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Integer and Fractional Quantum Hall effect          (1981,1983)
   2D electrons in strong magnetic field: Si, GaAs, graphene,...

Topological insulators with strong spin-orbit coupling 
    2D: graphene, HgTe quantum wells                    (2005,2007)     
    3D: BiSb, Bi2Se3, Bi2Te3, HgTe under strain      (2006,2008)

Zoology of Chern insulators with no overall/net magnetic field 
    2D: Haldane 1988               
    Various models of Fractional Chern insulators  (2011)
    
                                                                               
    

Quick history of Topological phases of electrons in crystals



Rough/partial classification of topological phases 
in the absence of a global uniform field

Time-reversal 
Symmetry

Free electrons Interacting 
electrons

NO
    Chern insulator
    No Landau levels
    Dispersive Bloch bands
    with nonzero Chern number

Fractional Chern insulators 
Flattened Bloch band

              YES Topological insulator

Experimental evidences: 
HgTe, Bi2Se3, Bi2Te3

Fractional topological 
insulators 



1) A possible experimental platform to realize topological 
phases in the absence of external magnetic field 

Our motivation was to propose graphene under strain as: 

3) A possible (valley) Fractional Topological Insulator under 
some fine-tuning of the interactions

2) A system with a competition between Time-reversal 
symmetric phases and Time-reversal breaking phases  



Pseudomagnetic fields in strained/deformed graphene  
          Large valley-dependent fields 
          Time-reversal (TR) invariance (real magnetic field = 0)
   
Experimental signatures (short review)              
          Observation of large pseudo-fields: 60T, 100T, 300T,... !
          Pseudo Landau level structure (PLL)
               
Interaction driven phases (our theoretical work)
          Effet of the Coulomb interaction in a partially filled PLL
          Fractional quantum Hall states (breaks TR)
          Fractional topological insulators (TR invariant state)            

Outline 



Graphene (unstrained and B=0) 

where we have defined the effective NNN hopping amplitude
t0NNN ! tNNN " st and omitted the unimportant constant
"3tNNN in the second step. Therefore, the overlap corrections
simply yield a renormalization of the NNN hopping ampli-
tudes. The hopping amplitudes may be determined by fitting
the energy dispersion (21) obtained within the tight-binding
approximation to those calculated numerically in more so-
phisticated band-structure calculations (Partoens and Peeters,
2006) or to spectroscopic measurements (Mucha-Kruczyński
et al., 2008). These yield a value of t ’ "3 eV for the NN
hopping amplitude and t0NNN ’ 0:1t, which justifies the
above-mentioned expansion for t0NNN=t # 1. Note that this
fitting procedure does not allow for a distinction between the
‘‘true’’ NNN hopping amplitude tNNN and the contribution
from the overlap correction "st. We therefore omit this
distinction in the following discussion and drop the prime
on the effective NNN hopping amplitude, but one should keep
in mind that it is an effective parameter with a contribution
from NN overlap corrections.

c. Energy dispersion of ! electrons in graphene

The energy dispersion (21) is plotted in Fig. 5 for tNNN=t ¼
0:1. It consists of two bands, labeled by the index " ¼ %,
each of which contains the same number of states. Because
each carbon atom contributes one ! electron and each elec-
tron may occupy either a spin-up or a spin-down state, the
lower band with " ¼ " (the ! or valence band) is completely
filled and that with " ¼ þ (the !' or conduction band)
completely empty. The Fermi level is, therefore, situated at
the points, called Dirac points, where the ! band touches the
!' band. Note that only if tNNN ¼ 0 is the energy dispersion
(21) electron-hole symmetric, i.e., #"k ¼ "#""

k . This means
that NNN hopping and NN overlap corrections break the
electron-hole symmetry. The Dirac points are situated at the
points kD where the energy dispersion (21) is zero,

#"
kD ¼ 0: (22)

Equation (22) is satisfied when $kD ¼ 0, i.e., when

Re$kD ¼ 1þ cos
! ffiffiffi
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and, equally,
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Equation (24) may be satisfied by the choice kDy ¼ 0, and
Eq. (23) is thus satisfied when

1þ 2 cos
$ ffiffiffi
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Comparison with Eq. (4) shows that there are thus two
inequivalent Dirac points D and D0, which are situated at
the points K and K0, respectively,

kD ¼ %K ¼ % 4!

3
ffiffiffi
3

p
a
ex: (26)

Although they are situated at the same position in the first
BZ, it is useful to make a clear conceptual distinction
between the Dirac points D and D0, which are defined as
the contact points between the two bands ! and !', and
the crystallographic points K and K0, which are defined
as the corners of the first BZ. There are indeed situations
where the Dirac points move away from the points K and
K0, as we discuss in Sec. I.D.

Note that the band Hamiltonian (8) respects time-reversal
symmetry, H k ¼ H '

"k, which implies #"k ¼ #k for the
dispersion relation. Therefore, if kD is a solution of #k ¼ 0,
so is "kD, and Dirac points thus necessarily occur in
pairs. In graphene, there is one pair of Dirac points, and
the zero-energy states are therefore doubly degenerate.
One speaks of a twofold valley degeneracy, which survives
when we consider low-energy electronic excitations that
are restricted to the vicinity of the Dirac points, as dis-
cussed in Sec. I.C.2.

d. Effective tight-binding Hamiltonian

Before considering the low-energy excitations and the
continuum limit, it is useful to define an effective tight-
binding Hamiltonian,

H k ! tNNNj$kj21þ t
0 $'

k

$k 0

 !
: (27)

Here 1 represents the 2* 2 one-matrix

1 ¼
1 0

0 1

 !
: (28)

This Hamiltonian effectively omits the problem of nonortho-
gonality of the wave functions by a simple renormalization of
the NNN hopping amplitude, as mentioned above. It is there-
fore simpler to treat than the original one (8), the eigenvalue

FIG. 5 (color online). Energy dispersion as a function of the wave-
vector components kx and ky, obtained within the tight-binding

approximation, for tNNN=t ¼ 0:1. The valence (!) band is distin-
guished from the conduction (!') band. The Fermi level is situated
at the points where the ! band touches the !' band. The energy is
measured in units of t and the wave vector in units of 1=a.
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 2 Dirac points at K and K’

Honeycomb lattice Band structure (pi orbitals)

Two sublattices A and B
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Microscopic Tight binding model:

valley

Fractional topological phases and broken time reversal symmetry in strained graphene
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In this supplementary material, we provide additional details and derivations of some expressions used in the main
text. We first present the derivation of the strained induced gauge potential. We give explicit examples of strains
leading to a uniform pseudomagnetic field and the corresponding spinor wave functions in the non interacting case.
Then we present mean field analysis of the quantum Hall and superconducting phases discussed in the main text.
Finally we conclude by a discussion of the robustness of the valley fractional topological insulator (FTI) with respect
to further interaction tuning.

