Heat equation approach to geometric changes in the torus Laughlin-state

Nordita
Stockholm, August 15, 2012

Alexander Seidel
Collaborators:
Zhenyu Zhou (WashU)
Zohar Nussinov (WashU)

Washington University inSt.Louis
CENTER FOR
MATERIALS
CMI InNovation

Motivation: Parent Hamiltonians for FQH states

Landau-level projected local interactions
Prime example: V_{1} Haldane pseudo-potential
$1^{\text {st }}$ quantized
$\psi_{1 / 3}\left(z_{1}, \ldots, z_{N}\right)$
$\hat{V}_{1}=P_{\mathrm{LLL}} \nabla^{2} \delta^{2}\left(r_{1}-r_{2}\right) P_{\mathrm{LLL}}$

$$
\begin{aligned}
& \langle 0| c_{n_{1}}^{2^{\text {nd }} \text { quantized }} \ldots c_{n_{N}}\left|\psi_{1 / 3}\right\rangle \\
& \hat{V}_{1}=\sum_{R} Q_{R}^{\dagger} Q_{R} \\
& Q_{R}=\sum_{x} x \exp \left(-x^{2} / r^{2}\right) c_{R-x} c_{R+x} \\
& \text { (cylinder) }
\end{aligned}
$$

$$
2 \pi r
$$

Motivation: Parent Hamiltonians for FQH states

Landau-level projected local interactions
Prime example: V_{1} Haldane pseudo-potential

$$
\begin{gathered}
\psi_{1 / 3}^{1^{\text {st }} \text { quantized }}\left(z_{1}, \ldots, z_{N}\right) \quad\langle 0| c_{n_{1}}^{2^{\text {nd }} \text { quantized }} \ldots c_{n}\left|\psi_{1 / 3}\right\rangle \\
\hat{V}_{1}=P_{\text {LLL }} \nabla^{2} \delta^{2}\left(r_{1}-r_{2}\right) P_{\text {LLL }} \mid \hat{V}_{1}=\sum_{R} Q_{R}^{\dagger} Q_{R} \\
2 \pi r
\end{gathered}
$$

Motivation: Parent Hamiltonians for FQH states

Landau-level projected local interactions
Prime example: V_{1} Haldane pseudo-potential

1. Translationally invariant 1D "lattice" model 2. "Frustration free"

Motivation: Parent Hamiltonians for FQH states

Landau-level projected local interactions
Prime example: V_{1} Haldane pseudo-potential

$$
\begin{aligned}
& 1^{\text {st }} \text { quantized } \\
& \psi_{1 / 3}\left(z_{1}, \ldots, z_{N}\right) \\
& \hat{V}_{1}=P_{\mathrm{LLL}} \nabla^{2} \delta^{2}\left(r_{1}-r_{2}\right) P_{\mathrm{LLL}} \\
& \langle 0| c_{n_{1}} \ldots c_{n_{N}}\left|\psi_{1 / 3}\right\rangle \\
& \hat{V}_{1}=\sum_{R} Q_{R}^{\dagger} Q_{R} \\
& Q_{R}=\sum_{x} x \underset{\text { (cylinder) }}{ } x \exp \left(-x^{2} / r^{2}\right) c_{R-x} c_{R+x} \\
& \text { 1. Translationally invariant 1D "lattice" model } \\
& \text { 2. "'Frustration free" } \\
& \text { 3. Give description of physics "in Hilbert space" } \\
& \text { FDM Haldane, APS talk, March '12 } \\
& \text { FDM Haldane, PRL '11 } \\
& \text { R-Z Qiu, FDM Haldane, X Wan, K Yang, S Yi, PRB } 12
\end{aligned}
$$

Motivation: Fock space decomposition of QH states

Example: Laughlin state on the sphere (Haldane PRL 83)

$$
\langle 0| c_{n_{1}} \ldots c_{n_{N}}\left|\psi_{1 / 3}\right\rangle=C_{\left\{n_{k}\right\}} \times \text { normalization }
$$

The $C_{\left\{n_{k}\right\}}$ are known recursively by the general connection between various QH states and Jack polynomials.
B.A. Bernevig, F.D.M. Haldane, PRL 08, PRB 08

Motivation: Fock space decomposition of QH states

Example: Laughlin state on the sphere (Haldane PRL 83)

$\langle 0| c_{n_{1}} \ldots c_{n_{N}}\left|\psi_{1 / 3}\right\rangle=C_{\left\{n_{k}\right\}} \times$ normalization
1001001001001001001001001001001001001 "inward squeezing"

Motivation: Fock space decomposition of QH states
Example: Laughlin state on the torus (Haldane, Rezayi, PRB 85)

$$
\begin{aligned}
& \psi_{1 / q}\left(z_{1} \ldots z_{N}\right)=\exp \left(-\frac{1}{2} \sum_{k} y_{k}^{2}\right) F_{\ell=0 \ldots q-1}\left(z_{1}+\ldots+z_{N}\right) \prod_{i<j} \theta_{1}\left(\frac{z_{i}-z_{j}}{L_{x}}, \tau\right)^{q} \\
& \hat{V}_{1}=\sum_{R} Q_{R}^{\dagger} Q_{R}
\end{aligned}
$$

$$
Q_{R}=\sum_{\substack{0<x<L / 2 \\ x+R \in \mathbb{Z}}} \sum_{m \in \mathbb{Z}}(x+m L) \exp \left[\frac{2 \pi i \tau}{L}(x+m L)^{2}\right] c_{R-x} c_{R+x}
$$

