From Majorana to parafermion quantum wires

Kirill Shtengel, UC Riverside & MPIPKS, Dresden

Joint work with:

Jason Alicea, UC Irvine <u>**David Clarke**</u>, UC Riverside \rightarrow UC Irvine

1D quantum Ising chain:

$$H = -J\sum_{j=1}^{L-1} \sigma_{j}^{z} \sigma_{j+1}^{z} - h\sum_{j=1}^{L} \sigma_{j}^{x}$$

Jordan-Wigner transformation:

$$\gamma_{2j-1} = \sigma_j^z \prod_{i < j} \sigma_i^x, \qquad \gamma_{2j} = \sigma_j^y \prod_{i < j} \sigma_i^x$$

 γ 's are *Majorana* operators:

$$\gamma_j^2 = 1, \quad \gamma_j^{\dagger} = \gamma_j, \quad \gamma_j \gamma_k = -\gamma_k \gamma_j$$

1D quantum Ising chain:

$$H = -J \sum_{j=1}^{L-1} \sigma_j^z \sigma_{j+1}^z - h \sum_{j=1}^{L} \sigma_j^x$$

Hamiltonian after Jordan-Wigner transformation:

$$H = -J \sum_{j=1}^{L-1} i\gamma_{2j}\gamma_{2j+1} - h \sum_{j=1}^{L} i\gamma_{2j-1}\gamma_{2j}$$

 γ 's are *Majorana* operators:

$$\gamma_j^2 = 1, \quad \gamma_j^{\dagger} = \gamma_j, \quad \gamma_j \gamma_k = -\gamma_k \gamma_j$$

1D quantum Ising chain:

$$H = -J \sum_{j=1}^{L-1} \sigma_j^z \sigma_{j+1}^z - h \sum_{j=1}^{L} \sigma_j^x$$

Hamiltonian after Jordan-Wigner transformation:

$$H = -J \sum_{j=1}^{L-1} i\gamma_{2j}\gamma_{2j+1} - h \sum_{j=1}^{L} i\gamma_{2j-1}\gamma_{2j}$$

1D quantum Ising chain:

$$H = -J \sum_{j=1}^{L-1} \sigma_j^z \sigma_{j+1}^z - h \sum_{j=1}^{L} \sigma_j^x$$

Hamiltonian after Jordan-Wigner transformation:

$$H = -J \sum_{j=1}^{N-1} i\gamma_{2j}\gamma_{2j+1} - h \sum_{j=1}^{N} i\gamma_{2j-1}\gamma_{2j}$$

Anyons in 1D: Majorana wires

1D spinless p-wave superconductor(Kitaev 2001):

$$H = \mu \sum_{x=1}^{N} c_x^{\dagger} c_x - \sum_{x=1}^{N-1} (t c_x^{\dagger} c_{x+1} + |\Delta| e^{i\phi} c_x c_{x+1} + h.c.)$$

$$egin{aligned} \mu &= 0 \ t &= |\Delta| \ \end{aligned} \quad c_x &= rac{1}{2} e^{-irac{\phi}{2}} (\gamma_{B,x} + i \gamma_{A,x}) \ \end{aligned}$$

Anyons in 1D: Majorana wires

1D spinless p-wave superconductor(Kitaev 2001):

$$H = \mu \sum_{x=1}^{N} c_x^{\dagger} c_x - \sum_{x=1}^{N-1} (t c_x^{\dagger} c_{x+1} + |\Delta| e^{i\phi} c_x c_{x+1} + h.c.)$$

$$egin{aligned} \mu &= 0 \ t &= |\Delta| \ \end{aligned} \quad c_x &= rac{1}{2} e^{-irac{\phi}{2}} (\gamma_{B,x} + i \gamma_{A,x}) \end{aligned}$$

Many pictures: courtesy of J. Alicea

Kane & Mele, 2005; Bernevig, Hughes, Zhang, 2006; Fu & Kane, 2008

Kane & Mele, 2005; Bernevig, Hughes, Zhang, 2006; Fu & Kane, 2008

Kane & Mele, 2005; Bernevig, Hughes, Zhang, 2006; Fu & Kane, 2008

$$H_{\rm edge} = \int dx [-\mu(\psi_R^{\dagger}\psi_R + \psi_L^{\dagger}\psi_L) - i\hbar v(\psi_R^{\dagger}\partial_x\psi_R - \psi_L^{\dagger}\partial_x\psi_L)]$$

1D and effectively 'spinless'! Just need superconductivity...

$$egin{aligned} H_{ ext{edge}} &= \int dx [-\mu(\psi_R^\dagger \psi_R + \psi_L^\dagger \psi_L) - i\hbar v(\psi_R^\dagger \partial_x \psi_R - \psi_L^\dagger \partial_x \psi_L)] \ &+ [\Delta \psi_R \psi_L + h.c.] \end{aligned}$$