Noninteracting strained graphene

Here we consider noninteracting spinless fermions on the honeycomb lattice (including of spin is straightforward).
The triangular Bravais lattice r

mn

= ma1 + na2 is generated by the basis vectors:
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connect any A atom to its three nearest B atoms, a0 = 0.142 nm being the length of the carbon-carbon bond. The
area of the unit cell is A

c

= 3
p
3a20/2.

Strained induced gauge potential

In the absence of interactions, the tight-binding Hamiltonian of strained graphene (Eq. 1 in the main text) can be
written as:
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where second quantization operators a(r
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) and b(r
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) annihilate a fermion at A-type and B-type sites respec-
tively. The strain is described by the deformation field �t
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In the absence of strain (�t
a

(r
mn

) = 0), the lattice Hamiltonian can be easily diagonalized and the low energy
excitations correspond to the states close to the two gapless Dirac points K

⇠

= ⇠(4⇡/3
p
3a0)ex, where ⇠ = ± is the

valley isospin. Looking for low energy e↵ective theory, we expand the annihilation operators as:
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in terms of the slowly-varying fields a
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leads to the e↵ective Hamiltonian:
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In the presence of a slowly varying deformation field �t
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shows the coupling of the electronic charge �e with a valley-dependent gauge field A
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More specifically using Eq. 2, one obtains the gauge vector potential in terms of the deformation field:
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Pauli matrices act on 
sublattice index A,B

momentum 
from +/-K

Low energy theory: Dirac Hamiltonian 
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Smooth deformation of the bonds 

no intervalley coupling
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Low energy theory: Dirac Hamiltonian 
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Dirac point motion

Dirac points stay time-reversed partners



Momentum shift = Potential vector

Induced vector potentials are opposite in the valleys 
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According to Eq. 9, the corresponding strain-induced vector potential is the familiar vector potential of the Landau
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~/eB ' 10 nm and lattice constant a0 ' 0.1 nm, the ribbon width cannot
exceed 500 nm. The strength of the e↵ective magnetic field B is proportional to the gradient of the hopping amplitude
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Uniform deformation 

1. Dirac point motion

In order to evaluate quantitatively the position of the Dirac
points, which are defined as the contact points between the
valence (! ¼ ") and conduction (! ¼ þ) bands, one needs
to solve the equation ~"kD ¼ 0, in analogy with the case of
undeformed graphene discussed in Sec. I.C.1. One then finds

kDy ¼ 0 and kDx a ¼ #
2ffiffiffi
3

p arccos
"
" t0

2t

#
; (63)

where the valley index # ¼ $ denotes again the two inequi-
valent Dirac points D and D0, respectively. As mentioned, the
Dirac points D and D0 coincide, for undistorted graphene,
with the crystallographic points K and K0, respectively, at the
corners of the first BZ. The distortion makes both pairs of
points move in the same direction due to the negative value of
@t=@a. However, unless the parameters are fine-tuned, this
motion is different, and the two pairs of points no longer
coincide.

One further notes that Eq. (63) has (two) solutions only for
t0 % 2t. Indeed, the two Dirac points merge at the character-
istic point M00 at the border of the first BZ (see Fig. 3). The
point t0 ¼ 2t is special insofar as it characterizes a topological
phase transition between a semimetallic phase (for t0 < 2t)
with a pair of Dirac cones and a band insulator (for t0 > 2t)
(Dietl et al., 2008; Wunsch et al., 2008; Esaki et al., 2009;
Pereira et al., 2009; Montambaux et al., 2009a; 2009b). In
the vicinity of the transition, one may expand the Hamiltonian
(59) around the merging point M00 (Montambaux et al.,
2009a; 2009b), and one finds6

HM
q ¼

0 !þ ℏ2q2x
2m& " iℏcqy

!þ ℏ2q2x
2m& þ iℏcqy 0

0
@

1
A (64)

in terms of the mass m& ¼ 2ℏ2=3ta2 and the velocity c ¼
3ta=ℏ (Montambaux et al., 2009b). The gap parameter ! ¼
t0 " 2t changes its sign at the transition: it is negative in the
semimetallic and positive in the insulating phase, where it
describes a true gap (Fig. 10).

The Hamiltonian (64) has a particular form in the vicinity
of the merging points: it is linear in the qy direction, as one

would expect for Dirac points, but it is quadratic in the qx
direction (Dietl et al., 2008). This is a general feature of
merging points, which may only occur at the " point or else at
half a reciprocal lattice vector G=2, i.e., in the center of a BZ
border line (such as the M points) (Montambaux et al.,
2009a). Indeed, one may show that, in the case of a time-
reversal-symmetric Hamiltonian, the Fermi velocity in the x
direction then vanishes so that one must take into account the
quadratic order in qx in the energy band. Note that such
hybrid semi-Dirac points, with a linear-parabolic dispersion
relation, are inaccessible in graphene because unphysically
large strains would be required (Lee et al., 2008; Pereira
et al., 2009). However, such points may exist in other physi-
cal systems such as cold atoms in optical lattices (Zhao and
Paramekanti, 2006; Zhu, et al., 2007; Hou, et al., 2009;
Wunsch et al., 2008; Lee et al., 2009), the quasi-2D organic
material $" ðBEDT-TTFÞ2I3 [where BEDT-TTF is bis
(ethylenedithio) tetrathiofulvane] (Katayama et al., 2006;
Kobayashi et al., 2007), or VO2=TiO2 heterostructures
(Banerjee et al., 2009).