$c_{n} \equiv c_{n+L} \quad$ Periodized version of the cylinder interaction

Motivation: Fock space decomposition of QH states

Example: Laughlin state on the torus

$$
\begin{array}{cc}
L_{2} \begin{array}{cc}
\text { area }=2 \pi L & \\
L_{1} & \operatorname{Im} L_{2}>0
\end{array}, L_{2} / L_{1}
\end{array}
$$

$1001001001001001 \longrightarrow\langle 0| c_{n_{1}} \ldots c_{n_{N}}\left|\psi_{1 / 3}\right\rangle$ "thin torus limit"

EJ Bergholtz, A Karlhede, PRL 94 '05
AS, H Fu, D-H Lee, JM Leinaas, JE Moore, PRL 95 ‘05

Motivation: Fock space description of QH states

Example: Laughlin state on the torus

$$
\tau=L_{2} / L_{1}
$$

$$
\operatorname{Im} L_{2}>0
$$

Alternative view: change of metric

$$
\begin{aligned}
& L_{1} \\
& \nu=\mathrm{id}
\end{aligned}
$$

$H=\frac{1}{2} \sum_{i=1}^{N} g^{\mu \nu} \pi_{i \mu} \pi_{i \nu}+P_{\mathrm{LLL}} \sum_{i<j} V\left(g_{\mu \nu} x_{i j}^{\mu} x_{i j}^{\nu}\right) P_{\mathrm{LLL}} \quad \sqrt{2 \pi L}$
Connection with "Hall viscosity":

$$
g_{\mu \nu}=\mathrm{id}
$$

JE Avron, R. Seiler, PG Zograf PRL 95;
N. Read, PRB 09

FDM Haldane, arXiv:0906.1854
$g_{\mu \nu} \neq \mathrm{id}$
N. Read, EH Rezayi, PRB 10

Outline

- Motivation
- Understand structure of Fock space decomposition of torus Laughlin states
- \mathcal{T}-dependence
- relation to root pattern
- Heat equation for τ - evolution of Laughlin states
- 2-body operator as generator for \mathcal{T}-evolution of coefficients
- presentation of torus-Laughlin state in terms of root pattern
- Application: Hall viscosity
- Conclusion

\mathcal{T}-dependence of Laughlin state in Fock space

$1001001001001001 \longrightarrow\langle 0| c_{n_{1}} \ldots c_{n_{N}}\left|\psi_{1 / 3}\right\rangle$

A look at the cylinder

$1001001001001001 \longrightarrow\langle 0| c_{n_{1}} \ldots c_{n_{N}}\left|\psi_{1 / 3}\right\rangle$

A look at the cylinder

$$
\begin{aligned}
& n \\
& \psi_{1 / 3}=\prod_{i<j}\left(\xi_{i}-\xi_{j}\right)^{3} \times e^{-\frac{1}{2} \sum_{k} x_{k}^{2}} \\
& =\sum_{\left\{n_{k}\right\}} C_{\left\{n_{k}\right\}} \prod_{k} \xi_{k}^{n_{k}} e^{-\frac{1}{2} x_{k}^{2}} \\
& \phi_{n}=\xi^{n} e^{-\frac{1}{2} x^{2}} e^{-\frac{1}{2} n^{2} / r^{2}} \\
& \xi=e^{z / r} \\
& \langle 0| c_{n_{1}} \ldots c_{n_{N}}\left|\psi_{1 / 3}\right\rangle=C_{\left\{n_{k}\right\}} \times \text { normalization }
\end{aligned}
$$

1001001001001001001001001001001001001 "inward squeezing"

A look at the cylinder

$$
\psi_{1 / 3}=\prod_{i<j}\left(\xi_{i}-\xi_{j}\right)^{3} \times e^{-\frac{1}{2} \sum_{k} x_{k}^{2}}
$$

$$
=\sum_{\left\{n_{k}\right\}} C_{\left\{n_{k}\right\}} \prod_{k} \xi_{k}^{n_{k}} e^{-\frac{1}{2} x_{k}^{2}}
$$

$$
\begin{aligned}
\phi_{n} & =\xi^{n} e^{-\frac{1}{2} x^{2}} e^{-\frac{1}{2} n^{2} / r^{2}} \\
\xi & =e^{z / r}
\end{aligned}
$$

$$
\text { Rezayi \& Haldane, PRB } 94
$$

$$
\langle 0| c_{n_{1}} \ldots c_{n_{N}}\left|\psi_{1 / 3}\right\rangle=C_{\left\{n_{k}\right\}} \times e^{\frac{1}{2} \sum n_{k}^{2} / r^{2}}
$$

