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• Introduction: Strongly correlated phases in 
topological flat bands.

• Searching wavefunctions for Fractional 
Chern Insulators by mapping single particle 
wavefunctions

• Numerical study of the relationship 
between Fractional Chern Insulators and 
the Fractional Quantum Hall Effect

Outline
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H =
�

k â
†
k,αhαβ(k)âk,β

• diagonalize Hamiltonian by Fourier transform

Topological bands in two-dimensions

H|n,k� = �n(k)|n,k�

• study Berry curvature in nth band:

A(n,k) = −i�n,k|∇k|n,k�Berry connection:

B(k) = ∇k ∧A(k)Berry curvature:

C = 1
2π

�
BZ d2kB(k)Chern number:

C integer (focus on C=1 in this talk!)
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FQHE and strong correlations in flat bands

• Perfectly degenerate Landau level (C=1)

Fractional Quantum Hall Effect

H =
�

i<j

V (ri − rj)

E
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FQHE and strong correlations in flat bands

• Topological Flat band (C=1) with small dispersion• Perfectly degenerate Landau level (C=1)
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Interactions in Chern #1 Bands = FQHE ?

Proposition: correlated states reproduce the physics of FQHE 
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Where to realize interacting topological flat-band models?

• Thin films of kagomé lattice compound Fe3Sn2

• Sn relatively heavy and charged

Induces spin orbit coupling, possibly
able to realize a TFB in thin films
[E. Tang et al., PRL 2011]

Need fine tuned parameters and charge 
density, so difficult to find a suitable compound
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Where to realize interacting topological flat-band models?

• Thin films of kagomé lattice compound Fe3Sn2

• Sn relatively heavy and charged

Induces spin orbit coupling, possibly
able to realize a TFB in thin films
[E. Tang et al., PRL 2011]

Need fine tuned parameters and charge 
density, so difficult to find a suitable compound

• Cold atomic gases in optical lattices

H =
p2

2m
+ V̂ (r)

spatially varying coupling 
between N internal states

can be implemented 
routinely using coupling 
to Raman lasers

Ease to fine - tune, but also small energy scale
for interactions

• example spectrum with flat C=1 band

see, e.g. Cooper & Dalibard 2011
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Numerical evidence for “Fractional Chern Insulators”

• existence of a gap & groundstate degeneracy [checkerboard lattice]
• chern number of groundstate manifold

[D. Sheng]
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Numerical evidence for “Fractional Chern Insulators”

• Finite size scaling of gap  

“Fractional Chern Insulators (FCI)” [N. Regnault & A. Bernevig, PRX ’11]

• Particle Entanglement Spectra : count of 
excitations matches FQHE (here - Laughlin state) 

• existence of a gap & groundstate degeneracy [checkerboard lattice]

• chern number of groundstate manifold [D. Sheng]



Gunnar Möller Nordita, Stockholm, August 2012

Numerical evidence for “Fractional Chern Insulators”

• Strong numerical evidence for QHE physics, but no clear organising principle for different lattice models 

• Finite size scaling of gap  

“Fractional Chern Insulators (FCI)” [N. Regnault & A. Bernevig, PRX ’11]

• Particle Entanglement Spectra : count of 
excitations matches FQHE (here - Laughlin state) 

• existence of a gap & groundstate degeneracy [checkerboard lattice]

• chern number of groundstate manifold [D. Sheng]
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Understanding Fractional Quantum Hall states

φm ∝ zme−|z|2/4�0

• Single particle states are analytic functions in symmetric gauge �A =
1

2
�r ∧ �B

• Many particle states are still analytic functions - can write explicitly!

zj = xj + iyj

Ψν= 1
m

=
�

i<j

(zi − zj)
me−

�
i |zi|

2/4�0e.g. Laughlin:
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• Wavefunctions are nice! Can understand many features

✦ Quasiparticle excitations: charge / statistics✦ Incompressibility

✦ Correlations / You name the observable...
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Understanding Fractional Quantum Hall states

φm ∝ zme−|z|2/4�0

• Single particle states are analytic functions in symmetric gauge �A =
1

2
�r ∧ �B

• Many particle states are still analytic functions - can write explicitly!

zj = xj + iyj

Ψν= 1
m

=
�

i<j

(zi − zj)
me−

�
i |zi|

2/4�0e.g. Laughlin:

• Wavefunctions are nice! Can understand many features

✦ Quasiparticle excitations: charge / statistics✦ Incompressibility

✦ Correlations / You name the observable...