2. Tilted Dirac cones

Another aspect of quinoid-type deformed graphene, and a
consequence of the fact that the Dirac points no longer
coincide with the BZ corners K and K0 of high crystallo-
graphic symmetry, is the tilt of the Dirac cones. This may be
appreciated when the Hamiltonian (59) is expanded to linear

FIG. 9 (color online). Band dispersion of the quinoid-type
deformed honeycomb lattice, for a lattice distortion of %a=a ¼
"0:4, with t ¼ 3 eV, tNNN=t ¼ 0:1, @t=@a ¼ "5 eV= #A, and
@tNNN=@a ¼ "0:7 eV= #A. The inset shows a close up on one of
the Dirac points D0.

FIG. 10 (color online). Topological semimetal-insulator transition
in the model (64) driven by the gap parameter !. (a) Two well-
separated Dirac cones for ! ) 0, as for graphene. (b) The Dirac
points move towards a single point when the modulus of the
(negative) gap parameter is lowered. (c) The two Dirac points
merge into a single point at the transition (! ¼ 0). The band
dispersion remains linear in the qy direction while it becomes

parabolic in the qx direction. (d) Beyond the transition (!> 0),
the (parabolic) bands are separated by a band gap ! (insulating
phase). From Montambaux et al. 2009a.

6We do not consider the diagonal part of the Hamiltonian, here,
i.e., we choose tNNN ¼ 0, because it does not affect the position of
the Dirac points.
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border of the first BZ, which yield van Hove singularities in
the density of states. In Fig. 7(b), we compare constant-
energy contours of the full dispersion relation to those
obtained from Eq. (54) calculated within a second-order
expansion. The contours are indistinguishable for an energy
of ! ¼ jtj=3 ’ 1 eV, and the continuum limit yields rather
accurate results up to energies as large as 2 eV. Note that, in
today’s exfoliated graphene samples on SiO2 substrates, one
may probe, by field-effect doping of the graphene sheet,
energies which are on the order of 100 meV. Above these
energies the capacitor breaks down, and Fig. 7(a) indicates
that the continuum limit (54) yields extremely accurate re-
sults at these energies.

We finally mention that, when higher-order terms in jqja
are taken into account, the chirality operator (45) no longer
commutes with the Hamiltonian. Chirality is therefore a good
quantum number only in the vicinity of the Dirac points.

D. Deformed graphene

In the preceding section, we considered a perfect honey-
comb lattice, which is invariant under a 2"=3 rotation. As a
consequence, all hopping parameters along the NN bonds !j

were equal. An interesting situation arises when the graphene
sheet is deformed, such that rotational symmetry is broken. In
order to illustrate the consequences, we apply a uniaxial
strain in the y direction,5 a ! a0 ¼ aþ #a, in which case
one obtains a quinoid-type deformation (Fig. 8). The hopping
t0 along !3 is then different from that t along !1 and !2

(Hasegawa et al., 2006; Zhu, et al., 2007; Dietl et al., 2008;
Goerbig et al., 2008; Wunsch et al., 2008; Farjam and Rafii-
Tabar, 2009),

t ! t0 ¼ tþ @t

@a
#a: (55)

Furthermore, four of six NNN hopping integrals are also
affected by the strain (see Fig. 8),

tNNN ! t0NNN ¼ tNNN þ @tNNN
@a

#a: (56)

If one considers a moderate deformation ! # #a=a $ 1,
the effect on the hopping amplitudes may be estimated with
the help of Harrison’s law (Harrison, 1981), according to
which t ¼ Cℏ2=ma2, where C is a numerical prefactor of
order 1. One therefore finds a value

@t

@a
¼ % 2t

a
&%4:3 eV= !A and t0 ¼ tð1% 2!Þ (57)

which coincides well with the value @t=@a ’ 5 eV= !A, that
may be found in the literature (Dillon et al., 1977; Saito
et al., 1998). The estimation of the modified NNN hopping
integral t0NNN is slightly more involved. One may use a law
tNNNðb; aÞ ) tðaÞ exp½%ðb% aÞ=dðaÞ+ familiar in the context
of the extended Hückel model (Salem, 1966), where b is the
NNN distance and d ) a=3:5 ) 0:4 !A is a characteristic

distance related to the overlap of atomic orbitals. In unde-

formed graphene, one has b ¼ a
ffiffiffi
3

p
, whereas in quinoid-type

graphene b0 ¼ bð1þ "=2Þ, which gives

t0NNN ¼ tNNNð1% 2"þ b"=2dÞ: (58)

The electronic properties of quinoid-type graphene may
then be described in terms of an effective Hamiltonian of the
type (27)

H k ¼ tNNNhk1þ t
0 ~$,

k

~$k 0

" #
; (59)

with (Goerbig et al., 2008)

hk ¼ 2 cos
ffiffiffi
3

p
kxaþ 2

t0NNN
tNNN

$
cos

% ffiffiffi
3

p
kxa

2
þ kya

"
3

2
þ !

#&

þ cos
%
%

ffiffiffi
3

p
kxa

2
þ kya

"
3

2
þ !

#&'
; (60)

and the off-diagonal elements

~$k ¼ 2eikyað3=2þ!Þ cos
" ffiffiffi

3
p

2
kxa

#
þ ð1% 2!Þ: (61)

The resulting energy dispersion

!%k ¼ tNNNhk þ %tj~$kj (62)

is plotted in Fig. 9 for an unphysically large deformation,
! ¼ 0:4, for illustration reasons. Note that the reversible
deformations are limited by a value of !& 0:1–0:2 beyond
which the graphene sheet cracks (Lee et al., 2008). One
notices, in Fig. 9, two effects of the deformation: (i) the Dirac
points no longer coincide with the corners of the first BZ, the
form of which is naturally also modified by the deformation;
and (ii) the cones in the vicinity of the Dirac points are tilted,
i.e., the NNN hopping term (60) already breaks the electron-
hole symmetry at linear order in jqja. These two points are
discussed in more detail in the following sections.
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FIG. 8. Quinoid-type deformation of the honeycomb lattice; the
bonds parallel to the deformation axis (double arrow) are modified.
The shaded region indicates the unit cell of the oblique lattice,
spanned by the lattice vectors a1 and a2. Dashed and dash-dotted
lines indicate next-nearest neighbors, with characteristic hopping
integrals tNNN and t0NNN, respectively, which are different due to the
lattice deformation.

