## Adiabatic continuation of Fractional Chern Insulators to Fractional Quantum Hall States

Gunnar Möller<br>Cavendish Laboratory, University of Cambridge<br>TCM<br>Thomas Scaffidi<br>Ecole Normale Supérieure (soon in Oxford)<br><br>August 16, 2012, Nordita, Stockholm TOPOLOGICAL STATES OF MATTER: INSULATORS, SCs, AND QH LIQUIDS



## Outline

- Introduction: Strongly correlated phases in topological flat bands.
- Searching wavefunctions for Fractional Chern Insulators by mapping single particle wavefunctions
- Numerical study of the relationship between Fractional Chern Insulators and the Fractional Quantum Hall Effect


## Topological bands in two-dimensions

- diagonalize Hamiltonian by Fourier transform

$$
\mathcal{H}=\sum_{\mathbf{k}} \hat{a}_{\mathbf{k}, \alpha}^{\dagger} h_{\alpha \beta}(\mathbf{k}) \hat{a}_{\mathbf{k}, \beta}
$$

$\mathcal{H}|n, \mathbf{k}\rangle=\epsilon_{n}(\mathbf{k})|n, \mathbf{k}\rangle$

- study Berry curvature in $n^{\text {th }}$ band:

Berry connection: $\mathcal{A}(n, \mathbf{k})=-i\langle n, \mathbf{k}| \nabla_{\mathbf{k}}|n, \mathbf{k}\rangle$

Berry curvature: $\quad \mathcal{B}(k)=\nabla_{\mathbf{k}} \wedge \mathcal{A}(k)$


Chern number: $\quad C=\frac{1}{2 \pi} \int_{B Z} d^{2} \mathbf{k} \mathcal{B}(\mathbf{k})$
C integer (focus on $\mathrm{C}=\mathrm{I}$ in this talk!)

## FQHE and strong correlations in flat bands

## Fractional Quantum Hall Effect



- Perfectly degenerate Landau level ( $\mathrm{C}=\mathrm{I}$ )

$$
\mathcal{H}=\sum_{i<j} V\left(r_{i}-r_{j}\right)
$$

## FQHE and strong correlations in flat bands

## Fractional Quantum Hall Effect



- Perfectly degenerate Landau level ( $\mathrm{C}=1$ )

$$
\mathcal{H}=\sum_{i<j} V\left(r_{i}-r_{j}\right)
$$

- Variety of gapped quantum liquids:

FQH states


## FQHE and strong correlations in flat bands

Fractional Quantum Hall Effect


- Perfectly degenerate Landau level ( $\mathrm{C}=\mathrm{I}$ )

$$
\mathcal{H}=\sum_{i<j} V\left(r_{i}-r_{j}\right)
$$

- Variety of gapped quantum liquids:

FQH states

$$
\mathcal{H}=\sum_{i<j} V\left(r_{i}-r_{j}\right)+\sum_{k} \epsilon_{0}(k) \hat{n}_{k}
$$

- Topological Flat band $(\mathrm{C}=\mathrm{I})$ with small dispersion

Fractional Chern Insulator



## FQHE and strong correlations in flat bands

Fractional Quantum Hall Effect


- Perfectly degenerate Landau level ( $\mathrm{C}=\mathrm{I}$ )

$$
\mathcal{H}=\sum_{i<j} V\left(r_{i}-r_{j}\right)
$$

- Variety of gapped quantum liquids:

FQH states

Fractional Chern Insulator


- Topological Flat band $(\mathrm{C}=\mathrm{I})$ with small dispersion

$$
\mathcal{H}=\sum_{i<j} V\left(r_{i}-r_{j}\right)+\sum_{k} \epsilon_{0}(k) \hat{n}_{k}
$$





## Interactions in Chern \#1 Bands = FQHE ?

## Proposition: correlated states reproduce the physics of FQHE

|  | \|eld Selected for a Viewpoint in Physics |  |
| :--- | ---: | ---: |
| PRL 106, 236804 (2011) | PHYSICAL | REVIEW |

Fractional Quantum Hall States at Zero Magnetic Field
Titus Neupert, ${ }^{1}$ Luiz Santos, ${ }^{2}$ Claudio Chamon, ${ }^{3}$ and Christopher Mudry ${ }^{1}$
${ }^{1}$ Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
${ }^{2}$ Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
Physics Department, Boston University, Boston, Massachusetts 02215, USA (Received 22 December 2010: published 6 June 2011

|  | Pelected for a Viewpoint in Physics |  |
| :--- | :--- | :--- |
| PRL 106, 236803 (2011) | PHYSICAL REVIEW | LETTERS | | week ending |
| :---: |
| 10 JUNE 2011 |