Can we construct 
wavefunctions

 for
Chern Insulators?
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From FQHE to Fractional Chern Insulator

• Topological Flat band (C=1) with small dispersion• Perfectly degenerate Landau level (C=1)

Fractional Chern Insulator 
(FCI)

Fractional Quantum Hall States
(FQHE)

• states indexed by linear momentum (                ) • Lattice momentum conservation

H =
�

i<j

V (ri − rj) H =
�

i<j

V (ri − rj) +
�

k

�0(k)n̂k

�A = Bx�ey

φky (x, y) = eikyye
1

2�20
(x−ky�

2
0) ��rα|n, kx, ky� =

�

�k

e−i�k�run
α(k)
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Idea: Mapping Single Particle Orbitals

FCIFQHE

• Proposal by X.-L. Qi [PRL ’11]: Get FCI Wavefunctions by mapping single particle orbitals
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• Proposal by X.-L. Qi [PRL ’11]: Get FCI Wavefunctions by mapping single particle orbitals

• Idea: use Wannier states which are localized in the x-direction
• keep translational invariance in y (cannot create fully localized Wannier state if C>0!)
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• Idea: use Wannier states which are localized in the x-direction
• keep translational invariance in y (cannot create fully localized Wannier state if C>0!)
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Idea: Mapping Single Particle Orbitals

FCIFQHE

• Proposal by X.-L. Qi [PRL ’11]: Get FCI Wavefunctions by mapping single particle orbitals

• Idea: use Wannier states which are localized in the x-direction
• keep translational invariance in y (cannot create fully localized Wannier state if C>0!)

• Qi’s Claim: using a mapping between the LLL eigenstates (QHE) and localized Wannier states 
(FCI), we can establish an exact mapping between their many-particle wavefunctions

|W (x, ky)� =
�

kx

f
(x,ky)
kx

|kx, ky�
?

1:1
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Wannier states in Chern bands

H =
�

k â
†
k,αhαβ(k)âk,β

• Some formalism

α = 1 α = 2

α = 3

c†k,α =
1√
N

�

R

eik·(R+δα)c†R,α

hαβ(k)u
n
β(k) = �n(k)u

n
α(k)

• construction of a Wannier state at fixed ky

A(n,k) = −i
�

α

un∗
α (k)∇ku

n
α(k)

Hamiltonian

Eigenstates

Berry connection

|W (x, ky)� =
χ(ky)√

Lx

�

kx

e−i
� kx
0 Ax(px,ky)dpx × eikx

θ(ky)
2π × e−ikxx|kx, ky�

Fourier transform
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• construction of a Wannier state at fixed ky in gauge with 
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‘Parallel transport’ of phase

Berry connection indicates change
of phase due to displacement in BZ

Ay = 0
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†
k,αhαβ(k)âk,β

• Some formalism
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n
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• construction of a Wannier state at fixed ky in gauge with 
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α(k)

Hamiltonian

Eigenstates

Berry connection
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�
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e−i
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0 Ax(px,ky)dpx × eikx

θ(ky)
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‘Parallel transport’ of phase ‘Polarization’

ensures periodicity 
of WF in ky ➞ ky + 2π

Berry connection indicates change
of phase due to displacement in BZ

Ay = 0

ky-dependent phase 
factor, or `gauge’
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Wannier states in Chern bands

• construction of a Wannier state at fixed ky in gauge with 

Fourier transform

|W (x, ky)� =
χ(ky)√

Lx

�

kx

e−i
� kx
0 Ax(px,ky)dpx × eikx

θ(ky)
2π × e−ikxx|kx, ky�

‘Parallel transport’ of phase ‘Polarization’

ensures periodicity 
of WF in ky ➞ ky + 2π

Berry connection indicates change
of phase due to displacement in BZ

Ay = 0

• or, more simply we can think of the Wannier states as the eigenstates of the position operator

X̂cg|W (x, ky)� = [x− θ(ky)/2π]|W (x, ky)�

• role of polarization: displacement of centre of mass of the Wannier state

X̂cg = lim
qx→0

1

i

∂

∂qx
ρ̄qx

θ(ky) =

� 2π

0
Ax(px, ky)dpx
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H =− t1
�

�rr��

�
â†râr + h.c.

�
− t2

�

��rr���

�
â†râre

iφrr� + h.c.
�

− t3
�

���rr����

�
â†râr + h.c.