1001001001001001001001001001001001001 "inward squeezing"

A look at the cylinder

$$
\begin{aligned}
& 2 \pi r \\
& \psi_{1 / 3}=\prod_{i<j}\left(\xi_{i}-\xi_{j}\right)^{3} \times e^{-\frac{1}{2} \sum_{k} x_{k}^{2}} \\
& =\sum_{\left\{n_{k}\right\}} C_{\left\{n_{k}\right\}} \prod_{k} \xi_{k}^{n_{k}} e^{-\frac{1}{2} x_{k}^{2}} \\
& \dagger_{n}=\xi^{n} e^{-\frac{1}{2} x^{2}} e^{-\frac{1}{2} n^{2} / r^{2}} \\
& \xi=e^{z / r} \\
& \left|\psi_{1 / 3}(r)\right\rangle=\sum_{\left\{n_{k}\right\}} \underline{e^{\frac{1}{2} \sum_{k} n_{k}^{2} / r^{2}}} C_{\left\{n_{k}\right\}} c_{n_{N}}^{\dagger} \ldots c_{n_{1}}^{\dagger}|0\rangle \\
& \hat{V}_{1}=\sum Q_{R}^{\dagger} Q_{R} \quad Q_{R} \psi_{1 / 3}=0, \text { all } R
\end{aligned}
$$

A look at the cylinder

$$
\begin{aligned}
& n \\
& \psi_{1 / 3}=\prod_{i<j}\left(\xi_{i}-\xi_{j}\right)^{3} \times e^{-\frac{1}{2} \sum_{k} x_{k}^{2}} \\
& =\sum_{\left\{n_{k}\right\}} C_{\left\{n_{k}\right\}} \prod_{k} \xi_{k}^{n_{k}} e^{-\frac{1}{2} x_{k}^{2}} \\
& \phi_{n}=\xi^{n} e^{-\frac{1}{2} x^{2}} e^{-\frac{1}{2} n^{2} / r^{2}} \\
& \xi=e^{z / r} \\
& \left|\psi_{1 / 3}(r)\right\rangle=\sum_{\left\{n_{k}\right\}} e^{e^{\frac{1}{2} \sum_{k} n_{k}^{2} / r^{2}}} C_{\left\{n_{k}\right\}} c_{n_{N}}^{\dagger} \ldots c_{n_{1}}^{\dagger}|0\rangle
\end{aligned}
$$

Geometric changes in the Fock space description of cylinder quantum Hall states are generated by a simple single-body operator:

$$
G_{r^{-2}}=\frac{1}{2} \sum_{n} n^{2} c_{n}^{\dagger} c_{n}
$$

(This is a consequence of the polynomial structure and is not specific to the Laughlin state!)

A look at the cylinder

$$
\underline{\underline{\left|\psi_{1 / 3}\left(r^{\prime}\right)\right\rangle}=e^{\left(r^{\prime-2}-r^{-2}\right) G_{r}-2}\left|\psi_{1 / 3}(r)\right\rangle} \quad G_{r^{-2}}=\frac{1}{2} \sum_{n} n^{2} c_{n}^{\dagger} c_{n}
$$

$$
\begin{aligned}
& 2 \pi r \\
& \psi_{1 / 3}=\prod_{i<j}\left(\xi_{i}-\xi_{j}\right)^{3} \times e^{-\frac{1}{2} \sum_{k} x_{k}^{2}} \\
& =\sum_{\left\{n_{k}\right\}} C_{\left\{n_{k}\right\}} \prod_{k} \xi_{k}^{n_{k}} e^{-\frac{1}{2} x_{k}^{2}} \\
& \phi_{n}=\xi^{n} e^{-\frac{1}{2} x^{2}} e^{-\frac{1}{2} n^{2} / r^{2}} \\
& \xi=e^{z / r} \\
& \left|\psi_{1 / 3}(r)\right\rangle=\sum_{\left\{n_{k}\right\}} \underline{e^{\frac{1}{2} \sum_{k} n_{k}^{2} / r^{2}}} C_{\left\{n_{k}\right\}} c_{n_{N}}^{\dagger} \ldots c_{n_{1}}^{\dagger}|0\rangle
\end{aligned}
$$

A look at the cylinder

$2 \pi r$

$$
\begin{aligned}
\psi_{1 / 3} & =\prod_{i<j}\left(\xi_{i}-\xi_{j}\right)^{3} \times e^{-\frac{1}{2} \sum_{k} x_{k}^{2}} \\
& =\sum_{\left\{n_{k}\right\}} C_{\left\{n_{k}\right\}} \prod_{k} \xi_{k}^{n_{k}} e^{-\frac{1}{2} x_{k}^{2}}
\end{aligned}
$$

$$
\phi_{n}^{\wedge}=\xi^{n} e^{-\frac{1}{2} x^{2}} e^{-\frac{1}{2} n^{2} / r^{2}}
$$

$$
\xi=e^{z / r}
$$

$$
\left|\psi_{1 / 3}(r)\right\rangle=\sum_{\left\{n_{k}\right\}} e^{e^{\frac{1}{2} \sum_{k} n_{k}^{2} / r^{2}}} C_{\left\{n_{k}\right\}} c_{n_{N}}^{\dagger} \ldots c_{n_{1}}^{\dagger}|0\rangle
$$

$$
\underline{\underline{\left|\psi_{1 / 3}\left(r^{\prime}\right)\right\rangle}=e^{\left(r^{\prime-2}-r^{-2}\right) G_{r}-2}\left|\psi_{1 / 3}(r)\right\rangle} \quad G_{r^{-2}}=\frac{1}{2} \sum_{n} n^{2} c_{n}^{\dagger} c_{n}
$$