Nearly Flatbands with Nontrivial Topology
Kai Sun, ${ }^{1}$ Zhengcheng Gu, ${ }^{2}$ Hosho Katsura, ${ }^{3}$ and S. Das Sarma ${ }^{1}$
${ }^{1}$ Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland,
College Park, Maryland 20742, USA
${ }^{2}$ Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Califormia 93106, USA
${ }^{3}$ Department of Physics, Gakushuin University, Mejiro, Toshima-ku, Tokyo I7l-8588, Japan

信


Evelyn Tang, ${ }^{1}$ Jia-Wei Mei, ${ }^{1,2}$ and Xiao-Gang Wen ${ }^{1}$
${ }^{1}$ Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ${ }^{2}$ Institute for Advanced Study, Tsinghua University, Beijing, 100084, People's Republic of China
(Received 14 December 2010; published 6 June 2011)

## Interactions in Chern \#1 Bands = FQHE ?

## Proposition: correlated states reproduce the physics of FQHE



## Interactions in Chern \#1 Bands = FQHE ?

## Proposition: correlated states reproduce the physics of FQHE



## Interactions in Chern \#1 Bands = FQHE ?

## Proposition: correlated states reproduce the physics of FQHE

|  | \|lay Selected for a Viewpoint in Physics |  | week ending |
| :--- | ---: | ---: | ---: |
| PRL 106, 236804 (2011) | PHYSICAL REVIEW | LETTERS | 10 JUNE 201 |

Fractional Quantum Hall States at Zero Magnetic Field
Titus Neupert, ${ }^{1}$ Luiz Santos, ${ }^{2}$ Claudio Chamon, ${ }^{3}$ and Christopher Mudry ${ }^{1}$
${ }^{1}$ Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
${ }^{2}$ Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
${ }^{3}$ Physics Department, Boston University, Boston, Massachusetts 02215, USA (Received 22 December 2010; published 6 June 2011)

|일 Selected for a Viewpoint in Physics PHYSIC


PHYSICAL REVIEW LETTERS

## Nearly Flatbands with Nontrivial Topology

Kai Sun, ${ }^{1}$ Zhengcheng Gu, ${ }^{2}$ Hosho Katsura, ${ }^{3}$ and S. Das Sarma ${ }^{1}$
${ }^{1}$ Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
${ }^{2}$ Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
${ }^{3}$ Department of Physics, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
(Rocaivad 28 Docember 9010 revised manuscript received 19 March 2011. muhlishat a x....- nons.
(a)


|  | Plaldelected for a Viewpoint in Physics |  |  |
| :---: | :---: | :---: | :---: |
| PRL 106, $236802(2011)$ | PHYSICAL | REVIEW | LETTERS | \(\begin{gathered}week ending <br>

10 JUNE 2011\end{gathered}\)
High-Temperature Fractional Quantum Hall States
Evelyn Tang, ${ }^{1}$ Jia-Wei Mei, ${ }^{1,2}$ and Xiao-Gang Wen ${ }^{1}$
${ }^{1}$ Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ${ }^{2}$ Institute for Advanced Study, Tsinghua University, Beijing, 100084, People's Republic of China
(Received 14 December 2010; published 6 June 2011)

## Where to realize interacting topological flat-band models?

- Thin films of kagomé lattice compound $\mathrm{Fe}_{3} \mathrm{Sn}_{2}$

- Sn relatively heavy and charged

Induces spin orbit coupling, possibly able to realize a TFB in thin films
[E.Tang et al., PRL 201I]
Need fine tuned parameters and charge
density, so difficult to find a suitable compound

## Where to realize interacting topological flat-band models?

- Thin films of kagomé lattice compound $\mathrm{Fe}_{3} \mathrm{Sn}_{2}$

- Sn
$\bullet$
- Sn relatively heavy and charged

Induces spin orbit coupling, possibly able to realize a TFB in thin films [E.Tang et al., PRL 201I]

Need fine tuned parameters and charge density, so difficult to find a suitable compound

- Cold atomic gases in optical lattices
see, e.g. Cooper \& Dalibard 201I
$\mathcal{H}=\frac{\mathbf{p}^{2}}{2 m}+\hat{V}(\mathbf{r})$

$\omega$

Ease to fine - tune, but also small energy scale for interactions

## Numerical evidence for "Fractional Chern Insulators"

- existence of a gap \& groundstate degeneracy [checkerboard lattice]
- chern number of groundstate manifold




## Numerical evidence for "Fractional Chern Insulators"

- existence of a gap \& groundstate degeneracy [checkerboard lattice]
- chern number of groundstate manifold
[D. Sheng]



## Numerical evidence for "Fractional Chern Insulators"

- existence of a gap \& groundstate degeneracy [checkerboard lattice]
- chern number of groundstate manifold [D. Sheng]