5In our simplified model, we consider only one bond length to be
changed by the strain. The more general case has been considered
by Pereira et al. (2009). However, the main effects are fully visible
in the simplified model.
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Class of deformations yielding to 
      Uniform magnetic field in a given valley
      Dirac cones are expected to split into flat Landau levels 

Arbitrary deformation leads in general to:
          Non uniform field and complicated band structure... 

Non uniform deformation yields finite fields

F. Guinea, M.I. Katsnelson, and A.K. Geim, Nature Physics, 2009
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Figure 1 | Designed strain can generate a strictly uniform pseudomagnetic field in graphene. a, Distortion of a graphene disc which is required to
generate uniform BS. The original shape is shown in blue. b, Orientation of the graphene crystal lattice with respect to the strain. Graphene is stretched or
compressed along equivalent crystallographic directions h100i. Two graphene sublattices are shown in red and green. c, Distribution of the forces applied
at the disc’s perimeter (arrows) that would create the strain required in a. The uniform colour inside the disc indicates strictly uniform pseudomagnetic
field. d, The shown shape allows uniform BS to be generated only by normal forces applied at the sample’s perimeter. The length of the arrows indicates the
required local stress.
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Figure 2 | Stretching graphene samples along h100i axes always generates a pseudomagnetic field that is fairly uniform at the centre. a, Distribution of
BS for a regular hexagon stretched by its three sides oriented perpendicular to h100i. Other examples are given in the Supplementary Information.
b, Normalized density of states for the hexagon in a with L= 30 nm and �m = 1%. The black curve is for the case of no strain and no magnetic field. The
peak at zero E is due to states at zigzag edges. The blue curve shows the Landau quantization induced by magnetic field B= 10 T. The pseudomagnetic field
with BS ⇡ 7 T near the hexagon’s centre induces the quantization shown by the red curve. Comparison between the curves shows that the smearing of the
pseudo-Landau levels is mostly due to the finite broadening � = 2 meV used in the tight-binding calculations (� corresponds to submicrometre mean free
paths attainable in graphene devices). The inhomogeneous BS plays little role in the broadening of the first few pseudo-Landau levels (see
Supplementary Fig. S4).

disc of diameter D, which experiences a maximum strain �m at
its perimeter, we find c = �m/D. For non-ambitious �m = 10%
and D= 100 nm, we find BS ⇡ 40 T, the effective magnetic length
lB = p

aD/8��m ⇡ 4 nm and the largest Landau gap of ⇡0.25 eV.
Note that distortions (2) are purely shear and do not result in any
changes in the area of a unit cell, which means that there is no
effective electrostatic potential generated by such strain23.

The lattice distortions in Fig. 1a can be induced by in-plane
forces F applied only at the perimeter and, for the case of a disc,
they are given simply by

F

x

(✓)/ µsin(2✓), F

y

(✓)/ µcos(2✓)

where µ is the shear modulus. Figure 1c shows the required force
pattern. It is difficult to create such strain experimentally because
this involves tangential forces and both stretching and compression.
To this end, we have solved an inverse problem to find out whether
uniform BS can be generated by normal forces only (Supplementary

Information, part I). There exists a unique solution for the shape of
a graphene sample that enables this (see Fig. 1d).

A strong pseudomagnetic field should lead to Landau quan-
tization and a QHE-like state. The latter is different from the
standard QHE because BS has opposite signs for charge carriers in
valleys K and K0 and, therefore, generates edges states that circulate
in opposite directions. The coexistence of gaps in the bulk and
counterpropagating states at the boundaries without breaking the
time-reversal symmetry is reminiscent of topological insulators15–20
and, in particular, the quantum valley Hall effect in ‘gapped
graphene’20 and the quantum spin Hall effect induced by strain16.
The latter theory has exploited the influence of three-dimensional
strain on spin–orbit coupling in semiconductor heterostructures,
which can lead to quasi-Landau quantization with opposite BS
acting on two spins rather than valleys. Weak spin–orbit coupling
allows only tiny Landau gaps < 1 µeV (ref. 16), which, to be
observable, would require temperatures below 10mK and carrier
mobilities higher than 107 cm2 V s�1. Our approach exploits the
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corresponding tight-binding Hamiltonian reads
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) is the strain-induced variation of the near-
est neighbor hopping amplitude (with respect to the un-
perturbed value t ' 2.7 eV) between A-site at r

i

and
B-site at r

i

+ �
a

of the bipartite honeycomb lattice [?
]. The smooth deformation field �t

a

(r
i

) is chosen in
such a way to produce a nearly uniform magnetic field
with a valley-dependent sign [? ? ]. The valley de-

pendent vector potentialA
⇠

(r) = ⇠
P
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minimally couples to linearly dispersing low energy exci-
tations near the Dirac points located at momenta ⇠K
with K = (4⇡/3

p
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0

)e
x

and ⇠ = ±1, a
0

being the
carbon-carbon bond length [? ]. The uniform pseu-
domagnetic field induces a pseudo Landau level (PLL)
electronic structure E

n

= ⇠
p

2e~v2
F

B|n|, where n is the
relative integer labelling the nearly flat levels (see sup-
plementary). Beside the macroscopic orbital degeneracy,
each of those PLLs has a four-fold degeneracy associated
with the spin and valley isospin degrees of freedom. In
contrast to the full SU(4) symmetry of graphene in an
external real magnetic field [? ? ], the internal symmetry
of strained graphene is SU(2) for the spin and only Z

2

for the valley degree of freedom.
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= ⇠
q

2e~v2
F

B|n| (2)

In this work, we study interaction e↵ects within the
partially filled zero-energy flat band (n = 0 PLL) cre-
ated by strain. We consider the following interaction
Hamiltonian on the honeycomb lattice:
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| denotes the bare
Coulomb potential, n(r

i

) the fermion number operator
on site r

i

, and hr
i

, r
j

i represents summation over all
pairs of next-nearest-neighboring (NNN) sites. The bare
Coulomb interaction is the dominant interaction due to
the poor screening in neutral graphene. Nevertheless we
also allow arbitrary modification of the short-distance
part of the Coulomb interaction by adding local on-site
and NNN interactions with respective strengths U

0

and
U
nnn

. The nearest neighbor interaction is not e↵ective
in presence of strong pseudo-magnetic field because in
the zero energy PLL the noninteracting wave functions
are localized on a single sublattice (see Supplementary).