A look at the cylinder

$$
\begin{aligned}
&\left|\|_{\|}\right||||||l| \psi_{1 / 3}=\prod_{i<j}\left(\xi_{i}-\xi_{j}\right)^{3} \times e^{-\frac{1}{2} \sum_{k} x_{k}^{2}} \\
&=\sum_{\left\{n_{k}\right\}} C_{\left\{n_{k}\right\}} \prod_{k} \xi_{k}^{n_{k}} e^{-\frac{1}{2} x_{k}^{2}} \\
& \phi_{n}=\xi^{n} e^{-\frac{1}{2} x^{2}} e^{-\frac{1}{2} n^{2} / r^{2}} \\
& \xi=e^{z / r}
\end{aligned}
$$

$$
\underline{\left.\underline{\mid \psi_{1 / 3}\left(r^{\prime}\right)}\right\rangle=e^{\left(r^{\prime-2}-r^{-2}\right) G_{r^{-2}}}\left|\psi_{1 / 3}(r)\right\rangle} \quad G_{r^{-2}}=\frac{1}{2} \sum_{n} n^{2} c_{n}^{\dagger} c_{n}
$$

Note, however, that this does not remain meaningful in the thin cylinder limit $r=0$, in which the ket $\left|\psi_{1 / 3}(r)\right\rangle$ becomes $|100100100 \ldots\rangle$.

Back to the torus

Want to define G_{τ} such that it generates the change with \mathcal{T} in the "guiding center" description of the Laughlin state.

Back to the torus

We may assume (without loss of generality) that such G_{τ} is symmetric with respect to magnetic translations on the torus. This shows that unlike for the cylinder, this generator cannot be a single body operator!
(It would then have to be proportional to the particle number operator.)

Differential equation for τ-dependence of torus Laughlin state

$$
\begin{gathered}
\psi_{1 / q}\left(z_{1} \ldots z_{N}, \tau\right)=\exp \left(-\frac{1}{2} \sum_{k} y_{k}^{2}\right) F_{\ell=0 \ldots q-1}(\underbrace{z_{1}+\ldots+z_{N}}_{Z}) \prod_{i<j} \theta_{1}\left(\frac{z_{i}-z_{j}}{L_{x}}, \tau\right)^{q} \\
F_{\ell}(Z)=\theta\left[\begin{array}{c}
\frac{\ell}{q}+\frac{L-q}{2 q} \\
-\frac{L-q}{2}
\end{array}\right]\left(q Z / L_{x}, q \tau\right) \quad \text { N. Read, E. Rezayi, PRB } 96 \\
\partial_{\tau} \psi_{1 / q}=e^{-\frac{1}{2} y_{k} y_{k}}\left(\left(\partial_{\tau} F_{\ell}\right) f_{r e l}+F_{\ell} \partial_{\tau} f_{r e l}\right)
\end{gathered}
$$

Heat equation for center-of-mass factor:

$$
\partial_{\tau} F_{\ell}(Z, \tau)=\frac{1}{4 \pi i q} \partial_{Z}^{2} F_{\ell}(Z, \tau)
$$

Differential equation for τ-dependence of torus Laughlin state

$$
\begin{gathered}
\psi_{1 / q}\left(z_{1} \ldots z_{N}, \tau\right)=\exp \left(-\frac{1}{2} \sum_{k} y_{k}^{2}\right) F_{\ell=0 \ldots q-1}(\underbrace{z_{1}+\ldots+z_{N}}_{Z}) \prod_{i<j} \theta_{1}\left(\frac{z_{i}-z_{j}}{L_{x}}, \tau\right)^{q} \\
F_{\ell}(Z)=\theta\left[\begin{array}{c}
\frac{\ell}{q}+\frac{L-q}{2 q} \\
-\frac{L-q}{2}
\end{array}\right]\left(q Z / L_{x}, q \tau\right) \quad \text { N. Read, E. Rezayi, PRB 96 } \\
\partial_{\tau} \psi_{1 / q}=e^{-\frac{1}{2} y_{k} y_{k}}\left(\left(\partial_{\tau} F_{\ell}\right) f_{\text {rel }}+F_{\ell} \partial_{\tau} f_{r e l}\right)
\end{gathered}
$$

Heat equation for center-of-mass factor:

$$
\begin{gathered}
\partial_{\tau} F_{\ell}(Z, \tau)=\frac{1}{4 \pi i q} \partial_{Z}^{2} F_{\ell}(Z, \tau) \\
\partial_{\tau} \psi_{1 / q}=\left[\frac{1}{4 \pi i q} \partial_{Z}^{2}+q \sum_{i<j} \frac{\partial_{\tau} \theta_{1}\left(z_{i}-z_{j}, \tau\right)}{\theta_{1}\left(z_{i}-z_{j}, \tau\right)}\right] \psi_{1 / q}
\end{gathered}
$$

Differential equation for τ-dependence of torus Laughlin state

- RHS looks like a 2-body operator
- However: As written, the $\psi_{1 / q}(\tau)$ don't really live in the same Hilbert space for different τ.
- Also: The differential equation still encodes the change of the Landau level basis as well as that of the expansion coefficients.