- Finite size scaling of gap


"Fractional Chern Insulators (FCI)" [N. Regnault \& A. Bernevig, PRX'II]


## Numerical evidence for "Fractional Chern Insulators"

- existence of a gap \& groundstate degeneracy [checkerboard lattice]
- chern number of groundstate manifold [D. Sheng]

- Finite size scaling of gap

"Fractional Chern Insulators (FCI)" [N. Regnault \& A. Bernevig, PRX'II]
- Strong numerical evidence for QHE physics, but no clear organising principle for different lattice models


## Understanding Fractional Quantum Hall states

- Single particle states are analytic functions in symmetric gauge $\quad \vec{A}=\frac{1}{2} \vec{r} \wedge \vec{B}$

$$
\phi_{m} \propto z^{m} e^{-|z|^{2} / 4 \ell_{0}} \quad z_{j}=x_{j}+i y_{j}
$$

- Many particle states are still analytic functions - can write explicitly!
e.g. Laughlin: $\quad \Psi_{\nu=\frac{1}{m}}=\prod_{i<j}\left(z_{i}-z_{j}\right)^{m} e^{-\sum_{i}\left|z_{i}\right|^{2} / 4 \ell_{0}}$


## Understanding Fractional Quantum Hall states

- Single particle states are analytic functions in symmetric gauge $\quad \vec{A}=\frac{1}{2} \vec{r} \wedge \vec{B}$

$$
\phi_{m} \propto z^{m} e^{-|z|^{2} / 4 \ell_{0}} \quad z_{j}=x_{j}+i y_{j}
$$

- Many particle states are still analytic functions - can write explicitly!
e.g. Laughlin: $\quad \Psi_{\nu=\frac{1}{m}}=\prod_{i<j}\left(z_{i}-z_{j}\right)^{m} e^{-\sum_{i}\left|z_{i}\right|^{2} / 4 \ell_{0}}$
- Wavefunctions are nice! Can understand many features
$\uparrow$ Incompressibility $\downarrow$ Quasiparticle excitations: charge / statistics
- Correlations / You name the observable...


## Understanding Fractional Quantum Hall states

- Single particle states are analytic functions in symmetric gauge $\quad \vec{A}=\frac{1}{2} \vec{r} \wedge \vec{B}$

$$
\phi_{m} \propto z^{m} e^{-|z|^{2} / 4 \ell_{0}} \quad z_{j}=x_{j}+i y_{j}
$$

- Many particle states are still analytic functions - can write explicitly!
e.g. Laughlin: $\quad \Psi_{\nu=\frac{1}{m}}=\prod_{i<j}\left(z_{i}-z_{j}\right)^{m} e^{-\sum_{i}\left|z_{i}\right|^{2} / 4 \ell_{0}}$
- Wavefunctions are nice! Can understand many features
$\star$ Incompressibility $\downarrow$ Quasiparticle excitations: charge / statistics
-Correlations / You name the observable...

Can we construct wavefunctions for
Chern Insulators?

## From FQHE to Fractional Chern Insulator

## Fractional Quantum Hall States (FQHE)



- Perfectly degenerate Landau level $(C=1)$

$$
\mathcal{H}=\sum_{i<j} V\left(r_{i}-r_{j}\right)
$$

- states indexed by linear momentum $\left(\vec{A}=B x \vec{e}_{y}\right)$

$$
\phi_{k_{y}}(x, y)=e^{i k_{y} y} e^{\frac{1}{2 \ell_{0}^{2}}\left(x-k_{y} \ell_{0}^{2}\right)}
$$

Fractional Chern Insulator (FCI)


- Topological Flat band $(\mathrm{C}=\mathrm{I})$ with small dispersion

$$
\mathcal{H}=\sum_{i<j} V\left(r_{i}-r_{j}\right)+\sum_{k} \epsilon_{0}(k) \hat{n}_{k}
$$

- Lattice momentum conservation
$\left\langle\vec{r}_{\alpha} \mid n, k_{x}, k_{y}\right\rangle=\sum_{\vec{k}} e^{-i \vec{k} \vec{r}} u_{\alpha}^{n}(k)$


## Idea: Mapping Single Particle Orbitals

FQHE


FCl


- Proposal by X.-L. Qi [PRL 'II]: Get FCI Wavefunctions by mapping single particle orbitals


## Idea: Mapping Single Particle Orbitals

FQHE


FCl


- Proposal by X.-L. Qi [PRL 'II]: Get FCI Wavefunctions by mapping single particle orbitals
- Idea: use Wannier states which are localized in the $x$-direction
- keep translational invariance in y (cannot create fully localized Wannier state if C>0!)

$$
\left|W\left(x, k_{y}\right)\right\rangle=\sum_{k_{x}} f_{k_{x}}^{\left(x, k_{y}\right)}\left|k_{x}, k_{y}\right\rangle
$$