"Terminating" the SC wire by a magnetic gap: Majorana zero modes localised at the ends

Realization in 1D wires

$$H = \int dx \psi^{\dagger} \left[-\frac{\partial_x^2}{2m} - \mu - i\hbar v \partial_x \sigma^y \right] \psi$$

(Lutchyn, Sau, Das Sarma 2010; Oreg, Refael, von Oppen 2010)

Realization in 1D wires

$$H = \int dx \psi^{\dagger} \left[-\frac{\partial_x^2}{2m} - \mu - i\hbar v \partial_x \sigma^y - \frac{g\mu_B B}{2} \sigma^z \right] \psi$$

(Lutchyn, Sau, Das Sarma 2010; Oreg, Refael, von Oppen 2010)

Realization in 1D wires

$$\begin{split} H &= \int dx \psi^{\dagger} \left[-\frac{\partial_x^2}{2m} - \mu - i\hbar v \partial_x \sigma^y - \frac{g\mu_B B}{2} \sigma^z \right] \psi \\ &+ (\Delta \psi_{\uparrow} \psi_{\downarrow} + h.c.) \quad \begin{array}{l} \text{Generates a1D 'spinless' SC state} \\ \text{with Majorana fermions!} \end{split}$$

(Lutchyn, Sau, Das Sarma 2010; Oreg, Refael, von Oppen 2010)

First possible experimental realization

Mourik et al., Science 2012 (Kouwenhoven's group, Delft) following proposals by Lutchyn, Sau & Das Sarma, 2010; Oreg, Refael & von Oppen, 2010.

First possible experimental realization

Mourik et al., Science 2012 (Kouwenhoven's group, Delft) following proposals by Lutchyn, Sau & Das Sarma, 2010; Oreg, Refael & von Oppen, 2010.

Back to topological insulator edges

What about fractional TI edges?

We could envision playing the same game with 2D fractional topological insulators (à la Levin & Stern, 2009), but...

What about fractional TI edges?

There are no known fractional topological insulators (yet). But could we 'fake' the same physics elsewhere?

Realization in quantum Hall edges

Counter-propagating edge modes at the boundary between g > 0 and g < 0. The sign of g can be changed by stress.

Realization in quantum Hall edges

Counter-propagating edge modes at the boundary between g > 0 and g < 0. The sign of g can be changed by stress.

Realization in quantum Hall edges

Counter-propagating edge modes at the boundary between g > 0 and g < 0. The sign of g can be changed by stress.

What about fractional quantum Hall edges?

Counter-propagating *fractionalised* edge modes at the boundary between g > 0 and g < 0. The sign of g can be changed by stress.

What about fractional quantum Hall edges?

Counter-propagating *fractionalised* edge modes at the boundary between g > 0 and g < 0. The sign of g can be changed by stress.

1D quantum clock model (Fendley, unpublished):

$$H = -J \sum_{j=1}^{L-1} (\sigma_j^{\dagger} \sigma_{j+1} + H.c.) - h \sum_{j=1}^{L} (\tau_j^{\dagger} + \tau_j)$$

$$\sigma_j^{N} = 1 \quad \sigma_j^{\dagger} = \sigma_j^{N-1} \quad \sigma_j \tau_j = \tau_j \sigma_j e^{2\pi i/N}$$

$$\tau_j^{N} = 1 \quad \tau_j^{\dagger} = \tau_j^{N-1}$$

N=2: quantum Ising chain

$$\sigma \equiv \sigma^z$$
$$\tau \equiv \sigma^x$$

1D quantum clock model (Fendley, unpublished):

$$H = -J\sum_{j=1}^{L-1} (\sigma_j^{\dagger} \sigma_{j+1} + H.c.) - h\sum_{j=1}^{L} (\tau_j^{\dagger} + \tau_j)$$

$$\left[\begin{array}{ccc} \sigma_j^N = 1 & \sigma_j^\dagger = \sigma_j^{N-1} \\ \tau_j^N = 1 & \tau_j^\dagger = \tau_j^{N-1} \end{array} \right. \sigma_j \tau_j = \tau_j \sigma_j e^{2\pi i/N}$$

 $N \neq 2$: quantum clock

$$\sigma|q\rangle = e^{2\pi i q/N}|q\rangle$$

 $\tau^{\dagger}|q\rangle = |q+1\rangle$

1D quantum clock model (Fendley, unpublished):

$$H = -J\sum_{j=1}^{L-1} (\sigma_j^{\dagger}\sigma_{j+1} + H.c.) - h\sum_{j=1}^{L} (\tau_j^{\dagger} + \tau_j)$$