Solve problem in 1D Hilbert space

$$
0<\operatorname{Im} \tau=2 \pi L l_{b}^{2}
$$

$$
\psi_{1 / q}\left(z_{1} \ldots z_{N}, \tau\right)=\exp \left(-\frac{1}{2} \sum_{k} y_{k}^{2} / l_{B}^{2}\right) F_{\ell=0 \ldots q-1}(Z) \prod_{i<j} \theta_{1}\left(z_{i}-z_{j}, \tau\right)^{q}
$$

View this as function of real variables in the interval $[0,1]\left(y_{k} \equiv 0\right)$.
For any \mathcal{T}, the Laughlin state is thus a member of the Hilbert space of squareintegrable functions over [0,1], endowed with scalar product

$$
\langle\phi \mid \psi\rangle=\int_{0}^{1} d x \phi^{*}(x) \psi(x)
$$

The following (un-normalized) basis of LLL orbitals remains orthogonal after restriction to 1D:

$$
\chi_{n}(z)=e^{-\frac{y^{2}}{2 l_{B}^{2}}} \theta\left[\begin{array}{c}
n / L \\
0
\end{array}\right](L z, L \tau)
$$

Differential equation for τ-dependence of torus Laughlin state

$$
\begin{gathered}
\partial_{\tau} \psi_{1 / q}=\left[\frac{1}{4 \pi i q} \partial_{X}^{2}+q \sum_{i<j} \frac{\partial_{\tau} \theta_{1}\left(x_{i}-x_{j}, \tau\right)}{\theta_{1}\left(x_{i}-x_{j}, \tau\right)}\right] \psi_{1 / q} \\
X=x_{1}+\ldots+x_{N}
\end{gathered}
$$

The operator on the RHS is now a well-defined 2-body operator acting within (a dense subspace of) the Fock space derived from square integrable functions on [0,1$]$.

Differential equation for τ-dependence of torus Laughlin state

$$
\begin{aligned}
& \partial_{\tau} \psi_{1 / q}=[\underbrace{\frac{1}{4 \pi i q} \partial_{X}^{2}+q \sum_{i<j} \frac{\partial_{\tau} \theta_{1}\left(x_{i}-x_{j}, \tau\right)}{\theta_{1}\left(x_{i}-x_{j}, \tau\right)}}] \psi_{1 / q} \\
& \Delta
\end{aligned}
$$

Differential equation for τ-dependence of torus Laughlin state

$$
\begin{aligned}
& \partial_{\tau} \psi_{1 / q}=\left[\frac{\left.\frac{1}{4 \pi i q} \partial_{X}^{2}+q \sum_{i<j} \frac{\partial_{\tau} \theta_{1}\left(x_{i}-x_{j}, \tau\right)}{\theta_{1}\left(x_{i}-x_{j}, \tau\right)}\right]}{\Delta} \psi_{1 / q}\right. \\
& X=x_{1}+\ldots+x_{N}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{H} \quad \mathcal{H} \\
& \uparrow \uparrow \\
& \mathcal{L}_{\tau} \quad \mathcal{L}_{\tau^{\prime}} \\
& c_{n}^{\dagger} \rightarrow N_{n}(\tau) c_{n}^{\dagger} \\
& \mathcal{L}^{\swarrow} \tilde{G}_{\tau}=\sum_{m m^{\prime} n n^{\prime}} G_{m m^{\prime} n n^{\prime}} c_{m}^{\dagger} c_{m^{\prime}}^{\dagger} c_{n} c_{n}^{\prime} \\
& \mathcal{L} \quad G_{\tau}=\sum_{n} \frac{\partial_{\tau} N_{n}(\tau)}{N_{n}(\tau)} c_{n}^{\dagger} c_{n}+\sum_{m m^{\prime} n n^{\prime}} \frac{N_{m}(\tau) N_{m^{\prime}}(\tau)}{N_{n}(\tau) N_{n^{\prime}}(\tau)} G_{m m^{\prime} n n^{\prime}} c_{m}^{\dagger} c_{m^{\prime}}^{\dagger} c_{n} c_{n}^{\prime}
\end{aligned}
$$