## Idea: Mapping Single Particle Orbitals

FQHE


## FCI



- Proposal by X.-L. Qi [PRL 'II]: Get FCIWavefunctions by mapping single particle orbitals
- Idea: use Wannier states which are localized in the $x$-direction
- keep translational invariance in y (cannot create fully localized Wannier state if $\mathrm{C}>0$ !)

$$
\left|W\left(x, k_{y}\right)\right\rangle=\sum_{k_{x}} f_{k_{x}}^{\left(x, k_{y}\right)}\left|k_{x}, k_{y}\right\rangle
$$

- Qi's Claim: using a mapping between the LLL eigenstates (QHE) and localized Wannier states (FCI), we can establish an exact mapping between their many-particle wavefunctions


## Idea: Mapping Single Particle Orbitals

FQHE


FCl


- Proposal by X.-L. Qi [PRL'II]: Get FCIV efunctions by mapping single particle orbitals
- Idea: use Wannier states which are localized in the $x$-direction
- keep translational invariance in y (cannot sate fully localized Wannier state if C>0!)

$$
\left|W\left(x, k_{y}\right)\right\rangle=\sum_{k_{x}} f_{k_{x}}^{\left(x, k_{y}\right)}\left|k_{x}, k_{y}\right\rangle
$$

- Qi's Claim: using a mapping between the LLL eigenstates (QHE) and localized Wannier states (FCI), we can establish an exact mapping between their many-particle wavefunctions


## Wannier states in Chern bands

- Some formalism

$$
\begin{aligned}
& \mathcal{H}=\sum_{\mathbf{k}} \hat{a}_{\mathbf{k}, \alpha}^{\dagger} h_{\alpha \beta}(\mathbf{k}) \hat{a}_{\mathbf{k}, \beta} \quad \text { Hamiltonian } \\
& h_{\alpha \beta}(\mathbf{k}) u_{\beta}^{n}(\mathbf{k})=\epsilon_{n}(\mathbf{k}) u_{\alpha}^{n}(\mathbf{k}) \\
& \mathcal{A}(n, \mathbf{k})=-i \sum_{\alpha} u_{\alpha}^{n *}(\mathbf{k}) \nabla_{\mathbf{k}} u_{\alpha}^{n}(\mathbf{k}) \quad \text { Berseny connection }
\end{aligned}
$$



$$
c_{\mathbf{k}, \alpha}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{\mathbf{R}} e^{i \mathbf{k} \cdot\left(\mathbf{R}+\delta_{\alpha}\right)}{ }_{c}^{\dagger \mathbf{R}, \alpha}
$$

- construction of a Wannier state at fixed $k_{y}$

$$
\left|W\left(x, k_{y}\right)\right\rangle=\frac{\chi\left(k_{y}\right)}{\sqrt{L_{x}}} \sum_{k_{x}}
$$

$$
e^{-i k_{x} x}\left|k_{x}, k_{y}\right\rangle
$$

## Wannier states in Chern bands

- Some formalism

$$
\begin{aligned}
& \mathcal{H}=\sum_{\mathbf{k}} \hat{a}_{\mathbf{k}, \alpha}^{\dagger} h_{\alpha \beta}(\mathbf{k}) \hat{a}_{\mathbf{k}, \beta} \quad \text { Hamiltonian } \\
& h_{\alpha \beta}(\mathbf{k}) u_{\beta}^{n}(\mathbf{k})=\epsilon_{n}(\mathbf{k}) u_{\alpha}^{n}(\mathbf{k}) \\
& \mathcal{A}(n, \mathbf{k})=-i \sum_{\alpha} u_{\alpha}^{n *}(\mathbf{k}) \nabla_{\mathbf{k}} u_{\alpha}^{n}(\mathbf{k}) \quad \text { Berry connectes }
\end{aligned}
$$



$$
c_{\mathbf{k}, \alpha}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{\mathbf{R}} e^{i \mathbf{k} \cdot\left(\mathbf{R}+\boldsymbol{\delta}_{\alpha}\right)} c_{\mathbf{R}, \alpha}^{\dagger}
$$

- construction of a Wannier state at fixed $k_{y}$ in gauge with $\mathcal{A}_{y}=0$

$$
\left|W\left(x, k_{y}\right)\right\rangle=\frac{\chi\left(k_{y}\right)}{\sqrt{L_{x}}} \sum_{k_{x}} e^{-i \int_{0}^{k_{x}} \mathcal{A}_{x}\left(p_{x}, k_{y}\right) d p_{x}} \times \quad e^{-i k_{x} x}\left|k_{x}, k_{y}\right\rangle
$$

