Topological Josephson junctions and non-abelian solitons

Eytan Grosfeld Ben-Gurion University, Israel

S. Das, B. Seradjeh, A. Stern, G. Viola, S. Vishveshwara

Support: Israel Science Foundation and Marie Curie CIG

Nordita, July 30, 2012

Outline

Josephson junctions

- The known knowns
 Abrikosov vortices in topological superconductors carry Majorana modes and
 satisfy non-abelian statistics
- What we want to achieve
 a measurement of non-abelian statistics of vortices
- Strategy

use interference experiments / thermodynamics

Problems to be addressed
 Abrikosov vortices often behave classically

Parallel effort – the quantum Hall effect

Detection of neutral edge states

Topological superconductors

topological superconductor = a superconductor with bulk gap + chiral Majorana edge state

Read and Green

Topological superconductors

topological superconductor = a superconductor with bulk gap + chiral Majorana edge state

Non-Abelian statistics

Solve BdG for **bound quasi-particle states** on the background of a vortex

For topological superconductors: a solution at zero energy, a Majorana zero mode

$$y_1^{\dagger} = y_1 = c + c^{\dagger}$$

$$y_2^{\dagger} = y_2 = -i(c - c^{\dagger})$$
Vortices carrying Majorana core states satisfy non-Abelian statistics
$$\int c^{\dagger} c = 0, 1$$
Moore & Read
Vanov
Fradkin et al
Stern and Halperin
Bonderson et al
Alicea et al (1d)

Observation of the Aharonov-Casher Effect for Vortices in Josephson-Junction Arrays

W. J. Elion, J. J. Wachters, L. L. Sohn, and J. E. Mooij

Experimental setup

- vortices created at bottom, pushed upwards by a supercurrent
- vortices generate measurable voltage from left to right
- vortex two-path interference term measures a geometric phase, $\phi=Q\Phi$

Abrikosov vs Josephson vortices

	Abrikosov vortices	Josephson vortices
Core	<u>metallic</u> , many electrons, many CdGM states	<u>insulating</u> , no electrons, no CdGM states
Inertial mass	estimated to be high	calculated to be very small
Spatial extent	λ_{L}	λ_{J}

Josephson vortices have better prospects for interference experiments BUT do they carry Majorana modes (zero energy CdGM state)?

Long Topological Josephson Junctions

Projected Bogoliubov de Gennes equations for low lying quasi-particles

$$H = H^{\varphi} + H^{\psi} \begin{cases} H^{\varphi} = \frac{\hbar}{g^2} \left[\frac{1}{2\overline{c}} (\partial_t \varphi)^2 + \frac{\overline{c}}{2} (\partial_x \varphi)^2 + \frac{\overline{c}}{\lambda_j^2} [1 - \cos(\varphi)] \right] \\ H^{\psi} = i v \sum_j (-1)^j \int dx \, \psi_j(x) \partial_x \psi_j(x) + i m \int dx \, \psi_1(x) \, \psi_2(x) \cos\left[\frac{\varphi(x)}{2}\right] \end{cases}$$

E. Grosfeld and A. Stern, PNAS 108, 11810 (2011)

Topological insulator: surface states

Solitons in Josephson Junctions

The solitonic solution is the Josephson vortex

- Solitons
$$\phi_s(x) = 4 \arctan\left[\exp\left(\frac{x-x_0}{\lambda_J}\right)\right]$$
 (non-relativistic limit)
 $2\lambda_L$
 $2\lambda_L$
 $2\lambda_L$
 λ_J
 λ_J
 λ_J
 λ_J
 λ_J
 λ_J
 λ_J

Excitations on the background of a soliton

$$H = \int dx \Psi^{T} \begin{pmatrix} i v \partial_{x} & m \tanh\left(\frac{x - x_{0}}{\lambda_{J}}\right) \\ m \tanh\left(\frac{x - x_{0}}{\lambda_{J}}\right) & -i v \partial_{x} \end{pmatrix} \Psi$$

$$\Psi = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix}$$

Excitations on the background of a soliton

$$H = \int dx \,\Psi^{T} \begin{pmatrix} i \, v \,\partial_{x} & m \tanh\left(\frac{x - x_{0}}{\lambda_{J}}\right) \\ m \tanh\left(\frac{x - x_{0}}{\lambda_{J}}\right) & -i \, v \,\partial_{x} \end{pmatrix} \Psi \qquad \Psi = \begin{pmatrix} \Psi_{1} \\ \Psi_{2} \end{pmatrix}$$

similar to Jackiw-Rebbi Hamiltonian, binding a localized zero mode

$$y_{J} = \int dx f_{x_{0}}(x) [\psi_{1}(x) + sgn(m)\psi_{2}(x)] \qquad f_{x_{0}}(x) = \exp\left[-\frac{|m|}{v} \int_{0}^{x} dx' \tanh\left(\frac{x'-x_{0}}{\lambda_{J}}\right)\right]$$

$$\begin{pmatrix} \text{magnetic} \\ \text{field} \\ h(x) \\ 0 \\ 0 \\ x_{0} \\ \end{pmatrix}$$

$$phase \\ \text{difference} \\ \phi(x) \\ 2\pi \\ \text{Majorana mode} \\ \text{wave-function} \\ \end{pmatrix}$$