�
+

U

2

�

r

n̂r(n̂r − 1)

An example: The Haldane Model

• tight binding model on hexagonal lattice
• with fine-tuned hopping parameters: obtain flat lower band

t1 = 1, t2 = 0.60, t2 = −0.58 and φ = 0.4π
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Conventions for numerical evaluation

Real Space Reciprocal Space

G1 = 2πex/L1 sin(γ)

G2 = 2π[− cot(γ)ex + ey]/L2

v1 = sin(γ)ex + cos(γ)ey

v2 = ey

nx = 0 Lx − 1

Ly − 1

ny = 0

un
β(k+ LiGi) = un

β(k)• choose gauge such that Bloch functions satisfy:

A few remarks:

An
x(q1, q2) = � log [un∗

α (q1, q2)u
n
α(q1 + 1, q2)]• use discretized Berry connection

� kx

0
Ax(px, ky)dpx →

q1(kx)�

q̃1=0

An
x(q̃1, q2)

• discretize its integrals by the 
rectangle rule 
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Qi’s Mapping

• Can introduce a canonical order of states with monotonously increasing position:

Ky = ky + 2πx = 2πj/Ly

j = ny + Lyx = 0, 1, ..., Nφ − 1

ky = 2πny/Ly

• Increase in position for ky ➞ ky + 2π = Chern-number C, as

∂

∂ky
�X̂cg�|x = − 1

2π

∂θ(ky)

∂ky
=

� 2π

0
B(px, ky)dpx
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Case study: Bosons with contact interactions

Hint ∝

�

i<j

δ(ri − rj)

• Landau level momentum 
conserved:

• Linearized momentum

H =
�

j1,j2,j3,j4

Vj1j2;j3j4 ĉ
†
j1
ĉ†j2 ĉj3 ĉj4

 expand Hamiltonian in single-particle orbitals 
(finite size, periodic boundary conditions)

Vj1j2;j3j4 ∝ δj1+j2, j3+j4 Vj1j2;j3j4 ∝ δ mod Lx
j1+j2, j3+j4

Ky = ky + 2πx = 2πj/Ly

kmax
y = Nφ − 1 Kmax

y = Lx × Ly − 1

T. Scaffidi, GM, arxiv:1207.3539
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Case study: Bosons with contact interactions

Hint ∝

�

i<j

δ(ri − rj)

• Landau level momentum 
conserved:

• Linearized momentum

H =
�

j1,j2,j3,j4

Vj1j2;j3j4 ĉ
†
j1
ĉ†j2 ĉj3 ĉj4

 expand Hamiltonian in single-particle orbitals 
(finite size, periodic boundary conditions)

Vj1j2;j3j4 ∝ δj1+j2, j3+j4 Vj1j2;j3j4 ∝ δ mod Lx
j1+j2, j3+j4

Different conservation laws 
➞ Problems live in different Hilbert spaces 

Ky = ky + 2πx = 2πj/Ly

kmax
y = Nφ − 1 Kmax

y = Lx × Ly − 1

T. Scaffidi, GM, arxiv:1207.3539
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Matrix elements in the Wannier basis

Hint ∝

�

i<j

δ(ri − rj)

Ky = ky + 2πx = 2πj/Ly

H
FCI =

�

ky1,ky2,ky3,ky4
x1,x2,x3,x4

ky1+ky2=ky3+ky4

ĉ†W (ky1,x1)
ĉ†W (ky2,x2)

ĉW (ky3,x3)ĉW (ky4,x4)

�

kx1,kx2,kx3,kx4
kx1+kx2=kx3+kx4

f
∗(x1,ky1 )
kx1

f
∗(x2,ky2)
kx2

f
(x3,ky3)
kx3

f
(x4,ky4)
kx4

�

a=A,B

u∗a
α0
(k1)u

∗a
α0
(k2)u

a
α0
(k3)u

a
α0
(k4)

Vj1j2;j3j4
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Case study: Bosons with contact interactions

-6

-5

-4

-3

-2

-1

 0

-6

-5

-4

-3

-2

-1

 0

FCIFQHE

• Magnitude of matrix elements for delta interactions:

• System shown: N = 6, Lx × Ly = 3× 4

Ktot
y = 0 Ktot

y = 4 Ktot
y = 8 Ktot

y = 0 Ktot
y = 4 Ktot

y = 8
K

to
t

y
=

0
K

to
t

y
=

4
K

to
t

y
=

8

K
to

t
y

=
0

K
to

t
y

=
4

K
to

t
y

=
8

• Matrix elements differ in magnitude, but overall similarities are present
• Different block-structure due to non momentum conservation
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Reduced translational invariance in Ky

• A closer look at some short range hopping processes

K
y

K
y

K
y

• for FCI: hopping amplitudes depend on position of centre of mass / Ky

Center of mass position

|V
|2

0 2 4 6 8 10
0

0.5

1

K1
y +K2

y
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Can we map many body states using the Wannier basis?