'Parallel transport' of phase

Berry connection indicates change of phase due to displacement in BZ

## Wannier states in Chern bands

- Some formalism

$$
\begin{aligned}
& \mathcal{H}=\sum_{\mathbf{k}} \hat{a}_{\mathbf{k}, \alpha}^{\dagger} h_{\alpha \beta}(\mathbf{k}) \hat{a}_{\mathbf{k}, \beta} \quad \text { Hamiltonian } \\
& h_{\alpha \beta}(\mathbf{k}) u_{\beta}^{n}(\mathbf{k})=\epsilon_{n}(\mathbf{k}) u_{\alpha}^{n}(\mathbf{k}) \quad \text { Eigenstates } \\
& \mathcal{A}(n, \mathbf{k})=-i \sum_{\alpha} u_{\alpha}^{n *}(\mathbf{k}) \nabla_{\mathbf{k}} u_{\alpha}^{n}(\mathbf{k}) \quad \text { Berry connection }
\end{aligned}
$$

- construction of a Wannier state at fixed $k_{y}$ in gauge with $\mathcal{A}_{y}=0$

$$
\left|W\left(x, k_{y}\right)\right\rangle=\frac{\chi\left(k_{y}\right)}{\sqrt{L_{x}}} \sum_{k_{x}} e^{-i \int_{0}^{k_{x}} \mathcal{A}_{x}\left(p_{x}, k_{y}\right) d p_{x}} \times e^{i k_{x} \frac{\theta\left(k_{y}\right)}{2 \pi}} \times e^{-i k_{x} x}\left|k_{x}, k_{y}\right\rangle
$$

## Berry connection indicates change of phase due to displacement in BZ



$$
c_{\mathbf{k}, \alpha}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{\mathbf{R}} e^{i \mathbf{k} \cdot\left(\mathbf{R}+\delta_{\alpha}\right)} c_{\mathbf{R}, \alpha}^{\dagger}
$$

ensures periodicity
of WF in $k_{y} \rightarrow k_{y}+2 \pi$

## Wannier states in Chern bands

- Some formalism

$$
\begin{aligned}
& \mathcal{H}=\sum_{\mathbf{k}} \hat{a}_{\mathbf{k}, \alpha}^{\dagger} h_{\alpha \beta}(\mathbf{k}) \hat{a}_{\mathbf{k}, \beta} \quad \text { Hamiltonian } \\
& h_{\alpha \beta}(\mathbf{k}) u_{\beta}^{n}(\mathbf{k})=\epsilon_{n}(\mathbf{k}) u_{\alpha}^{n}(\mathbf{k}) \\
& \mathcal{A}(n, \mathbf{k})=-i \sum_{\alpha} u_{\alpha}^{n *}(\mathbf{k}) \nabla_{\mathbf{k}} u_{\alpha}^{n}(\mathbf{k})
\end{aligned}
$$



- construction of a Wannier state at fixed $k_{y}$ in gauge with $\mathcal{A}_{y}=0$

$$
\left|W\left(x, k_{y}\right)\right\rangle=\frac{\chi\left(k_{y}\right)}{\sqrt{L_{x}}} \sum_{k_{x}} e^{-i \int_{0}^{k_{x}} \mathcal{A}_{x}\left(p_{x}, k_{y}\right) d p_{x}} \times e^{i k_{x} \frac{\theta\left(k_{y}\right)}{2 \pi}} \times e^{-i k_{x} x}\left|k_{x}, k_{y}\right\rangle
$$

ky-dependent phase factor, or 'gauge'
'Parallel transport' of phase
Berry connection indicates change of phase due to displacement in BZ
'Polarization' Fourier transform
ensures periodicity
of WF in $k_{y} \rightarrow k_{y}+2 \pi$

## Wannier states in Chern bands

- construction of a Wannier state at fixed $k_{y}$ in gauge with $\mathcal{A}_{y}=0$

$$
\left|W\left(x, k_{y}\right)\right\rangle=\frac{\chi\left(k_{y}\right)}{\sqrt{L_{x}}} \sum_{k_{x}} e^{-i \int_{0}^{k_{x}} \mathcal{A}_{x}\left(p_{x}, k_{y}\right) d p_{x}} \times e^{i k_{x} \frac{\theta\left(k_{y}\right)}{2 \pi}} \times e^{-i k_{x} x}\left|k_{x}, k_{y}\right\rangle
$$

'Parallel transport' of phase 'Polarization' Fourier transform

$$
\begin{array}{ll}
\text { Berry connection indicates change } & \text { ensures periodicity } \\
\text { of phase due to displacement in } \mathrm{BZ} & \text { of WF in } k_{y} \rightarrow k_{y}+2 \pi
\end{array}
$$

