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Outline:

•Brief review of the effective low-energy Hamiltonian for a two 
dimensional topoloigical superconductor
•1-channel Kondo problem of helical Majorana edge mode
•Tunneling between two topological superconductors via a 
quantum dot
•2-channel Kondo problem of helical Majorana edge modes 
through quantum dot with strong Coulomb repulsion between 
two topological superconductors



Two dimensional topological superconductor

•Two dimensional spin-triplet superconductor

•Superfluid phase of 3He

•Strontium rutanate Sr2RuO4

•Non-centrosymmetric superconductor

•Existence of Majorana modes on the boundary

•Wihtout time-reversal symmetry – chiral Majorana modes (n=0,1,2,....)

•With time-reversal symmetry – helical Majorana mode (n=0,1)



Edge state of 2D topological superconductor (chiral)

Bogoliubov-de Gennes (BdG) equation for a two-dimensional spinless
px ± i py superconductor
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kE vk=Energy dispersion

Wave function with open boundary condition



Majorana nature of the localized edge mode
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Mode expansion of the field operator for |E|<∆
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Rewritten in term of  the conventional Majorana field operator

Particle-hole symmetry -> another eigenstate with opposite eigenenergy
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No local interaction term can be written within the low-lying Majorana modes
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Effective Hamiltonian for the low-lying edge modes (pseudospin)

Two-dimensional topological superconductor with time-
reversal symmetry (helical)

Helical edge mode on the boundary



Coupled to S=1/2 magnetic impurity (Ising-like)
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Kondo problem of helical Majorana mode

Bosonization

Transverse fiield

Shindou et. al.2010
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Emery-Kivelson transformation:

Renormalization group equation:
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Tunneling between two helical SC through point contact

Asana et. al. (2010)

•Neutral Majorana fermions can 
interact with electric field because the 
superconducting phase enters into 
the relation between electron and 
Majorana fermion operators
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•Josephson effect through the neutral Majorana quasiparticles
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Bosonization for two islands helical SC (opposite helicity)

Bosonization

Recombination of Majorana fermions
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2 12( )g U U= −

Possible interactions within the low-lying Majorana edge 
modes

Bosonized Hamiltonian

Normalized velocity

Luttinger parameter



Tunneling between two helicla SC

•Spin-orbital coupling at the point contact – λ
•Rashba-type SOI can be induced by appling an electric field on the point 
contact

Bosonized tunneling Hamiltonian

Spin-flip (backward tunneling)

No Spin-flip (forward tunneling)
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Josephson current between two helical SC
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Non-interacting s-wave Josephson junction

Josephson current can be suppressed by spin-orbital coupling



DC conductivity via the point contact

DC conductivity between two helical SC via the Josephson 
junction (Kubo formuia)



•Conductance depends on the relative helicity between two 
superconductors

•In the presence of SOI, electron interactions can drive the dc 
condcutance to infinite at zero temperature.

Asana et. al. (2010)



Opposite helicity

Equal helicity

Backscattering with spin-flip

Backscattering without spin-flip



Experiments on electron transport through quantum dots 
coupled to superconducting leads

Carbon nanotube, molecules of Gadolinium (Gd) metallofullerenes 

(BM Anderson 2011)



,d d
↑ ↓ Localized state on the quantum dot

Tunneling between two helical SC through quantum dot 
with strong Coulomb repulsion (opposite helicity)

Two channel Kondo Hamiltonian

Anderson Hamiltonian



1 2

1 2

( ) ( ) ( )

( ) ( ) ( )

R

L

x x i x

x x i x

γ γ

γ γ
↑ ↑

↓ ↓

Ψ = +

Ψ = +

Bosonized Hamiltonian

Inter-channel
process

Backward
tunneling



Perturbative RG at weak coupling (J’s small)

Cumulant expansion



1-loop RG equation
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RG flow for different coupling constants

•For K<<1, the linear term 
dominates -> g3, g5 grow         
(two channel Kondo fixed 
point)

•For K->1, the quadratic term 
can compensate the linear 
term -> all coupling constants 
g’s can grow (one channel 
Kondo fixed point)



Two different fixed points

K

•Quantum phase transition between 1CK and 2CK fixed points 
tuned by the superconducting phase difference

2CK

1CK
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Problems

•Perturbative RG only valid at small coupling

•Stablility check of different fixed points are required

We have identified two possible Kondo fixed points 
from weak coupling perturbative renormalization 
group..



Stability of one-channel Kondo fixed point
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•Kondo singlet at x=0
•Two semi-infinite ‘spinless’Luttinger liquid
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Perturbation at the one-channel Kondo fixed point
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Umklapp interaction

Relevant when K<1/4



Stability of 2-channels Kondo fixed point
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Unperturbed action
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Chiral field representation
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1-loop RG equation around 2CK fixed point

Transformed Hamiltonian without any constraint at x=0



Instanton effect at the two-channel Kondo fixed point
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Tunneling event:

RG equation for the 
fugacity t of the instanton



Residual entropy
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Effective action at the 2CK fixed point

2 ln 2
CK

S K= 2CK fixed point of topological insulator (Law 2010)
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Josephson current at 2-channel Kondo fixed point

Supercurrent
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DC conductance across two helical supedrconducting 
islands

Kondo temperature



Two channel Kondo problem with equal helicity
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Recombination of Majorana fermions

Bosonized Hamiltonian



Three stable Kondo fixed points

'     (1CK fixed point)iJ s → ∞

1        (2CK fixed point)

( 0) 0

J

Tσ

→ ∞

→ →

( )† †1
2 1 1 2 2

. .
2

x

CK

J
H S h cψ ψ ψ ψ

↑ ↓ ↓ ↑
= + +

2        (2CK fixed point)

(T 0)  

z
J

σ

→ ∞

→ → ∞

( )† †2
2 1 2 1 2

. .
2

z
z

CK

J
H S h cψ ψ ψ ψ

↑ ↑ ↓ ↓
= − +



K 1−→K 1/ 2→ K 1−→

Comparsion with spinful Luttinger liquild and helical 
Luttinger liquid on two-channel Kondo problem

spinful 
Luttinger liquild

Topological
Insulator
(helical)

Topological
Superconductor

(helical)

QPT

Number of
species of
fermions

248

Residual
entropy

ln 4Kln 2     (K=1) ln 2K

Emery 1992 Law 2010



Conclusion:

•The 2D topological superconductor with time-reversal symmetry  
supports helical Majorana edge modes on the boundary
•If two helical superconductors are coupled via a quantum dot, 
the system exhibit both one-channel and two-channel Kondo 
fixed points which are tunalbe by the Luttinger parameter K and 
superconducting phase difference. 
•Strong coupling fixed points are sensitive to the relative helicity 
between two helical superconductors




