From Majorana to parafermion quantum wires

Kirill Shtengel, UC Riverside \& MPIPKS, Dresden

Joint work with: Jason Alicea, UC Irvine David Clarke, UC Riverside \rightarrow UC Irvine

UCRIVERSIDE

Ising model (of all things)

1D quantum Ising chain:

$$
H=-J \sum_{j=1}^{L-1} \sigma_{j}^{z} \sigma_{j+1}^{z}-h \sum_{j=1}^{L} \sigma_{j}^{x}
$$

Jordan-Wigner transformation:

$$
\gamma_{2 j-1}=\sigma_{j}^{z} \prod_{i<j} \sigma_{i}^{x}, \quad \gamma_{2 j}=\sigma_{j}^{y} \prod_{i<j} \sigma_{i}^{x}
$$

γ^{\prime} s are Majorana operators:

$$
\gamma_{j}^{2}=1, \quad \gamma_{j}^{\dagger}=\gamma_{j}, \quad \gamma_{j} \gamma_{k}=-\gamma_{k} \gamma_{j}
$$

Ising model (of all things)

1D quantum Ising chain:

$$
H=-J \sum_{j=1}^{L-1} \sigma_{j}^{z} \sigma_{j+1}^{z}-h \sum_{j=1}^{L} \sigma_{j}^{x}
$$

Hamiltonian after Jordan-Wigner transformation:

$$
H=-J \sum_{j=1}^{L-1} i \gamma_{2 j} \gamma_{2 j+1}-h \sum_{j=1}^{L} i \gamma_{2 j-1} \gamma_{2 j}
$$

γ 's are Majorana operators:

$$
\gamma_{j}^{2}=1, \quad \gamma_{j}^{\dagger}=\gamma_{j}, \quad \gamma_{j} \gamma_{k}=-\gamma_{k} \gamma_{j}
$$

Ising model (of all things)

1D quantum Ising chain:

$$
H=-J \sum_{j=1}^{L-1} \sigma_{j}^{z} \sigma_{j+1}^{z}-h \sum_{j=1}^{L} \sigma_{j}^{x}
$$

Hamiltonian after Jordan-Wigner transformation:

$$
H=-J \sum_{j=1}^{L-1} i \gamma_{2 j} \gamma_{2 j+1}-h \sum_{j=1}^{L} i \gamma_{2 j-1} \gamma_{2 j}
$$

Ising model (of all things)

1D quantum Ising chain:

$$
H=-J \sum_{j=1}^{L-1} \sigma_{j}^{z} \sigma_{j+1}^{z}-h \sum_{j=1}^{L} \sigma_{j}^{x}
$$

Hamiltonian after Jordan-Wigner transformation:

$$
H=-J \sum_{j=1}^{N-1} i \gamma_{2 j} \gamma_{2 j+1}-h \sum_{j=1}^{N} i \gamma_{2 j-1} \gamma_{2 j}
$$

Anyons in 1D: Majorana wires

1D spinless p-wave superconductor(Kitaev 2001):

$$
\begin{gathered}
H=\mu \sum_{x=1}^{N} c_{x}^{\dagger} c_{x}-\sum_{x=1}^{N-1}\left(t c_{x}^{\dagger} c_{x+1}+|\Delta| e^{i \phi} c_{x} c_{x+1}+h . c .\right) \\
\\
\begin{array}{l}
\mu=0 \\
t=|\Delta|
\end{array} \quad c_{x}=\frac{1}{2} e^{-i \frac{\phi}{2}}\left(\gamma_{B, x}+i \gamma_{A, x}\right)
\end{gathered}
$$