Interesting proposals for altering short ranged interac-
tions using substrates with momentum dependent di-
electric susceptibility has been discussed [? ]. Unfor-
tunately the actual values of U

0

and U
nnn

are not known
in strained graphene although first principles calculations
yield total on-site coupling U

0

= 9.3 eV and a small devi-
ation U

nnn

' �0.04e2/4⇡✏a
0

of the NNN coupling from
its bare Coulomb value in freestanding (and unstrained)
graphene in zero magnetic field [? ].

Fractionalized phases and superconductivity at
2/3 filling of the n = 0 PLL. Fractional Hall states in
graphene under an external magnetic field were reported
experimentally [? ? ? ]. Although strain produces flat
PLLs, it is not evident that interactions can generate in-
compressible phases at fractional filling in time-reversal
invariant strained graphene. We focus here on the 2/3
filling of the four-fold degenerate n = 0 PLL. This 2/3
filling has been studied so far in graphene sheets [? ?
] and in GaAs Hall bilayers [? ] under real magnetic
field. In the present case of strained graphene, this par-
ticular filling allows for interesting possibilities including
valley ferromagnetism (which breaks spontaneously time-
reversal symmetry), valley symmetric topological states,
and also superconductivity.

Real graphene: time reversal breaking FQH state in a
single valley. We first consider real graphene with the
unscreened Coulomb interaction, namely U

0

= U
nnn

= 0
in Eq. (3). Then the ground state is found to be a
valley polarized FQH state both for spinless (Fig. ??)
and spinfull (Fig. ??) electrons. This valley-polarized
state breaks spontaneously the time-reversal invariance
of the strained graphene Hamiltonian, and spins are in a
singlet state as in the 2/3 FQH states [? ? ? ] obtained
under real magnetic field. We have further checked that
the Chern number is 2/3 and that the three lowest energy
states form a degenerated ground state manifold. Due to
the large values of strain-induced pseudomagnetic fields,
this state may be realized with elevated energy scales,
allowing for the stabilization of fragile states. In order
to test quantitatively the robustness of the 2/3 valley
polarized FQH state, we now vary the parameter U

nnn

in
the Hamiltonian Eq. (3). It turns out that the 2/3 valley
polarized state is rather stable both in the spinless (Fig.
??) and spinfull (Fig. ??) cases. Nevertheless when U

nnn

is su�ciently negative, exotic valley symmetric phases
can also be realized as detailled below. For clarity we
describe separately the spinless and spinfull cases.

Spinless fermions and valley fractional topological in-
sulator (FTI): Let us consider spinless electrons and de-
compose the NNN coupling of Eq.(3) into an interaction
between opposite-valley electrons (Uop

nnn

) and an interac-
tion between same-valley electrons (Us

nnn

). We first tune
the intervalley correlations (Uop

nnn

) while Us

nnn

= 0 (but
note that electrons in the same valley still interact via
the bare Coulomb potential).
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Relation valley-sublattice (n=0 Landau level)

Real magnetic field: K on B sublattice and K’ on A sublattice.

K K’

B field
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and we have defined the hopping matrix
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d2r!ðiÞ%ðrÞ!V!ðjÞðrþ !ij 'RlÞ:

(13)

Here N is the number of unit cells, and we have separated
the Hamiltonian H into an atomic orbital part Ha ¼
'ðℏ2=2mÞ!þ Vðr'Rl þ !jÞ, which satisfies the eigen-
value equation Ha!ðjÞðrþ !j 'RlÞ ¼ "ðjÞ!ðjÞ

ðrþ !j 'RlÞ, and a ‘‘perturbative’’ part !V, which takes

into account the potential term that arises from all other atoms
different from that in the atomic orbital Hamiltonian.
Equation (11) was obtained from the fact that the atomic
wave functions !ðiÞðrÞ are eigenstates of the atomic
Hamiltonian Ha with the atomic energy "ðiÞ for an orbital of
type i. This atomic energy plays the role of an on-site energy.

The secular equation now reads det½tijk ' ð"#k ' "ðjÞÞsijk * ¼ 0.
Note that, if the atoms on the different sublattices are all of the
same electronic configuration, one has "ðiÞ ¼ "0 for all i, and
one may omit this on-site energy, which yields only a constant
and physically irrelevant shift of the energy bands.

b. Solution for graphene with nearest-neighbor and
next-nearest-neighour hopping

After these formal considerations, we now study the par-
ticular case of the tight-binding model on the honeycomb
lattice, which yields the $ energy bands of graphene. Because
all atomic orbitals are pz orbitals of carbon atoms, we may
omit the on-site energy "0, as discussed in the next section.
We choose the Bravais lattice vectors to be those of the A
sublattice, i.e., !A ¼ 0, and the equivalent site on the B
sublattice is obtained by the displacement !B ¼ !AB ¼ !3

(see Fig. 4). The NN hopping amplitude is given by

t !
Z

d2r!A%ðrÞ!V!Bðrþ !3Þ; (14)

and we also take into account next-nearest-neighbor (NNN)
hopping, which connects neighboring sites on the same sub-
lattice,

tNNN !
Z

d2r!A%ðrÞ!V!Aðrþ a1Þ: (15)

Note that any other vector, !j or a2, could be chosen in
the calculation of the hopping amplitudes. Because of the
normalization of the atomic wave functions, we haveR
d2r!ðjÞ%ðrÞ!ðjÞðrÞ ¼ 1, and we consider furthermore the

overlap correction between orbitals on NN sites,

s !
Z

d2r!A%ðrÞ!Bðrþ !3Þ: (16)

We neglect overlap corrections between all other orbitals
which are not NN, as well as hopping amplitudes for dis-
tances larger than NNN.