- or, more simply we can think of the Wannier states as the eigenstates of the position operator

$$
\hat{X}^{c g}=\lim _{q_{x} \rightarrow 0} \frac{1}{i} \frac{\partial}{\partial q_{x}} \bar{\rho}_{q_{x}} \quad \quad \quad \hat{X}^{c g}\left|W\left(x, k_{y}\right)\right\rangle=\left[x-\theta\left(k_{y}\right) / 2 \pi\right]\left|W\left(x, k_{y}\right)\right\rangle
$$

- role of polarization: displacement of centre of mass of the Wannier state

$$
\theta\left(k_{y}\right)=\int_{0}^{2 \pi} \mathcal{A}_{x}\left(p_{x}, k_{y}\right) d p_{x}
$$

## An example: The Haldane Model



$$
\begin{aligned}
\mathcal{H}= & -t_{1} \sum_{\left\langle\mathbf{\mathbf { r } ^ { \prime }}\right\rangle}\left(\hat{a}_{\mathbf{r}}^{\dagger} \hat{a}_{\mathbf{r}}+\text { h.c. }\right)-t_{2} \sum_{\left\langle\left\langle\mathbf{r r}^{\prime}\right\rangle\right\rangle}\left(\hat{a}_{\mathbf{r}}^{\dagger} \hat{a}_{\mathbf{r}} e^{i \phi_{\mathbf{r r}}{ }^{\prime}}+\text { h.c. }\right) \\
& -t_{3} \sum_{\left\langle\left\langle\left\langle\mathbf{r r}^{\prime}\right\rangle\right\rangle\right\rangle}\left(\hat{a}_{\mathbf{r}}^{\dagger} \hat{a}_{\mathbf{r}}+\text { h.c. }\right)+\frac{U}{2} \sum_{\mathbf{r}} \hat{n}_{\mathbf{r}}\left(\hat{n}_{\mathbf{r}}-1\right)
\end{aligned}
$$

- tight binding model on hexagonal lattice
- with fine-tuned hopping parameters: obtain flat lower band $t_{1}=1, t_{2}=0.60, t_{2}=-0.58$ and $\phi=0.4 \pi$


## Conventions for numerical evaluation

## Real Space



$$
\begin{aligned}
& \mathbf{v}_{1}=\sin (\gamma) \mathbf{e}_{x}+\cos (\gamma) \mathbf{e}_{y} \\
& \mathbf{v}_{2}=\mathbf{e}_{y}
\end{aligned}
$$

## Reciprocal Space



$$
\mathbf{G}_{1}=2 \pi \mathbf{e}_{x} / L_{1} \sin (\gamma)
$$

$$
\mathbf{G}_{2}=2 \pi\left[-\cot (\gamma) \mathbf{e}_{x}+\mathbf{e}_{y}\right] / L_{2}
$$

A few remarks:

- choose gauge such that Bloch functions satisfy: $u_{\beta}^{n}\left(\mathbf{k}+L_{i} \mathbf{G}_{\mathbf{i}}\right)=u_{\beta}^{n}(\mathbf{k})$
- use discretized Berry connection
- discretize its integrals by the rectangle rule

$$
\begin{aligned}
& A_{x}^{n}\left(q_{1}, q_{2}\right)=\Im \log \left[u_{\alpha}^{n *}\left(q_{1}, q_{2}\right) u_{\alpha}^{n}\left(q_{1}+1, q_{2}\right)\right] \\
& \int_{0}^{k_{x}} \mathcal{A}_{x}\left(p_{x}, k_{y}\right) d p_{x} \rightarrow \sum_{\tilde{q}_{1}=0}^{q_{1}\left(k_{x}\right)} A_{x}^{n}\left(\tilde{q}_{1}, q_{2}\right)
\end{aligned}
$$

## Qi's Mapping



- Can introduce a canonical order of states with monotonously increasing position:


$$
\begin{aligned}
& k_{y}=2 \pi n_{y} / L_{y} \\
& K_{y}=k_{y}+2 \pi x=2 \pi j / L_{y} \\
& j=n_{y}+L_{y} x=0,1, \ldots, N_{\phi}-1
\end{aligned}
$$

- Increase in position for $k_{y} \rightarrow k_{y}+2 \pi=$ Chern-number C, as

$$
\frac{\partial}{\partial k_{y}}\left\langle\hat{X}^{c g}\right\rangle_{x x}=-\frac{1}{2 \pi} \frac{\partial \theta\left(k_{y}\right)}{\partial k_{y}}=\int_{0}^{2 \pi} \mathcal{B}\left(p_{x}, k_{y}\right) d p_{x}
$$