Differential equation for τ-dependence of torus Laughlin state

$$
\begin{aligned}
& \begin{array}{l}
\partial_{\tau} \psi_{1 / q}=[\underbrace{\frac{1}{4 \pi i q} \partial_{X}^{2}+q \sum_{i<j} \frac{\partial_{\tau} \theta_{1}\left(x_{i}-x_{j}, \tau\right)}{\theta_{1}\left(x_{i}-x_{j}, \tau\right)}}] \psi_{1 / q} \\
\Delta
\end{array} \\
& \mathcal{H} \\
& \psi_{1 / q}=I_{\tau}\left|\psi_{1 / q}\right\rangle \\
& \mathcal{L}_{\tau} I_{\tau} \\
& \uparrow \\
& \mathcal{L}
\end{aligned}
$$

Differential equation for τ-dependence of torus Laughlin state

$$
\begin{aligned}
& \begin{array}{l}
\partial_{\tau} \psi_{1 / q}=[\underbrace{\left[\frac{1}{4 \pi i q} \partial_{X}^{2}+q \sum_{i<j} \frac{\partial_{\tau} \theta_{1}\left(x_{i}-x_{j}, \tau\right)}{\theta_{1}\left(x_{i}-x_{j}, \tau\right)}\right.}] \psi_{1 / q} \\
\Delta
\end{array} \\
& \mathcal{H} \\
& \begin{array}{ll}
\mathcal{L}_{\tau} \\
\mathcal{L}_{\tau} & \\
I_{\tau}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L} \\
& \psi_{1 / q}=I_{\tau}\left|\psi_{1 / q}\right\rangle \\
& \begin{aligned}
& P_{\tau} \Delta \psi_{1 / q}= P_{\tau}\left(\partial_{\tau} I \mathcal{L}\right) \\
&\underset{\sim}{\swarrow})\left|\psi_{1 / q}\right\rangle+I_{\tau} \tilde{G}_{\tau}\left|\psi_{1 / q}\right\rangle \\
& 0 \text { for } \tau \text { imaginary }
\end{aligned} \\
& \underline{\underline{P_{\tau} \Delta P_{\tau} \psi_{1 / q}}=I_{\tau} \tilde{G}_{\tau}\left|\psi_{1 / q}\right\rangle}
\end{aligned}
$$

The generator G_{τ}

$$
P_{\tau} \Delta P_{\tau} \psi_{1 / q}=I_{\tau} \tilde{G}_{\tau}\left|\psi_{1 / q}\right\rangle \quad(\tau \text { imaginary })
$$

This implies that the matrix elements of \widetilde{G}_{τ} are those of Δ, restricted to the lowest Landau level at τ.

$$
\begin{array}{r}
\tilde{G}_{\tau}=\sum_{m m^{\prime} n n^{\prime}} G_{m m^{\prime} n n^{\prime}} c_{m}^{\dagger} c_{m^{\prime}}^{\dagger} c_{n^{\prime}} c_{n} \quad \text { (+ arbitrary const.) } \\
G_{m m^{\prime} n n^{\prime}}=\frac{1}{2} \int_{0}^{1} d x \int_{0}^{1} d x^{\prime} \chi_{m}^{*}(x) \chi_{m^{\prime}}^{*}\left(x^{\prime}\right) \Delta \chi_{n^{\prime}}^{*}\left(x^{\prime}\right) \chi_{n}^{*}(x)
\end{array}
$$

The integrand is easily expanded in terms of plane waves, and so the integral readily expressed through (rapidly converging) multiple sums.

The generator G_{τ}

$$
\begin{gathered}
G_{\tau}=G_{0}+\frac{1}{4 \pi i q} G_{1}+q G_{2} \\
G_{0}=-\frac{1}{4 \pi i L} \sum_{l} \frac{\mathcal{S}_{l}^{2}}{\mathcal{S}_{l}^{0}} c_{l}^{\dagger} c_{l} \\
\mathcal{S}_{l}^{a}=\sum_{n}(2 \pi i[n L+l])^{a} e^{2 \pi i L \tau(n+l / L)^{2}} \\
G_{1}=\left(\frac{q}{L}\right)^{2}\left[\sum_{l} \mathcal{S}_{l}^{2} c_{l}^{\dagger} c_{l}+\sum_{l_{1} \neq l_{2}} \mathcal{S}_{l_{1}}^{1} \mathcal{S}_{l_{2}}^{1} c_{l_{1}}^{\dagger} c_{l_{1}} c_{l_{2}}^{\dagger} c_{l_{2}}\right] \\
G_{2}=\frac{1}{2} \sum_{l_{1} l_{2} l_{3} l_{4}} \frac{\Delta_{2, l_{1} l_{2} l_{3} l_{4}}^{\sqrt{\mathcal{S}_{l_{1}}^{0} \mathcal{S}_{l_{2}}^{0} \mathcal{S}_{l_{3}}^{0} \mathcal{S}_{l_{4}}^{0}} c_{l_{1}}^{\dagger} c_{l_{2}}^{\dagger} c_{l_{4}} c_{l_{3}}}}{\Delta_{2, l_{1} l_{2} l_{3} l_{4}}} \frac{2 \pi}{i} \sum_{n \neq 0}\left(\frac{e^{i \pi \tau n}}{1-e^{2 i \pi \tau n}}\right)^{2} \sum_{n_{1}} e^{i \pi \tau L\left[\left(l_{1}+n\right) / L+n_{1}\right]^{2}}\left(e^{i \pi \tau L\left(l_{1} / L+n_{1}\right)^{2}}\right)^{*} \\
\sum_{n_{4}}\left(e^{\left.i \pi \tau L\left(l_{4}+n\right) / L+n_{4}\right]^{2}}\right)^{*} e^{i \pi \tau L\left(l_{4} / L+n_{4}\right)^{2}}
\end{gathered}
$$