Anyons in 1D: Majorana wires

1D spinless p-wave superconductor(Kitaev 2001):

$$
\begin{array}{r}
H=\mu \sum_{x=1}^{N} c_{x}^{\dagger} c_{x}-\sum_{x=1}^{N-1}\left(t c_{x}^{\dagger} c_{x+1}+|\Delta| e^{i \phi} c_{x} c_{x+1}+h . c .\right) \\
\begin{array}{l}
\mu=0 \\
t=|\Delta|
\end{array} \quad c_{x}=\frac{1}{2} e^{-i \frac{\phi}{2}}\left(\gamma_{B, x}+i \gamma_{A, x}\right) \\
\quad H=-i t \sum_{x=1}^{N-1} \gamma_{B, x} \gamma_{A, x+1} \quad \begin{array}{r}
\text { Unpaired } \\
\text { Majorana } \\
\text { fermions at } \\
\text { the ends! }
\end{array}
\end{array}
$$

Realization in topological insulator edges

Kane \& Mele, 2005; Bernevig, Hughes, Zhang, 2006; Fu \& Kane, 2008

Realization in topological insulator edges

Kane \& Mele, 2005; Bernevig, Hughes, Zhang, 2006; Fu \& Kane, 2008

Realization in topological insulator edges

Kane \& Mele, 2005; Bernevig, Hughes, Zhang, 2006; Fu \& Kane, 2008

Realization in topological insulator edges

$H_{\text {edge }}=\int d x\left[-\mu\left(\psi_{R}^{\dagger} \psi_{R}+\psi_{L}^{\dagger} \psi_{L}\right)-i \hbar v\left(\psi_{R}^{\dagger} \partial_{x} \psi_{R}-\psi_{L}^{\dagger} \partial_{x} \psi_{L}\right)\right]$
1D and effectively 'spinless'! Just need superconductivity...

Fu \& Kane, 2008

Realization in topological insulator edges

s-wave SC

HgTe
'spin

$$
\begin{aligned}
H_{\text {edge }}=\int & d x\left[-\mu\left(\psi_{R}^{\dagger} \psi_{R}+\psi_{L}^{\dagger} \psi_{L}\right)-i \hbar v\left(\psi_{R}^{\dagger} \partial_{x} \psi_{R}-\psi_{L}^{\dagger} \partial_{x} \psi_{L}\right)\right] \\
& +\left[\Delta \psi_{R} \psi_{L}+h . c .\right]
\end{aligned}
$$

Fu \& Kane, 2008

Realization in topological insulator edges

"Terminating" the SC wire by a magnetic gap:
Majorana zero
modes localised at the ends

Fu \& Kane, 2008

Realization in 1D wires

1D spin-orbit-coupled wire (e.g. InAs)

$$
H=\int d x \psi^{\dagger}\left[-\frac{\partial_{x}^{2}}{2 m}-\mu-i \hbar v \partial_{x} \sigma^{y}\right] \psi
$$

(Lutchyn, Sau, Das Sarma 2010; Oreg, Refael, von Oppen 2010)

Realization in 1D wires

1D spin-orbit-coupled wire (e.g. InAs)

$$
H=\int d x \psi^{\dagger}\left[-\frac{\partial_{x}^{2}}{2 m}-\mu-i \hbar v \partial_{x} \sigma^{y}-\frac{g \mu_{B} B}{2} \sigma^{z}\right] \psi
$$

(Lutchyn, Sau, Das Sarma 2010; Oreg, Refael, von Oppen 2010)

Realization in 1D wires

1D spin-orbit-coupled
wire $(\mathrm{e} . \mathrm{g} . \ln A s)$ \mathbb{B}

$$
H=\int d x \psi^{\dagger}\left[-\frac{\partial_{x}^{2}}{2 m}-\mu-i \hbar v \partial_{x} \sigma^{y}-\frac{g \mu_{B} B}{2} \sigma^{z}\right] \psi
$$

$$
+\left(\Delta \psi_{\uparrow} \psi_{\downarrow}+h . c .\right) \quad \text { Generates a1D 'spinless' SC state }
$$ with Majorana fermions!

(Lutchyn, Sau, Das Sarma 2010; Oreg, Refael, von Oppen 2010)

First possible experimental realization

Mourik et al., Science 2012 (Kouwenhoven's group, Delft) following proposals by Lutchyn, Sau \& Das Sarma, 2010;
Oreg, Refael \& von Oppen, 2010.

