crit}}$$

Second-order phase transition at ϵ_E

$$E_0 = \frac{\epsilon}{\epsilon_0} E_{\mathrm{crit}}$$

$$E_0 = 1.3 \frac{\epsilon}{\epsilon_0} E_{\text{crit}}$$

$$\theta \neq 0$$

$$E_0 = 1.2 \frac{\epsilon}{\epsilon_0} E_{\text{crit}}$$

looks similar to $\theta=0$?

$$E_0 = 1.2 \frac{\epsilon}{\epsilon_0} E_{\mathrm{crit}}$$

 $\theta \neq 0$ breaks the $B \leftrightarrow -B$ symmetry!

No SSB

(Smeared) transition for $\theta \neq 0$

cf.) Ooguri-Park 2010: $m=E_{crit}=0$

Realization in TMI?

$$E_{
m crit} = rac{m}{lpha} \sqrt{rac{(2\pi)^3 g^2 J}{\mu}}$$

Using LWQZ-estimate for Bi_2Se_3 -Fe ($m \sim 2$ meV etc.)

 $E_{\rm crit} \sim 10^8 \ {
m V/m} \ ({
m perhaps too large})$

Axion mass may be made smaller by tuning the system near the critical point of the magnetic order g may also be made smaller?

For $E_{\rm crit} \sim 10^5$ V/m and sample thickness ~ 10 nm

$$\Delta V \sim I mV$$

Surface Dirac mode?

If ΔV exceeds the surface mass gap m_5 , additional screening due to the surface Dirac mode occurs. The dynamical axion gives an additional screening effect.

($m_5 \sim 1 \text{ meV for Bi}_2\text{Se}_3\text{-Fe [LQWZ]}$)

Can we separate the effect of dynamical axion field?

Magnetic coating

Ferromagnet TMI

Ferromagnet

gives mass to surface Dirac mode, independently of the bulk axion mass dynamical axion effect may be observed while finetuning $m \rightarrow 0$

Magnetic coating induces magnetic order at the boundary, imposing Dirichlet b.c. $\phi=\phi_0$

Using "trivial" insulator

Alternatively, we can use a topologically "trivial" insulator with a dynamical axion field (such as Cr₂O₃)

However, Cr_2O_3 has Coulomb repulsion $U\sim 5eV$, which may give axion mass of the same order (too big)

→ also need to fine-tune the axion mass towards zero (close to quantum criticality between magnetic and non-magnetic phases?)

Dirichlet b.c.

The solution is now z-dependent, but it asymptotically approaches the stationary solution for Neumann b.c., with the replacement $\theta=-\phi_0$

Screening Length

$$\xi = \frac{\nu}{m_{\text{eff}}} = \frac{\nu}{\sqrt{m^2 + \frac{\alpha^2 B^2}{8\pi^3 g^2 J \epsilon}}}$$

< 10 QL
if $m \sim 0.01 \text{ meV}$ and exchange $\sim 1 \text{ K}$

Why screening?

By generating B, screening charge is induced near the boundary, because of $\partial \Phi$ (Wilczek 1987) (2) $\nabla \cdot \mathbf{E} = \tilde{\rho} - \kappa \nabla a \cdot \mathbf{B}$ (3) $\nabla \times \mathbf{E} = -\partial \mathbf{B}/\partial t$ (4) $\nabla \cdot \mathbf{B} = 0$,

$$\nabla \times \mathbf{B} = \partial \mathbf{E}/\partial t + \tilde{\mathbf{j}} + \kappa (\dot{a}\mathbf{B} + \nabla a \times \mathbf{E}), \tag{5}$$

where $\tilde{\rho}, \tilde{j}$ are the ordinary (nonaxion) charge and current. We see that there is an extra charge density proportional to $-\nabla a \cdot \mathbf{B}$, and current density proportion-

Summary

Maxwell theory + dynamical axion has instability under strong E-field

The resulting stable state corresponds to complete screening of E above critical value

The screening accompanies (quasi-)SSB and generation of *B*-field

Realization in "axionic" insulators: challenging but possible in principle