If we now consider an arbitrary site A on the A sublattice
(Fig. 4), we can see that the off-diagonal terms of the hopping
matrix (13) consist of three terms corresponding to the NN
B1, B2, and B3, all of which have the same hopping amplitude
t. However, only the site B3 is described by the same lattice
vector (shifted by !3) as the site A and thus yields a zero
phase to the hopping matrix. The sites B1 and B2 correspond
to lattice vectors shifted by a2 and a3 ! a2 ' a1, respec-
tively. Therefore, they contribute a phase factor expðik " a2Þ
and expðik " a3Þ, respectively. The off-diagonal elements of
the hopping matrix may then be written as3 tABk ¼ t%%

k ¼
ðtBAk Þ%, as well as those of the overlap matrix sABk ¼ s%%

k ¼
ðsBAk Þ%, (sAAk ¼ sBBk ¼ 1, due to the above-mentioned normal-
ization of the atomic wave functions), where we have defined
the sum of the NN phase factors,

%k ! 1þ eik"a2 þ eik"a3 : (17)

The NNN hopping amplitudes yield the diagonal elements of
the hopping matrix,
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and one obtains thus the secular equation
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Equation (20) may be expanded under the reasonable as-
sumptions s , 1 and tNNN , t, which we further justify at
the end of this section,
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FIG. 4. Tight-binding model for the honeycomb lattice.

3The hopping matrix element tABk corresponds to a hopping from
the B to the A sublattice.
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Here N is the number of unit cells, and we have separated
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different from that in the atomic orbital Hamiltonian.
Equation (11) was obtained from the fact that the atomic
wave functions !ðiÞðrÞ are eigenstates of the atomic
Hamiltonian Ha with the atomic energy "ðiÞ for an orbital of
type i. This atomic energy plays the role of an on-site energy.
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Note that, if the atoms on the different sublattices are all of the
same electronic configuration, one has "ðiÞ ¼ "0 for all i, and
one may omit this on-site energy, which yields only a constant
and physically irrelevant shift of the energy bands.

b. Solution for graphene with nearest-neighbor and
next-nearest-neighour hopping

After these formal considerations, we now study the par-
ticular case of the tight-binding model on the honeycomb
lattice, which yields the $ energy bands of graphene. Because
all atomic orbitals are pz orbitals of carbon atoms, we may
omit the on-site energy "0, as discussed in the next section.
We choose the Bravais lattice vectors to be those of the A
sublattice, i.e., !A ¼ 0, and the equivalent site on the B
sublattice is obtained by the displacement !B ¼ !AB ¼ !3

(see Fig. 4). The NN hopping amplitude is given by
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hopping, which connects neighboring sites on the same sub-
lattice,
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Note that any other vector, !j or a2, could be chosen in
the calculation of the hopping amplitudes. Because of the
normalization of the atomic wave functions, we haveR
d2r!ðjÞ%ðrÞ!ðjÞðrÞ ¼ 1, and we consider furthermore the

overlap correction between orbitals on NN sites,
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We neglect overlap corrections between all other orbitals
which are not NN, as well as hopping amplitudes for dis-
tances larger than NNN.

If we now consider an arbitrary site A on the A sublattice
(Fig. 4), we can see that the off-diagonal terms of the hopping
matrix (13) consist of three terms corresponding to the NN
B1, B2, and B3, all of which have the same hopping amplitude
t. However, only the site B3 is described by the same lattice
vector (shifted by !3) as the site A and thus yields a zero
phase to the hopping matrix. The sites B1 and B2 correspond
to lattice vectors shifted by a2 and a3 ! a2 ' a1, respec-
tively. Therefore, they contribute a phase factor expðik " a2Þ
and expðik " a3Þ, respectively. The off-diagonal elements of
the hopping matrix may then be written as3 tABk ¼ t%%

k ¼
ðtBAk Þ%, as well as those of the overlap matrix sABk ¼ s%%

k ¼
ðsBAk Þ%, (sAAk ¼ sBBk ¼ 1, due to the above-mentioned normal-
ization of the atomic wave functions), where we have defined
the sum of the NN phase factors,

%k ! 1þ eik"a2 þ eik"a3 : (17)

The NNN hopping amplitudes yield the diagonal elements of
the hopping matrix,

tAAk ¼ tBBk ¼ 2tNNN
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sumptions s , 1 and tNNN , t, which we further justify at
the end of this section,
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Two natural questions:

1- Experimental evidences of those large fields 
and associated Landau levels ?

2- Can we have Fractional Quantum Hall states in 
the partially filled Landau levels induced by pure
strain ?



PART II: 
Experiments on deformed graphene systems 

Crommie (Berkeley):  real graphene (Science 2011)

Lin He (Beijing University): real bilayer graphene (ArXiv 2012)

Manoharan (Stanford): molecular graphene (Nature 2012)

Esslinger (ETH Zurich): fermionic cold atoms (Nature 2012)



Strained graphene (Crommie, Berkeley)

Real graphene on top
of a Pt substrate 

Nanoscale bubbles 
scanned by STM

dau quantization of the electronic spectrum was
observed by scanning tunnelingmicroscopy (STM),
which revealed pseudo–magnetic fields in excess
of 300 T. Such enormous strain-induced pseudo–
magnetic fields may allow the electronic proper-
ties of graphene to be controlled through various
schemes for applying strain (11), as well as the
exploration of new high-field physical regimes.