First possible experimental realization

Mourik et al., Science 2012 (Kouwenhoven's group, Delft) following proposals by
Lutchyn, Sau \& Das Sarma, 2010;
Oreg, Refael \& von Oppen, 2010.

Back to topological insulator edges

Fu \& Kane, 2008

What about fractional TI edges?

We could envision playing the same game with 2D fractional topological insulators (à la Levin \& Stern, 2009), but...

What about fractional TI edges?

There are no known fractional topological insulators (yet).
But could we 'fake' the same physics elsewhere?

Realization in quantum Hall edges

Counter-propagating edge modes at the boundary between $g>0$ and $g<0$.
The sign of g can be changed by stress.

Realization in quantum Hall edges

Counter-propagating edge modes at the boundary between $g>0$ and $g<0$.
The sign of g can be changed by stress.

Realization in quantum Hall edges

Counter-propagating edge modes at the boundary between $g>0$ and $g<0$.
The sign of g can be changed by stress.

What about fractional quantum Hall edges?

Counter-propagating fractionalised edge modes at the boundary between $g>0$ and $g<0$.
The sign of g can be changed by stress.

What about fractional quantum Hall edges?

Counter-propagating fractionalised edge modes at the boundary between $g>0$ and $g<0$.
The sign of g can be changed by stress.

Taking a cue from Stat Mech

1D quantum clock model (Fendley, unpublished):

$$
H=-J \sum_{j=1}^{L-1}\left(\sigma_{j}^{\dagger} \sigma_{j+1}+H . c .\right)-h \sum_{j=1}^{L}\left(\tau_{j}^{\dagger}+\tau_{j}\right)
$$

$$
\begin{array}{ll}
\sigma_{j}^{N}=1 & \sigma_{j}^{\dagger}=\sigma_{j}^{N-1} \\
\tau_{j}^{N}=1 & \tau_{j}^{\dagger}=\tau_{j}^{N-1}
\end{array} \quad \sigma_{j} \tau_{j}=\tau_{j} \sigma_{j} e^{2 \pi i / N}
$$

$N=2$:

$$
\sigma \equiv \sigma^{z}
$$

quantum Ising chain

$$
\tau \equiv \sigma^{x}
$$

Taking a cue from Stat Mech

1D quantum clock model (Fendley, unpublished):

$$
\begin{aligned}
& H=-J \sum_{j=1}^{L-1}\left(\sigma_{j}^{\dagger} \sigma_{j+1}+H . c .\right)-h \sum_{j=1}^{L}\left(\tau_{j}^{\dagger}+\tau_{j}\right) \\
& \sigma_{j}^{N}=1 \quad \sigma_{j}^{\dagger}=\sigma_{j}^{N-1} \\
& \tau_{j}^{N}=1 \quad \tau_{j}^{\dagger}=\tau_{j}^{N-1} \quad \sigma_{j} \tau_{j}=\tau_{j} \sigma_{j} e^{2 \pi i / N}
\end{aligned}
$$

$N \neq 2$:
quantum clock

$$
\begin{aligned}
& \sigma|q\rangle=e^{2 \pi i q / N}|q\rangle \\
& \tau^{\dagger}|q\rangle=|q+1\rangle
\end{aligned}
$$

Taking a cue from Stat Mech

1D quantum clock model (Fendley, unpublished):

$$
H=-J \sum_{j=1}^{L-1}\left(\sigma_{j}^{\dagger} \sigma_{j+1}+H . c .\right)-h \sum_{j=1}^{L}\left(\tau_{j}^{\dagger}+\tau_{j}\right)
$$

Jordan-Wigner transformation:

$$
\alpha_{2 j-1}=\sigma_{j} \prod_{i<j} \tau_{i}, \quad \alpha_{2 j}=-e^{i \pi / N} \tau_{j} \sigma_{j} \prod_{i<j} \tau_{i}
$$