## Case study: Bosons with contact interactions



$$
\mathcal{H}=\sum_{j_{1}, j_{2}, j_{3}, j_{4}} V_{j_{1} j_{2} ; j_{3} j_{4}} \hat{c}_{j_{1}}^{\dagger} \hat{c}_{j_{2}}^{\dagger} \hat{c}_{j_{3}} \hat{c}_{j_{4}}
$$

- Landau level momentum conserved:

$$
V_{j_{1} j_{2} ; j_{3} j_{4}} \propto \delta_{j_{1}+j_{2}, j_{3}+j_{4}}
$$

- Linearized momentum
$V_{j_{1} j_{2} ; j_{3} j_{4}} \propto \delta_{j_{1}+j_{2}, j_{3}+j_{4}}^{\bmod } L_{x}$


## Case study: Bosons with contact interactions



Different conservation laws

## Matrix elements in the Wannier basis

$$
\begin{gathered}
\mathcal{H}_{\mathrm{int}} \propto \sum_{i<j} \delta\left(r_{i}-r_{j}\right) \\
K_{y}=k_{y}+2 \pi x=2 \pi j / L_{y} \\
\mathcal{H}^{F C I}=\sum_{\substack{k_{y 1}, k_{y 2}, k_{y 3}, k_{y 4} \\
x_{1}, x_{2}, x_{3}, x_{4} \\
k_{y 1}+k_{y 2}=k_{y 3}+k_{y 4}}} \hat{c}_{W\left(k_{y 1}, x_{1}\right)}^{\dagger} \hat{c}_{W\left(k_{y 2}, x_{2}\right)}^{\dagger} \hat{c}_{W\left(k_{y 3}, x_{3}\right)} \hat{c}_{W\left(k_{y 4}, x_{4}\right)} \\
V_{j_{1} j_{2} ; j_{3} j_{4}}\left\{\begin{array}{l}
\sum_{\substack{k_{x 1}, k_{x 2}, k_{x 3}, k_{x x} \\
k_{x 1}+k_{x 2}=k_{x 3}+k_{x 4}}} f_{k_{x 1}}^{*\left(x_{1}, k_{\left.y_{1}\right)}\right)} f_{k_{x 2}}^{*\left(x_{2}, k_{y 2}\right)} f_{k_{x 3}}^{\left(x_{3}, k_{y 3}\right)} f_{k_{x 4}}^{\left(x 4, k_{y 4}\right)} \\
\sum_{a=A, B} u_{\alpha_{0}}^{* a}\left(\mathbf{k}_{\mathbf{1}}\right) u_{\alpha_{0}}^{* a}\left(\mathbf{k}_{\mathbf{2}}\right) u_{\alpha_{0}}^{a}\left(\mathbf{k}_{\mathbf{3}}\right) u_{\alpha_{0}}^{a}\left(\mathbf{k}_{\mathbf{4}}\right)
\end{array}\right.
\end{gathered}
$$

## Case study: Bosons with contact interactions

- Magnitude of matrix elements for delta interactions:

FQHE


FCl


- System shown:

$$
N=6, L_{x} \times L_{y}=3 \times 4
$$

- Matrix elements differ in magnitude, but overall similarities are present
- Different block-structure due to non momentum conservation


## Reduced translational invariance in $K_{y}$

- A closer look at some short range hopping processes

- for FCl: hopping amplitudes depend on position of centre of mass / $\mathrm{K}_{\mathrm{y}}$


## Can we map many body states using the Wannier basis?

- Direct equivalence of many body wavefct. as proposed by Qi

$$
\begin{array}{ll}
\mathcal{H}^{\mathrm{FQHE}}|\Psi\rangle=E_{0}|\Psi\rangle & \mathcal{H}^{\mathrm{FCI}}|\Phi\rangle=E_{0}^{\prime}|\Phi\rangle \\
|\Psi\rangle=\sum_{\alpha=\left\{n_{k_{y}}\right\}} \gamma_{\alpha} \prod_{k_{y}}\left(\hat{c}^{\dagger}\right)^{n_{k_{y}}}|v a c .\rangle & |\Phi\rangle=\sum_{\alpha=\left\{n_{K_{y}}\right\}} \kappa_{\alpha} \prod_{K_{y}}\left(\hat{c}^{\dagger}\right)^{n_{K_{y}}}|v a c .\rangle
\end{array}
$$

- Does not really work... $\quad \kappa_{\alpha} \neq \gamma_{\alpha} \quad$ [but some overlap: e.g. Laughlin $N=10-O \sim 0.8$ ]
- But: can now write both states in single Hilbert space with the same overall structure (indexed by $\mathrm{K}_{\mathrm{y}}$, enlarging the space for the torus)
- Can study adiabatic continuity between the two groundstates:

$$
\mathcal{H}(x)=(1-x) \mathcal{H}^{\mathrm{FQHE}}+x \mathcal{H}^{\mathrm{FCI}}
$$