Soliton – quantum mechanics

Quantize center of mass coordinate of (non-relativistic) soliton

- The soliton is a quantum particle with an effective Hamiltonian

$$H = E_0 + \frac{p^2}{2M}$$

Soliton – quantum mechanics

Quantize center of mass coordinate of (non-relativistic) soliton

- The soliton is a quantum particle with an effective Hamiltonian

$$H = E_0 + \frac{p^2}{2M}$$

- <u>The Aharonov-Casher effect</u>: a magnetic moment moving in an electric field

spatial charge distribution \rightarrow a vector potential for soliton

$$H = E_0 + \frac{(p-A)^2}{2M}$$

E. Grosfeld, preliminary

Soliton – quantum mechanics

Quantize center of mass coordinate of (non-relativistic) soliton

- The soliton is a quantum particle with an effective Hamiltonian

$$H = E_0 + \frac{p^2}{2M}$$

- <u>The Aharonov-Casher effect</u>: a magnetic moment moving in an electric field

spatial charge distribution \rightarrow a vector potential for soliton

$$H = E_0 + \frac{(p-A)^2}{2M}$$

- For topological superconductors: the soliton's momentum is shifted in various ways

$$H = E_0 + \frac{\left[p - \left(\frac{Q}{2e} + i\gamma_1\gamma_2 \pm \frac{1}{16}\right)\frac{2\pi}{L}\right]^2}{2M} + \dots$$

E. Grosfeld, preliminary

Proposed experiments

How to detect the Majorana mode carried by the soliton:

- 1. Interference of a soliton beam
- 2. Through its effect on the capacitance of a junction

Vortex interferometry – topological superconductor

two knobs: charge AND flux

Vortex interferometry – topological superconductor

two knobs: charge AND flux

Q

Persistent motion of a soliton under a charge bias

see, e.g., Hermon, Stern and Ben-Jacob 1994

A measurement of the non-linear capacitance of the junction

Persistent motion of a fluxon in a topological superconductor

Persistent motion of a fluxon in a topological superconductor

Topological insulator: interferometer

any other topological superconductor (with a single Majorana edge state) can work

Summary so far

To fully characterize non-abelian statistics of solitons... either:

Detect e vs 2e periodicity of V(Q) + relative shift Detect 2e-periodic oscillations of interference (no vortex) VS (greatly suppressed) e-periodic oscillations (with 1 vortex)

- E. Grosfeld, preliminary results
- E. Grosfeld and A. Stern, PNAS 108, 11810 (2011)
- E. Grosfeld, B. Seradjeh and S. Vishveshwara, Phys. Rev. B 83, 104513 (2011)

Parallel effort – quantum Hall effect

- How to measure the presence (and type) of neutral edge states in the quantum Hall effect
- Filling factor 2/3: a charge mode + a counter-propagating neutral mode

• Filling factor 5/2: a charge mode + Majorana modes

Noise measurements

Theory: EG and S. Das, 2008 Feldman and Li, 2008

Experiment: Bid et al, 2010

More theory: Takei and Rosenow, 2010

Improved version

- Inject charge current at S that is fully absorbed by the ground, measure at D
- Pumping of heat via the neutral edge state gives rise to a temperature drop across the dot
- Breaking particle-hole symmetry in the dot (via flux or a side gate) gives rise to a thermoelectric effect

Series of thermoelectric peaks – different for the abelian 2/3 state and non-abelian 5/2 state – hence may help identify the state

simpler detection of neutral edge states than previous methods + possibility to identify Luttinger (2/3) vs Majorana (5/2)

G. Viola, S. Das, EG, A. Stern, arXiv:1203.3813

Extracting net current from an upstream neutral mode in the fractional quantum Hall regime

I. Gurman[§], R. Sabo[§], M .Heiblum^{*}, V. Umansky, D. Mahalu

Observe a series of thermoelectric peaks using the proposed setup! Peaks appear at 2/3, disappear at 1 and 1/3 • Thank you for your attention!