α 's are parafermionic operators:
$\alpha_{j}^{N}=1, \quad \alpha_{j}^{\dagger}=\alpha_{j}^{N-1}, \quad \alpha_{j} \alpha_{k}=\alpha_{k} \alpha_{j} e^{i \frac{2 \pi}{N} \operatorname{sgn}(k-j)}$
$N=2:$ these are Majorana fermions $\left(\alpha_{j}^{2}=1, \quad \alpha_{j}^{\dagger}=\alpha_{j}\right)$

Taking a cue from Stat Mech

1D quantum clock model (Fendley, unpublished):

$$
H=-J \sum_{j=1}^{L-1}\left(\sigma_{j}^{\dagger} \sigma_{j+1}+H . c .\right)-h \sum_{j=1}^{L}\left(\tau_{j}^{\dagger}+\tau_{j}\right)
$$

Hamiltonian after Jordan-Wigner transformation:

$$
\begin{aligned}
& H=J \sum_{j=1}^{L-1}\left(e^{-i \frac{\pi}{N}} \alpha_{2 j}^{\dagger} \alpha_{2 j+1}+H . c .\right) \\
& +h \sum_{j=1}^{L}\left(e^{i \frac{\pi}{N}} \alpha_{2 j-1}^{\dagger} \alpha_{2 j}+H . c .\right) \\
& \alpha_{j}^{N}=1, \quad \alpha_{j}^{\dagger}=\alpha_{j}^{N-1}, \quad \alpha_{j} \alpha_{k}=\alpha_{k} \alpha_{j} e^{i \frac{2 \pi}{N} \operatorname{sgn}(k-j)} \\
& N=2: \text { these are Majorana fermions }\left(\alpha_{j}^{2}=1, \quad \alpha_{j}^{\dagger}=\alpha_{j}\right)
\end{aligned}
$$

Taking a cue from Stat Mech

1D quantum clock model (Fendley, unpublished):

$$
H=-J \sum_{j=1}^{L-1}\left(\sigma_{j}^{\dagger} \sigma_{j+1}+H . c .\right)-h \sum_{j=1}^{L}\left(\tau_{j}^{\dagger}+\tau_{j}\right)
$$

Hamiltonian after Jordan-Wigner transformation:

$$
\begin{aligned}
& H=J \sum_{j=1}^{L-1}\left(e^{-i \frac{\pi}{N}} \alpha_{2 j}^{\dagger} \alpha_{2 j+1}+H . c .\right) \\
&+h \sum_{j=1}^{L}\left(e^{i \frac{\pi}{N}} \alpha_{2 j-1}^{\dagger} \alpha_{2 j}+H . c .\right)
\end{aligned}
$$

Taking a cue from Stat Mech

1D quantum clock model (Fendley, unpublished):

$$
H=-J \sum_{j=1}^{L-1}\left(\sigma_{j}^{\dagger} \sigma_{j+1}+H . c .\right)-h \sum_{j=1}^{L}\left(\tau_{j}^{\dagger}+\tau_{j}\right)
$$

Hamiltonian after Jordan-Wigner transformation:

$$
\left.\begin{array}{rl}
H=J \sum_{j=1}^{L-1}\left(e^{-i \frac{\pi}{N}} \alpha_{2 j}^{\dagger} \alpha_{2 j+1}+H . c .\right.
\end{array}\right)
$$

Parafermions vs Majoranas

Upshot:

Majorana Fermions: $\quad \gamma^{2}=1$

$$
\gamma_{y} \gamma_{x}=-\gamma_{x} \gamma_{y}
$$

Parafermions:

$$
\begin{aligned}
& \alpha^{N}=1 \\
& \alpha_{y} \alpha_{x}=\alpha_{x} \alpha_{y} e^{\frac{2 \pi i}{N} \operatorname{sgn}(x-y)}
\end{aligned}
$$

Majoranas $\ll 1$ quantum Ising model
Parafermions \ll 1D quantum Clock/Potts model
Paul Fendley, unpublished