The symmetrized generator $G_{\tau, \text { sym }}$

Turns out $\left[G_{\tau}, T_{x}\right]=0, T_{y} G_{\tau} T_{y}^{\dagger} \neq G_{\tau}$.
We may just symmetrize:

$$
G_{\tau, \mathrm{sym}}=\frac{1}{L} \sum_{n=0}^{L-1} T_{y}^{n} G_{\tau}\left(T_{y}^{\dagger}\right)^{n}
$$

$G_{\tau, \mathrm{sym}}$ acts the same way on the q -fold degenerate Laughlin states as G_{τ} and

$$
\left[G_{\tau, \mathrm{sym}}, T_{x}\right]=0=\left[G_{\tau, \mathrm{sym}}, T_{y}\right]
$$

The L-1 linearly independent 2-body operators

$$
D_{n}=G_{\tau, \mathrm{sym}}-T_{y}^{n} G_{\tau}\left(T_{y}^{\dagger}\right)^{n} \quad n=0 \ldots L-2
$$

all satisfy

$$
D_{n}\left|\psi_{1 / q}^{\ell}\right\rangle=0 \quad \ell=0 \ldots q-1
$$

For $\mathrm{q}=3$, we checked that this condition uniquely characterizes the $\left|\psi_{1 / 3}^{\ell}\right\rangle$ at filling factor $\nu=1 / 3$.

Generating $\left|\psi_{1 / 3}^{\ell}\right\rangle$ from thin torus limit

$$
\frac{d}{d \tau}\left|\psi_{1 / 3}^{\ell}(\tau)\right\rangle=G_{\tau, \text { sym }}\left|\psi_{1 / 3}^{\ell}(\tau)\right\rangle
$$

It turns out that this is well behaved in the $\tau \rightarrow \infty$ limit. In particular, unlike in the cylinder case, $G_{\tau, \text { sym }}$ has off-diagonal matrix elements that can generate the full Laughlin state at τ out of |100100100100.... \rangle.

We thus have

$$
\left|\psi_{1 / 3}^{\ell}(\tau)\right\rangle=T_{\tau^{\prime}} \exp \left\{\int_{\infty}^{\tau} d \tau G_{\tau^{\prime}, \mathrm{sym}}\right\}|100100100 \ldots\rangle
$$

Application: Hall viscosity

The non-dissipative, anti-symmetric part of the viscosity of a quantum Hall state is related to the adiabatic curvature on the space of background metrics. (J. E. Avron, R. Seiler, P.G. Zograf PRL 95; N. Read, E.H. Rezayi, PRB 10).

$$
\begin{aligned}
& |\psi\rangle=\left|\psi\left(g_{\mu \nu}\right)\right\rangle \\
& g_{\mu \nu}=g_{\mu \nu}(\tau):=\Lambda(\tau)^{T} \Lambda(\tau) \\
& \Lambda(\tau)=\left(\begin{array}{cc}
\tau_{y}^{-1 / 2} & \tau_{x} \tau_{y}^{-1 / 2} \\
0 & \tau_{y}^{1 / 2}
\end{array}\right)
\end{aligned}
$$

Application: Hall viscosity

The non-dissipative, anti-symmetric part of the viscosity of a quantum Hall state is related to the adiabatic curvature on the space of background metrics. (J. E. Avron, R. Seiler, P.G. Zograf PRL 95; N. Read, E.H. Rezayi, PRB 10).

$$
\begin{aligned}
& F=-2 \operatorname{Im}\left\langle\partial_{\tau_{x}} \psi\left(g_{\mu \nu}\right) \mid \partial_{\tau_{y}} \psi\left(g_{\mu \nu}\right)\right\rangle \\
& F=-\frac{V \eta^{(A)}}{\tau_{y}^{2}} \quad \eta^{(A)}: \text { "Hall viscosity" } \\
& \eta^{(A)}=\frac{1}{2} \bar{s} \bar{n} \hbar \quad \text { N. Read, PRB } 09
\end{aligned}
$$

Application: Hall viscosity

The non-dissipative, anti-symmetric part of the viscosity of a quantum Hall state is related to the adiabatic curvature on the space of background metrics. (J. E. Avron, R. Seiler, P.G. Zograf PRL 95; N. Read, E.H. Rezayi, PRB 10).