Strained graphene nanobubbles were created
by in situ growth of sub-monolayer graphene
films in ultrahigh vacuum on a clean Pt(111) sur-
face (12) in order to avoid external contamination
and trapped gases. The epitaxial graphene was
grown by exposure of Pt(111) to ethylene followed
by annealing (13, 14). Graphene grown on Pt is
expected to be minimally coupled to the substrate,
compared to graphene grown on other catalytic
metals (15, 16). A Dirac-like band structure is
preserved for graphene on Pt(111), as verified by a
recent photoemission study (17). An STM to-

pograph of the graphene/Pt(111) surface prepared
in this manner (Fig. 1A) reveals a flat graphene
patch (partially surrounded by Pt) that encom-
passes five graphene nanobubbles. Graphene na-
nobubbles frequently appear near the edges of a
graphene patch, but are also sometimes observed
in the center of flat patches or near the boundaries
between patches and are presumably pinned near
these locations (Fig. 1A). These nanobubbles are
likely related to the larger-scale “wrinkle” struc-
tures observed by low energy electron microscopy
that form upon cooling as a result of the differing
thermal expansion coefficients of graphene and the
platinum surface (17).

Individual nanobubbles often have a triangu-
lar shape (Fig. 1A, inset), reflecting the lattice
symmetry of the graphene and the underlying Pt
surface, and are typically 4 to 10 nm across and
0.3 to 2.0 nm tall. Atomic-resolution imaging of
the nanobubbles confirms the honeycomb struc-

ture of graphene here (Fig. 1A, inset), although
the lattice is distorted because of the large strain
occurring in these structures. The expected strain-
induced pseudo–magnetic field in a graphene na-
nobubble can be estimated by using the relation
F ¼ ðbh2=laÞF0 for the flux per ripple in a dis-
torted graphene sheet (6), where h is the height, l
is the width, a is on the order of the C-C bond
length, andF0 is the quantum of flux. The param-
eterb ¼ ∂logðtÞ=∂logðaÞ relates the change in the
hopping amplitude between nearest neighbor
carbon atoms (t) to bond length and has a typical
magnitude of 2 < b < 3 for graphene. For a
nanobubble of l = 4 nm and h = 0.5 nm, this yields
a Bs of order 100 T. The large curvature and
correspondingly high strain incorporated into
the triangular nanoscale bubbles observed here
make them ideal candidates for the observation
of pseudo-LL because of large strain-induced
pseudo–magnetic fields.

The local electronic structure of strained graphene
nanobubbles and surrounding graphene films
was characterized by scanning tunneling spec-
troscopy (STS) performed at ~ 7.5 K by using
standard lock-in techniques to obtain differen-
tial conductance (dI/dV). The measurement of
dI/dV reflects features in the local density of
states (LDOS) of the surface at the position of the
STM tip (18). STS measurement of the bare Pt
surface was used to calibrate the LDOS of the tip
upon approach and between sequences of
spectra. STS spectra measured over the bare Pt
regions (Fig. 1B) are relatively featureless and
show the expected Pt(111) surface state (19).
Spectra recorded over the flat graphene patches
show a subtly modified structure compared with
the clean Pt(111) surface, and no clear signatures
of the graphene Dirac point were observed in
these regions (Fig. 1B). Spectra measured at the
boundary between the flat graphene and the
nanobubbles (fig. S2) exhibit features consistent
with a Dirac point located ~300 mV above the
Fermi energy, as recently observed by photoemis-
sion (17), as well as a gaplike feature with a full
width at half maximum (FWHM) of 127 T 9 mV
centered at the Fermi energy (Vsample = 0) recently

A B

Vsample (V)

Fig. 1. STM images and STS spectra
taken at 7.5 K. (A) Graphene mono-
layer patch on Pt(111) with four
nanobubbles at the graphene-Pt bor-
der and one in the patch interior.
Unreacted ethylene molecules and a
small hexagonal graphene patch can
be seen in the lower right (Itunneling =
50 pA, Vsample = 350 mV, 3D z-scale
enhanced 4.6×). (Inset) High-resolution

image of a graphene nanobubble showing distorted honeycomb lattice resulting from strain in the
bubble (Itunneling = 50 pA, Vsample = 200 mV, max z = 1.6 nm, 3D z-scale enhanced 2×). (B) STS
spectra of bare Pt(111), flat graphene on Pt(111) (shifted upward by 3 × 10−11 ohm−1), and the
center of a graphene bubble (shifted upward by 9 × 10−11 ohm−1). Vmod = 20 mV.

2nm

A B C
4Å

0Å

Fig. 2. (A) Sequence of eight dI/dV spectra (T ~ 7.5 K, Vmod =
20 mV) taken in a line across a graphene nanobubble shown in
the image in (B). Red lines are data with quartic background
subtracted; black dotted lines are Lorentzian peak fits (center of
peaks indicated by dots, with blue dots indicating n = 0).
Vertical dash-dot lines follow the energy progression of each
peak order. (C) Normalized peak energy versus sgn(n)
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peaks observed on five different nanobubbles follow expected
scaling behavior from Eq. 1 (dashed line).
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Density of states by STM: 
Pseudo Landau Levels

Typical fields: 300 Tesla !

dau quantization of the electronic spectrum was
observed by scanning tunnelingmicroscopy (STM),
which revealed pseudo–magnetic fields in excess
of 300 T. Such enormous strain-induced pseudo–
magnetic fields may allow the electronic proper-
ties of graphene to be controlled through various
schemes for applying strain (11), as well as the
exploration of new high-field physical regimes.

Strained graphene nanobubbles were created
by in situ growth of sub-monolayer graphene
films in ultrahigh vacuum on a clean Pt(111) sur-
face (12) in order to avoid external contamination
and trapped gases. The epitaxial graphene was
grown by exposure of Pt(111) to ethylene followed
by annealing (13, 14). Graphene grown on Pt is
expected to be minimally coupled to the substrate,
compared to graphene grown on other catalytic
metals (15, 16). A Dirac-like band structure is
preserved for graphene on Pt(111), as verified by a
recent photoemission study (17). An STM to-

pograph of the graphene/Pt(111) surface prepared
in this manner (Fig. 1A) reveals a flat graphene
patch (partially surrounded by Pt) that encom-
passes five graphene nanobubbles. Graphene na-
nobubbles frequently appear near the edges of a
graphene patch, but are also sometimes observed
in the center of flat patches or near the boundaries
between patches and are presumably pinned near
these locations (Fig. 1A). These nanobubbles are
likely related to the larger-scale “wrinkle” struc-
tures observed by low energy electron microscopy
that form upon cooling as a result of the differing
thermal expansion coefficients of graphene and the
platinum surface (17).