Parafermions from quantum Hall edges

A Laughlin edge state at $\nu=1 / m$ is a natural starting point since

$$
[\phi(x), \phi(y)]=i \frac{\pi}{m} \operatorname{sgn}(x-y)
$$

and hence

$$
e^{i \phi(x)} e^{i \phi(y)}=e^{i \phi(y)} e^{i \phi(x)} e^{i \frac{\pi}{m} \operatorname{sgn}(y-x)}
$$

for chiral edge excitations of charge e / m.
Now, we have two counter-propagating modes, $\phi_{R / L}$, which obey

$$
\left[\phi_{R / L}(x), \phi_{R / L}(y)\right]= \pm i \frac{\pi}{m} \operatorname{sgn}(x-y)
$$

The electron fields are

$$
\psi_{R / L} \sim e^{i m \phi_{R / L}}
$$

Parafermions from quantum Hall edges

Change of variables: $\phi_{R / L}=\varphi \pm \theta$
Free Hamiltonian: $\quad \mathcal{H}_{0}=\frac{m v}{2 \pi} \int d x\left[\left(\partial_{x} \varphi\right)^{2}+\left(\partial_{x} \theta\right)^{2}\right]$
Just need to show that a zero mode is bound at a domain wall between
$\mathcal{H}_{\mathrm{s}}^{\prime}(x)=\Delta(x) \psi_{R} \psi_{L}+H . c . \sim-\Delta(x) \cos (2 m \varphi)$ and
$\mathcal{H}_{\mathrm{m}}^{\prime}(x)=\mathcal{M}(x) \psi_{R}^{\dagger} \psi_{L}+$ H.c. $\sim-\mathcal{M}(x) \cos (2 m \theta)$
where $\quad \psi_{R / L} \sim e^{i m \phi_{R / L}}$

Parafermionic zero mode

Assuming strong tunnelling and pairing,

$$
\begin{aligned}
& \varphi=\frac{\pi n_{\varphi}}{m} \text { under the superconductors } \\
& \theta=\frac{\pi n_{\theta}}{m} \quad \begin{array}{l}
\text { under the so coupled insulators } \\
x_{1} x_{1}+\ell \\
\varphi_{1} \\
\alpha_{j}=e^{i \frac{\pi}{m}\left(\hat{n}_{\varphi}^{(j)}+\hat{n}_{\theta}\right)} \int_{x_{j}}^{x_{j}+\ell} d x\left[e^{-i \frac{\pi}{m}\left(\hat{n}_{\varphi}^{(j)}+\hat{n}_{\theta}\right)} e^{i(\varphi+\theta)}\right. \\
\left.+e^{-i \frac{\pi}{m}\left(\hat{n}_{\varphi}^{(j)}-\hat{n}_{\theta}\right)} e^{i(\varphi-\theta)}+\text { H.c. }\right]
\end{array}
\end{aligned}
$$

Majorana zero mode

$$
\nu=1
$$

$$
g>0 \uparrow
$$

$$
\nu=1
$$

$$
g<0 \downarrow
$$

Parafermionic zero mode

$$
\nu=1 / m \quad g>0 \uparrow
$$

$\nu=1 / m$

$$
g<0 \downarrow
$$

Braiding statistics in 1D?

$d=1$

Exchange not well defined...
...because particles
inevitably "collide"

Solution: cheat (use 2D networks with Y-junctions)

Braiding statistics in 1D?

d $=1$

Exchange not well defined...
...because particles
inevitably "collide"

Solution: cheat (use 2D networks with Y-junctions)

Exchanging end modes in our case

Apparent problem:

\rightarrow We cannot have Y -junctions: our modes live on the domain walls..