## Can we map many body states using the Wannier basis?



## Can we map many body states using the Wannier basis?

- Direct equivalence of many body wavefct. as proposed by Qi

$$
\begin{array}{ll}
\mathcal{H}^{\mathrm{FQHE}}|\Psi\rangle=E_{0}|\Psi\rangle & \mathcal{H}^{\mathrm{FCI}}|\Phi\rangle=E_{0}^{\prime}|\Phi\rangle \\
|\Psi\rangle=\sum_{\alpha=\left\{n_{k_{y}}\right\}} \gamma_{\alpha} \prod_{k_{y}}\left(\hat{c}^{\dagger}\right)^{n_{k_{y}}}|v a c .\rangle & |\Phi\rangle=\sum_{\alpha=\left\{n_{K_{y}}\right\}} \kappa_{\alpha} \prod_{K_{y}}\left(\hat{c}^{\dagger}\right)^{n_{K_{y}}}|v a c .\rangle
\end{array}
$$

- Does not really work... $\quad \kappa_{\alpha} \neq \gamma_{\alpha} \quad$ [but some overlap: e.g. Laughlin $N=10-O \sim 0.8$ ]
- But: can now write both states in single Hilbert space with the same overall structure (indexed by $\mathrm{K}_{\mathrm{y}}$, enlarging the space for the torus)
- Can study adiabatic continuity between the two groundstates:

$$
\mathcal{H}(x)=(1-x) \mathcal{H}^{\mathrm{FQHE}}+x \mathcal{H}^{\mathrm{FCI}}
$$

## Adiabatic continuation in the Wannier basis

- Spectrum as function of $x$ for $\mathrm{N}=10$ bosons on a $4 \times 5$ lattice, filling factor $\nu=1 / 2$

FQHE

T. Scaffidi, GM, arxiv:I 207.3539

## Adiabatic continuation in the Wannier basis

- Spectrum for $\mathrm{N}=10$ :

- Gap for different system sizes \& aspect ratios:



## Adiabatic continuation in the Wannier basis

- Spectrum for $\mathrm{N}=10$ :

FQHE


- Gap for different system sizes \& aspect ratios:
- We confirm the Laughlin state is adiabatically connected to the groundstate of the Haldane model


## Adiabatic continuation in the Wannier basis

- Spectrum for $\mathrm{N}=10$ :

FQHE


- Gap for different system sizes \& aspect ratios:
- We confirm the Laughlin state is adiabatically connected to the groundstate of the Haldane model
- Clean extrapolation to the thermodynamic limit - (unlike overlaps)


## Entanglement spectra and quasiparticle excitations

- Entanglement spectrum: arises from Schmidt decomposition of ground state into two groups A, B => Schmidt eigenvalues $\xi$ plotted over quantum numbers for symmetries within each block

$$
|\Psi\rangle=\sum_{\varpi} \sum_{i} e^{-\xi_{\varpi, i} / 2}\left|\Psi_{\varpi, i}^{A}\right\rangle \otimes\left|\Psi_{\omega, i}^{B}\right\rangle
$$




Dominant (universal) eigenvalues of PES yield count of excited states - and their wavefunctions - from groundstate wavefunction only!
credit: Sterdyniak et al. PRL 20||

## Adiabatic continuation of the entanglement spectrum

Total \#eigenvalues below entanglement gap
$=4 x(201+200+200+200+200)$


$$
|\Psi\rangle=\sum_{\varpi} \sum_{i} e^{-\xi_{\varpi, i} / 2}\left|\Psi_{\varpi, i}^{A}\right\rangle \otimes\left|\Psi_{\varpi, i}^{B}\right\rangle
$$

## Finite size behaviour of entanglement gap



- The entanglement gap remains open for all values of the interpolation parameter $x$
- Finite size scaling behaviour is not so clear (sufficient numerical accuracy?)


## Conclusions

- Wavefunctions of FCl's in the Wannier basis are similar but not identical to FQH states in the Landau gauge
- We demonstrated the adiabatic continuity of the ground states at $\mathrm{v}=\mathrm{I} / 2$ using Qi's mapping between Wannier basis and FQH eigenstates
- FCI wavefunctions from Qi's construction not very accurate
several formal problem with Qi's Wannier states fixed by proper construction of gauge, see:Wu, Regnault, Bernevig, arxiv:I 206.5773.
T. Scaffidi, GM, arxiv:I207.3539


## Conclusions

Analytic continuation of FCl states to FQHE wavefunctions represents a new tool for the identification of strongly correlated phases in Chern bands

Can make a robust identification of phases which can be confidently extrapolated to the thermodynamic limit

$$
\text { T. Scaffidi, GM, arxiv:I } 207.3539
$$