Jordan-Wigner transformation:

$$\alpha_{2j-1} = \sigma_j \prod_{i < j} \tau_i, \qquad \alpha_{2j} = -e^{i\pi/N} \tau_j \sigma_j \prod_{i < j} \tau_i$$

 α 's are *parafermionic* operators:

$$\alpha_j^N = 1, \quad \alpha_j^{\dagger} = \alpha_j^{N-1}, \quad \alpha_j \alpha_k = \alpha_k \alpha_j e^{i \frac{2\pi}{N} \operatorname{sgn}(k-j)}$$

N=2: these are Majorana fermions $\left(\alpha_j^2 = 1, \ \alpha_j^{\dagger} = \alpha_j\right)$

1D quantum clock model (Fendley, unpublished):

$$H = -J\sum_{j=1}^{L-1} (\sigma_j^{\dagger} \sigma_{j+1} + H.c.) - h\sum_{j=1}^{L} (\tau_j^{\dagger} + \tau_j)$$

Hamiltonian after Jordan-Wigner transformation:

$$H = J \sum_{j=1}^{L-1} \left(e^{-i\frac{\pi}{N}} \alpha_{2j}^{\dagger} \alpha_{2j+1} + H.c. \right) + h \sum_{j=1}^{L} \left(e^{i\frac{\pi}{N}} \alpha_{2j-1}^{\dagger} \alpha_{2j} + H.c. \right)$$
$$\alpha_j^N = 1, \quad \alpha_j^{\dagger} = \alpha_j^{N-1}, \quad \alpha_j \alpha_k = \alpha_k \alpha_j e^{i\frac{2\pi}{N} \operatorname{sgn}(k-j)}$$

N=2: these are Majorana fermions $\left(\alpha_{j}^{2}=1, \alpha_{j}^{\dagger}=\alpha_{j}\right)$

1D quantum clock model (Fendley, unpublished):

$$H = -J\sum_{j=1}^{L-1} (\sigma_j^{\dagger} \sigma_{j+1} + H.c.) - h\sum_{j=1}^{L} (\tau_j^{\dagger} + \tau_j)$$

Hamiltonian after Jordan-Wigner transformation:

1D quantum clock model (Fendley, unpublished):

$$H = -J\sum_{j=1}^{L-1} (\sigma_j^{\dagger} \sigma_{j+1} + H.c.) - h\sum_{j=1}^{L} (\tau_j^{\dagger} + \tau_j)$$

Hamiltonian after Jordan-Wigner transformation:

Parafermions vs Majoranas

Upshot:

Majorana Fermions:

$$\gamma^2 = 1$$

$$\gamma_y \gamma_x = -\gamma_x \gamma_y$$

Parafermions:

$$\alpha^N = 1$$

$$\alpha_y \alpha_x = \alpha_x \alpha_y e^{\frac{2\pi i}{N} \operatorname{sgn}(x-y)}$$

Majoranas <-> 1D quantum Ising model Parafermions <-> 1D quantum Clock/Potts model Paul Fendley, unpublished

Parafermions from quantum Hall edges

A Laughlin edge state at $\nu = 1/m$ is a natural starting point since $[\phi(x), \phi(y)] = i \frac{\pi}{m} \operatorname{sgn}(x - y)$

and hence

$$e^{i\phi(x)}e^{i\phi(y)} = e^{i\phi(y)}e^{i\phi(x)}e^{i\frac{\pi}{m}\operatorname{sgn}(y-x)}$$

for chiral edge excitations of charge $e\!/\!m.$ Now, we have two counter-propagating modes, $\phi_{R/L}$, which obey

$$[\phi_{R/L}(x), \phi_{R/L}(y)] = \pm i \frac{\pi}{m} \operatorname{sgn}(x - y)$$

The electron fields are $\psi_{R/L} \sim e^{i m \phi_{R/L}}$

Parafermions from quantum Hall edges

Change of variables: $\phi_{R/L} = \varphi \pm \theta$

Free Hamiltonian:
$$\mathcal{H}_0 = \frac{mv}{2\pi} \int dx \left[(\partial_x \varphi)^2 + (\partial_x \theta)^2 \right]$$

Just need to show that a zero mode is bound at a domain wall between

$$\mathcal{H}_{\rm s}'(x) = \Delta(x)\psi_R\psi_L + H.c. \sim -\Delta(x)\cos(2m\varphi)$$
 and

$$\mathcal{H}'_{\rm m}(x) = \mathcal{M}(x)\psi_R^{\dagger}\psi_L + H.c. \sim -\mathcal{M}(x)\cos(2m\theta)$$

where $\psi_{R/L} \sim e^{i m \phi_{R/L}}$

Parafermionic zero mode

Assuming strong tunnelling and pairing,

- $\varphi = \frac{\pi n_{\varphi}}{m}$ under the superconductors
- $\theta = \frac{\pi n_{\theta}}{m}$ under the SO coupled insulators

$$\alpha_{j} = e^{i\frac{\pi}{m}(\hat{n}_{\varphi}^{(j)} + \hat{n}_{\theta})} \int_{x_{j}}^{x_{j}+\ell} dx \left[e^{-i\frac{\pi}{m}(\hat{n}_{\varphi}^{(j)} + \hat{n}_{\theta})} e^{i(\varphi + \theta)} + e^{-i\frac{\pi}{m}(\hat{n}_{\varphi}^{(j)} - \hat{n}_{\theta})} e^{i(\varphi - \theta)} + H.c. \right]$$