H
FQHE

|Ψ� = E0|Ψ� H
FCI

|Φ� = E�
0|Φ�

|Φ� =
�

α={nKy}

κα

�

Ky

(ĉ†)nKy |vac.�|Ψ� =
�

α={nky}

γα
�

ky

(ĉ†)nky |vac.�

κα �= γα

• Direct equivalence of many body wavefct. as proposed by Qi

• Does not really work...                            [but some overlap: e.g. Laughlin N=10 - O~0.8]

• But: can now write both states in single Hilbert space with the same overall structure
 (indexed by Ky, enlarging the space for the torus)

H(x) = (1− x)HFQHE + xHFCI

• Can study adiabatic continuity between the two groundstates:
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H
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 (indexed by Ky, enlarging the space for the torus)
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Adiabatic continuation in the Wannier basis

0

0.02
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0.1
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0.14

0 0.2 0.4 0.6 0.8 1
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0.075

0 1 2 3 4

ky

x2

0 5 10 15

0

0.025

0.05

0.075

Ky

1

FQHE FCI
• Spectrum as function of x for N=10 bosons on a 4 x 5 lattice, filling factor  ν = 1/2

T. Scaffidi, GM, arxiv:1207.3539
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Adiabatic continuation in the Wannier basis
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FQHE FCI FQHE FCI

• Spectrum for N=10: • Gap for different system sizes & aspect ratios:

T. Scaffidi, GM, arxiv:1207.3539
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Adiabatic continuation in the Wannier basis
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• We confirm the Laughlin state is adiabatically connected to the groundstate of the 
Haldane model

FQHE FCI FQHE FCI

• Spectrum for N=10: • Gap for different system sizes & aspect ratios:

T. Scaffidi, GM, arxiv:1207.3539
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Adiabatic continuation in the Wannier basis
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• We confirm the Laughlin state is adiabatically connected to the groundstate of the 
Haldane model

FQHE FCI FQHE FCI

• Spectrum for N=10: • Gap for different system sizes & aspect ratios:

T. Scaffidi, GM, arxiv:1207.3539

• Clean extrapolation to the thermodynamic limit - (unlike overlaps)
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Entanglement spectra and quasiparticle excitations

|Ψ� =
�

�

�

i

e−ξ�,i/2|ΨA
�,i� ⊗ |ΨB

�,i�

credit: Sterdyniak et al. PRL 2011

• Entanglement spectrum: arises from Schmidt decomposition of ground state into two groups A, B 
=> Schmidt eigenvalues ξ plotted over quantum numbers for symmetries within each block 

Dominant (universal) eigenvalues of PES 
yield count of excited states - and their 
wavefunctions - from groundstate 
wavefunction only!

Laughlin, N=8, NA=4
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Adiabatic continuation of the entanglement spectrum

|Ψ� =
�

�

�

i

e−ξ�,i/2|ΨA
�,i� ⊗ |ΨB

�,i�

Dictionary:

Total #eigenvalues below entanglement gap 
= 804 + 800 + 800 + 800 + 800

Total #eigenvalues below entanglement gap 
= 4x(201 + 200 + 200 + 200 + 200)

Same number of 
states for all x

‘Infinite’ 
entanglement
gap for pure
Laughlin state

low-lying 
excited state

FQHE FCI

N = 10

NA = 5
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Finite size behaviour of entanglement gap
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• The entanglement gap remains open for all values of the interpolation parameter x
• Finite size scaling behaviour is not so clear (sufficient numerical accuracy?)

FQHE FCI
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Conclusions

• Wavefunctions of FCI’s in the Wannier basis are similar but not 
identical to FQH states in the Landau gauge

• We demonstrated the adiabatic continuity of the ground states at 
ν=1/2 using Qi’s mapping between Wannier basis and FQH eigenstates 

• FCI wavefunctions from Qi’s construction not very accurate

several formal problem with Qi’s Wannier states fixed by proper 
construction of gauge, see: Wu, Regnault, Bernevig, arxiv:1206.5773.

T. Scaffidi, GM, arxiv:1207.3539
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Conclusions

Analytic continuation of FCI states to FQHE wavefunctions represents 
a new tool for the identification of strongly correlated phases in 
Chern bands

T. Scaffidi, GM, arxiv:1207.3539

Can make a robust identification of phases which can be confidently 
extrapolated to the thermodynamic limit