$$
\begin{gathered}
F=-2 \operatorname{Im}\left\langle\partial_{\tau_{x}} \psi\left(g_{\mu \nu}\right) \mid \partial_{\tau_{y}} \psi\left(g_{\mu \nu}\right)\right\rangle \\
F=-\frac{V \eta^{(A)}}{\tau_{y}^{2}} \quad \eta^{(A)}: \text { "Hall viscosity" } \\
\eta^{(A)}=\frac{1}{2} \bar{s} \bar{n} \hbar \quad \text { N. Read, PRB 09 } \\
\bar{s}=\frac{\mathcal{S}}{2} \quad, \quad \mathcal{S}: \text { topological shift, }(\mathcal{S}=3 \text { for } 1 / 3 \text { Laughlin state) }
\end{gathered}
$$

Application: Hall viscosity

$$
\left.\begin{array}{c}
F=-2 \operatorname{Im}\left\langle\partial_{\tau_{x}} \psi\left(g_{\mu \nu}\right) \mid \partial_{\tau_{y}} \psi\left(g_{\mu \nu}\right)\right\rangle=\nabla_{\tau} \times A \\
\psi=\sum_{\left\{n_{k}\right\}} C_{\left\{n_{k}\right\}}\left|\left\{n_{k}\right\}\right\rangle_{g} \\
A=i \sum_{\left\{n_{k}\right\}}(\left|C_{\left\{n_{k}\right\}}\right|^{2} \underbrace{\text { const. contributing } 1 / 2 \text { to } \bar{s}}_{g\left\langle\left\{n_{k}\right\}\right| \nabla_{\tau}\left|\left\{n_{k}\right\}\right\rangle_{g}} \begin{array}{c}
\text { P. Lévay, J. Math. Phys. 95 } \\
\text { N. Read, E.H. Rezayi, PRB 10 }
\end{array}
\end{array} C_{\left\{n_{k}\right\}}^{*} \nabla_{\tau} C_{\left\{n_{k}\right\}}\right),
$$

For the Laughlin state, we can of course relate the $2^{\text {nd }}$ term to the operator G_{τ} itself.

Application: Hall viscosity

$$
\begin{gathered}
F=-2 \operatorname{Im}\left\langle\partial_{\tau_{x}} \psi\left(g_{\mu \nu}\right) \mid \partial_{\tau_{y}} \psi\left(g_{\mu \nu}\right)\right\rangle=\nabla_{\tau} \times A \\
\psi=\sum_{\left\{n_{k}\right\}} C_{\left\{n_{k}\right\}}\left|\left\{n_{k}\right\}\right\rangle_{g} \\
A=i \sum_{\left\{n_{k}\right\}}\left(\left|C_{\left\{n_{k}\right\}}\right|^{2}{ }_{\substack{g \\
\text { const. contributing } 1 / 2 \text { to } \bar{s} \\
\text { P. Levay, J. Math. Phys. 95 } \\
\text { N. Read, E.H. Rezayi, PRB 10 }}}\right.
\end{gathered}
$$

For the Laughlin state, we can of course relate the $2^{\text {nd }}$ term to the operator G_{τ} itself.

$$
\bar{s}=\frac{2 \eta^{(A)}}{\hbar \bar{n}}=-\tau_{y}^{2} F / V=\frac{1}{2}+\frac{2 \tau_{y}^{2}}{N} 2\left(\left\langle\psi_{1 / 3}\right| G_{\tau}^{\dagger} G_{\tau}\left|\psi_{1 / 3}\right\rangle-\left.\left.\right|^{\vee}\left\langle\psi_{1 / 3}\right| G_{\tau}\left|\psi_{1 / 3}\right\rangle\right|^{2}\right)
$$

Application: Hall viscosity

Application: Hall viscosity

Cf. N. Read, E.H. Rezayi, PRB 10

Conclusions

- Changes in the occupation number basis description of the torus Laughlin state with modular parameter τ are generated by a 2-body operator G_{τ}.
-This allows for the following presentation of the torus Laughlin state only in terms of the root pattern and a path-ordered exponential involving 2-body operators:

$$
\left|\psi_{1 / 3}^{\ell}(\tau)\right\rangle=T_{\tau^{\prime}} \exp \left\{\int_{\infty}^{\tau} d \tau G_{\tau^{\prime}}\right\}|100100100 \ldots\rangle_{\ell}
$$

\bullet As an application we calculated the Hall viscosity of the $1 / 3$ Laughlin state.

- A new family of L-1 2-body operators was found that annihilates the torus Laughlin state. This property characterizes the topologically 3 degenerate ground states at $\quad \nu=1 / 3$ uniquely.

Application: Hall viscosity

The non-dissipative, anti-symmetric part of the viscosity of a quantum Hall state is related to the adiabatic curvature on the space of background metrics.
(J. E. Avron, R. Seiler, P.G. Zograf PRL 95).

$$
\begin{gathered}
\left.\eta_{a b c d}^{(A)}=\frac{1}{V} F_{a b, c d} \right\rvert\, g=\mathrm{id} \\
F_{a b, c d}=2 \operatorname{Im}\left\langle\partial_{\lambda_{a b}} \psi(\lambda) \mid \partial_{\lambda_{c d}} \psi(\lambda)\right\rangle
\end{gathered}
$$

