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1D spinless p-wave superconductor(Kitaev 2001):

Unpaired 
Majorana 

fermions at 
the ends!

Many pictures: courtesy of J. Alicea

Anyons in 1D: Majorana wiresAnyons in 1D: Majorana wires
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HgTe

1D and effectively ‘spinless’!  Just need superconductivity...
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HgTe

s-wave SC

FM insulator

“Terminating” the 
SC wire by a 
magnetic gap: 
Majorana zero 
modes localised at 
the ends 

Fu & Kane, 2008

Realization in topological insulator edges Realization in topological insulator edges 



(Lutchyn, Sau, Das Sarma 2010; Oreg, Refael, von Oppen 2010)

1D spin-orbit-coupled 
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(Lutchyn, Sau, Das Sarma 2010; Oreg, Refael, von Oppen 2010)

1D spin-orbit-coupled 
wire (e.g. InAs)

Realization in 1D wiresRealization in 1D wires

s-wave SC

Generates a1D ‘spinless’  SC state 
with Majorana fermions!



Mourik et al., Science 2012
(Kouwenhoven's group, Delft)
following proposals by
Lutchyn, Sau & Das Sarma, 
2010;
Oreg, Refael & von Oppen, 
2010.

First possible experimental realization First possible experimental realization 
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2D TI 
(HgTe)

s-wave SC

FM insulator

Back to topological insulator edges Back to topological insulator edges 

Fu & Kane, 2008



2D FTI?

s-wave SC

FM insulator

We could envision playing the same game with 
2D fractional topological insulators 
(à la Levin & Stern, 2009), but...

What about fractional TI edges? What about fractional TI edges? 



2D FTI?

s-wave SC

FM insulator

There are no known fractional topological 
insulators (yet).
But could we 'fake' the same physics elsewhere?

What about fractional TI edges? What about fractional TI edges? 



Realization in quantum Hall edges Realization in quantum Hall edges 

Counter-propagating 
edge modes at the 
boundary between
g > 0 and g < 0.
The sign of g can be 
changed by stress.
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Counter-propagating 
fractionalised edge 
modes at the 
boundary between
g > 0 and g < 0.
The sign of g can be 
changed by stress.
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1D quantum clock model (Fendley, unpublished):
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quantum Ising chain

Taking a cue from Stat MechTaking a cue from Stat Mech
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N=2: these are Majorana fermions 
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1D quantum clock model (Fendley, unpublished):

Taking a cue from Stat MechTaking a cue from Stat Mech

Hamiltonian after Jordan—Wigner transformation:



Majorana Fermions:

Parafermions:

Parafermions        1D quantum Clock/Potts model
Majoranas        1D quantum Ising model

Paul Fendley, unpublished

Parafermions vs MajoranasParafermions vs Majoranas

Upshot:



A Laughlin edge state at                 is a natural starting point 
since  

Parafermions from quantum Hall edges Parafermions from quantum Hall edges 

for chiral edge excitations of charge e/m. 
Now, we have two counter-propagating modes,          , 
which obey

The electron fields are  

and hence 



Change of variables:   

Parafermions from quantum Hall edges Parafermions from quantum Hall edges 

Just need to show that a zero mode is bound at a domain 
wall between

and

where 

Free Hamiltonian:   



Assuming strong tunnelling and pairing,  

under the superconductors

under the SO coupled insulators

m

nϕπ
ϕ =

m

nθπθ =

2ϕ1ϕ θ

Parafermionic zero modeParafermionic zero mode



Majorana zero modeMajorana zero mode



Parafermionic zero modeParafermionic zero mode



d = 1
Exchange not 
well defined...

...because particles 
inevitably “collide”

Braiding statistics in 1D? Braiding statistics in 1D? 

Solution: cheat (use 2D networks with Y-junctions)
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Apparent problem:
 We cannot have Y-junctions: our modes live on the domain walls..
 We can still exchange them: 

Exchanging end modes in our case Exchanging end modes in our case 
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Exchanging end modes in our case Exchanging end modes in our case 

Integral of motion:

Energy-minimizing condition:



Parafermion ZM BraidingParafermion ZM Braiding

(Majorana zero modes):

Upshot:



Important observation:
 If quasiparticles of both chiralities are allowed to tunnel, the 

braiding is not universal ⇒ Potential problem for fractional TI!

Parafermion ZM BraidingParafermion ZM Braiding



  

Topological Quantum Computation
(Kitaev, Preskill, Freedman, Larsen, Wang)

•  Multidimensional Hilbert space where we can  

encode information → Qubits

•  Ability to initialise and read-out a qubit

•  Unitary operations → Quantum gates

Things we need:
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(Hormozi, Bonesteel, et. al.)

Topological Quantum Computation

Or, perhaps use measurements to generate brading! 
(Bonderson, Freedman, Nayak, 2009)

Bonderson, KS & Slingerland, PRL 2006, PRL 2007, Ann. Phys. 2008

d

a b



  

↔0 ↔1

↔

c

a b

(Hormozi, Bonesteel, et. al.)
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Or, perhaps use measurements to generate brading! 
(Bonderson, Freedman, Nayak, 2009)
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Majorana zero modes are not universal! 

 No entangling gates with braiding alone
 No phase gate



  

↔0 ↔1

↔

c

a b

(Hormozi, Bonesteel, et. al.)

Topological Quantum Computation

Or, perhaps use measurements to generate brading! 
(Bonderson, Freedman, Nayak, 2009)

d

a b

Parafermionic zero modes are still not universal...

 Can do entangling gates!
 No phase gate?



  

ConclusionsConclusions

 D. Clarke, J. Alicea & KS,  
arXiv:1204.5479

 Parallel work: 

N. Lindner, E. Berg, 
G. Refael & A. Stern, 
arXiv:1204.5733

M. Cheng, arXiv:1204.6084

Parafermionic zero modes can be localised in systems 
with counter-propagating fractionalised edge modes 
(FQHE, or fractional topological insulators)

 Fractional Josephson effect with periodicity 4mπ
 Zero-bias anomaly – similar to the Majorana case, 
but with fractionalised charge tunnelling

  Potential utility for quantum computing? 
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