Majorana zero mode

Parafermionic zero mode

Braiding statistics in 1D?

= 1 Exchange not well defined...

...because particles inevitably "collide"

Solution: cheat (use 2D networks with Y-junctions)

Braiding statistics in 1D?

d = 1 Exchange not well defined...

...because particles inevitably "collide"

Solution: cheat (use 2D networks with Y-junctions)

Apparent problem:

We cannot have Y-junctions: our modes live on the domain walls..

We can still exchange them:

$$H_{a \to b} = (t_J \alpha_2^{\dagger} \alpha_1' + H.c.) + (t \alpha_1'^{\dagger} \alpha_2' + H.c.)$$

= $-|t_J| \cos \left[\frac{\pi}{m} \left(\hat{n}_{\varphi}^{(2)} + \hat{n}_{\theta}^{(3)} - \hat{n}_{\varphi}^{(1)} - \hat{n}_{\theta}^{(2)} \right) + \beta \right]$
 $-|t| \cos \left[\frac{\pi}{m} \left(\hat{n}_{\theta}^{(2)} - \hat{n}_{\theta}^{(3)} \right) \right]$

Integral of motion:

$$\chi \equiv e^{i\frac{\pi}{2m}}\alpha_2 \alpha_2^{\prime\dagger} \alpha_1^{\prime} = e^{i\frac{\pi}{m}(\hat{n}_{\varphi}^{(1)} + \hat{n}_{\theta}^{(3)})}$$

Energy-minimizing condition:

$$\hat{n}_{\varphi}^{(2)} + \hat{n}_{\theta}^{(3)} - \hat{n}_{\varphi}^{(1)} - \hat{n}_{\theta}^{(2)} = k(\beta) \in \mathbb{Z}$$

Parafermion ZM Braiding

Upshot:

$$\alpha_1 \to e^{-i\frac{\pi}{m}k}\alpha_2$$

$$\alpha_2 \to e^{i\frac{\pi}{m}(1-k)}\alpha_1^{\dagger}\alpha_2^2$$

m=1 (Majorana zero modes):

$$\gamma_1 \rightarrow \gamma_2$$

 $\gamma_2 \rightarrow -\gamma_1$

Parafermion ZM Braiding

Important observation:

If quasiparticles of both chiralities are allowed to tunnel, the braiding is not universal \Rightarrow Potential problem for fractional TI!

Topological Quantum Computation (Kitaev, Preskill, Freedman, Larsen, Wang)

Things we need:

- Multidimensional Hilbert space where we can encode information → Qubits
- Ability to initialise and read-out a qubit
- Unitary operations → Quantum gates

Topological Quantum Computation

(Hormozi, Bonesteel, et. al.)

Or, perhaps use measurements to generate brading! (Bonderson, Freedman, Nayak, 2009)

$\neg \rightarrow \models \leftrightarrow$ Interferometer

Bonderson, KS & Slingerland, PRL 2006, PRL 2007, Ann. Phys. 2008

Topological Quantum Computation

(Hormozi, Bonesteel, et. al.)

Or, perhaps use measurements to generate brading! (Bonderson, Freedman, Nayak, 2009)

- Majorana zero modes are not universal!
 - No entangling gates with braiding alone
 - No phase gate

Topological Quantum Computation

(Hormozi, Bonesteel, et. al.)

Or, perhaps use measurements to generate brading! (Bonderson, Freedman, Nayak, 2009)

Parafermionic zero modes are still not universal...

Can do entangling gates!

No phase gate?

Conclusions

- Parafermionic zero modes can be localised in systems with counter-propagating fractionalised edge modes (FQHE, or fractional topological insulators)
 - Fractional Josephson effect with periodicity $4m\pi$
 - Zero-bias anomaly similar to the Majorana case, but with fractionalised charge tunnelling
- Potential utility for quantum computing?

- D. Clarke, J. Alicea & KS, <u>arXiv:1204.5479</u>
- Parallel work:
 - N. Lindner, E. Berg,
 G. Refael & A. Stern,
 <u>arXiv:1204.5733</u>
 - M. Cheng, <u>arXiv:1204.6084</u>