- We can still exchange them:

$$
\nu=1 / m \quad g>0
$$

Exchanging end modes in our case

Exchanging end modes in our case

Exchanging end modes in our case

$$
\begin{aligned}
& \hat{n}_{\theta}^{(1)} \hat{n}_{\varphi}^{(1)} \alpha_{1} \\
& (a) \hat{n}_{\theta}^{(2)} \\
& H_{a \rightarrow b}=\left(t_{J} \alpha_{2}^{\dagger} \alpha_{1}^{\prime}+H . c .\right)+\left(t \alpha_{1}^{\prime \dagger} \alpha_{2}^{\prime}+H . c .\right) \\
& =-\left|t_{J}\right| \cos \left[\frac{\pi}{m}\left(\hat{n}_{\varphi}^{(2)}+\hat{n}_{\theta}^{(3)}-\hat{n}_{\varphi}^{(1)}-\hat{n}_{\theta}^{(2)}\right)+\beta\right] \\
& -|t| \cos \left[\frac{\hat{n}_{\theta}^{(2)}}{m}\left(\hat{n}_{\theta}^{(2)}-\hat{n}_{\theta}^{(3)}(3)\right]\right.
\end{aligned}
$$

Exchanging end modes in our case

Integral of motion:

$$
\chi \equiv e^{i \frac{\pi}{2 m}} \alpha_{2} \alpha_{2}^{\prime \dagger} \alpha_{1}^{\prime}=e^{i \frac{\pi}{m}\left(\hat{n}_{\varphi}^{(1)}+\hat{n}_{\theta}^{(3)}\right)}
$$

Energy-minimizing condition:

$$
\hat{n}_{\varphi}^{(2)}+\hat{n}_{\theta}^{(3)}-\hat{n}_{\varphi}^{(1)}-\hat{n}_{\theta}^{(2)}=k(\beta) \in \mathbb{Z}
$$

Parafermion ZM Braiding

Upshot:

$$
\begin{aligned}
& \alpha_{1} \rightarrow e^{-i \frac{\pi}{m} k} \alpha_{2} \\
& \alpha_{2} \rightarrow e^{i \frac{\pi}{m}(1-k)} \alpha_{1}^{\dagger} \alpha_{2}^{2}
\end{aligned}
$$

$m=1 \quad$ (Majorana zero modes):

$$
\begin{aligned}
& \gamma_{1} \rightarrow \gamma_{2} \\
& \gamma_{2} \rightarrow-\gamma_{1}
\end{aligned}
$$

Parafermion ZM Braiding

Important observation:

- If quasiparticles of both chiralities are allowed to tunnel, the braiding is not universal \Rightarrow Potential problem for fractional TI!

$$
\nu=1 / m \quad g>0
$$

Topological Quantum Computation
 (Kitaev, Preskill, Freedman, Larsen, Wang)

Things we need:

- Multidimensional Hilbert space where we can encode information \rightarrow Qubits
- Ability to initialise and read-out a qubit
- Unitary operations \rightarrow Quantum gates

Topological Quantum Computation

(Hormozi, Bonesteel, et. al.)
Or, perhaps use measurements to generate brading! (Bonderson, Freedman, Nayak, 2009)

Bonderson, KS \& Slingerland, PRL 2006, PRL 2007, Ann. Phys. 2008

Topological Quantum Computation

(Hormozi, Bonesteel, et. al.)
Or, perhaps use measurements to generate brading! (Bonderson, Freedman, Nayak, 2009)

- Majorana zero modes are not universal!
- No entangling gates with braiding alone
- No phase gate

Topological Quantum Computation

(Hormozi, Bonesteel, et. al.)
Or, perhaps use measurements to generate brading! (Bonderson, Freedman, Nayak, 2009)

- Parafermionic zero modes are still not universal...
- Can do entangling gates!
- No phase gate?

Conclusions

- Parafermionic zero modes can be localised in systems with counter-propagating fractionalised edge modes (FQHE, or fractional topological insulators)
- Fractional Josephson effect with periodicity $4 m \pi$
- Zero-bias anomaly - similar to the Majorana case, but with fractionalised charge tunnelling
- Potential utility for quantum computing?

- D. Clarke, J. Alicea \& KS, arXiv:1204.5479
- Parallel work:
*N. Lindner, E. Berg,
G. Refael \& A. Stern, arXiv:1204.5733
*M. Cheng, arXiv:1204.6084