Individual nanobubbles often have a triangu-
lar shape (Fig. 1A, inset), reflecting the lattice
symmetry of the graphene and the underlying Pt
surface, and are typically 4 to 10 nm across and
0.3 to 2.0 nm tall. Atomic-resolution imaging of
the nanobubbles confirms the honeycomb struc-

ture of graphene here (Fig. 1A, inset), although
the lattice is distorted because of the large strain
occurring in these structures. The expected strain-
induced pseudo–magnetic field in a graphene na-
nobubble can be estimated by using the relation
F ¼ ðbh2=laÞF0 for the flux per ripple in a dis-
torted graphene sheet (6), where h is the height, l
is the width, a is on the order of the C-C bond
length, andF0 is the quantum of flux. The param-
eterb ¼ ∂logðtÞ=∂logðaÞ relates the change in the
hopping amplitude between nearest neighbor
carbon atoms (t) to bond length and has a typical
magnitude of 2 < b < 3 for graphene. For a
nanobubble of l = 4 nm and h = 0.5 nm, this yields
a Bs of order 100 T. The large curvature and
correspondingly high strain incorporated into
the triangular nanoscale bubbles observed here
make them ideal candidates for the observation
of pseudo-LL because of large strain-induced
pseudo–magnetic fields.

The local electronic structure of strained graphene
nanobubbles and surrounding graphene films
was characterized by scanning tunneling spec-
troscopy (STS) performed at ~ 7.5 K by using
standard lock-in techniques to obtain differen-
tial conductance (dI/dV). The measurement of
dI/dV reflects features in the local density of
states (LDOS) of the surface at the position of the
STM tip (18). STS measurement of the bare Pt
surface was used to calibrate the LDOS of the tip
upon approach and between sequences of
spectra. STS spectra measured over the bare Pt
regions (Fig. 1B) are relatively featureless and
show the expected Pt(111) surface state (19).
Spectra recorded over the flat graphene patches
show a subtly modified structure compared with
the clean Pt(111) surface, and no clear signatures
of the graphene Dirac point were observed in
these regions (Fig. 1B). Spectra measured at the
boundary between the flat graphene and the
nanobubbles (fig. S2) exhibit features consistent
with a Dirac point located ~300 mV above the
Fermi energy, as recently observed by photoemis-
sion (17), as well as a gaplike feature with a full
width at half maximum (FWHM) of 127 T 9 mV
centered at the Fermi energy (Vsample = 0) recently
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Fig. 1. STM images and STS spectra
taken at 7.5 K. (A) Graphene mono-
layer patch on Pt(111) with four
nanobubbles at the graphene-Pt bor-
der and one in the patch interior.
Unreacted ethylene molecules and a
small hexagonal graphene patch can
be seen in the lower right (Itunneling =
50 pA, Vsample = 350 mV, 3D z-scale
enhanced 4.6×). (Inset) High-resolution

image of a graphene nanobubble showing distorted honeycomb lattice resulting from strain in the
bubble (Itunneling = 50 pA, Vsample = 200 mV, max z = 1.6 nm, 3D z-scale enhanced 2×). (B) STS
spectra of bare Pt(111), flat graphene on Pt(111) (shifted upward by 3 × 10−11 ohm−1), and the
center of a graphene bubble (shifted upward by 9 × 10−11 ohm−1). Vmod = 20 mV.
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Fig. 2. (A) Sequence of eight dI/dV spectra (T ~ 7.5 K, Vmod =
20 mV) taken in a line across a graphene nanobubble shown in
the image in (B). Red lines are data with quartic background
subtracted; black dotted lines are Lorentzian peak fits (center of
peaks indicated by dots, with blue dots indicating n = 0).
Vertical dash-dot lines follow the energy progression of each
peak order. (C) Normalized peak energy versus sgn(n)
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boundary between the flat graphene and the
nanobubbles (fig. S2) exhibit features consistent
with a Dirac point located ~300 mV above the
Fermi energy, as recently observed by photoemis-
sion (17), as well as a gaplike feature with a full
width at half maximum (FWHM) of 127 T 9 mV
centered at the Fermi energy (Vsample = 0) recently
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Twisted graphene bilayer (Lin He, Beijing)

Graphene bilayer on top
of a Rh substrate 

   Twist creates a

Nanoscale ridge

 2

 
FIG. 1� (color online). (a) Large-area STM image of a twisted 
graphene bilayer with a wrinkle along a step of the Rh foil (Vsample = 
-600 mV and I = 0.24 nA). Moiré pattern with identical period 
appears on both the right and left terraces flanking the wrinkle. (b) 
Atomic-resolution image of the twisted graphene bilayer in the red 
frame of panel (a). It shows a moiré pattern with the period of 4.9 
nm (Vsample = -351 mV and I = 0.14 nA). The twisted angle of the 
graphene bilayer is estimated as about 2.9o. (c) A line profile along 
the black curve in panel (a). The average height and width (peak 
width at half-height) of the wrinkle are about 5 nm and 10 nm 
respectively. The small periodic protuberances with a period of 
about 4.9 nm on the two terraces are attributed to the moiré pattern 
arising from a stacking misorientation between the top graphene 
layer and the underlaying layer. STS measurements at different 
positions along the line profile show quite different characteristics, 
as shown in Fig. 2.  

In previous papers, we studied carefully the structures and 
the formation mechanism of the wrinkles and ripples on 
metallic substrates [44,45]. In this paper, we focus on the 
local electronic properties of the wrinkles of twisted 
graphene bilayer. The STM system was an ultrahigh 
vacuum four-probe SPM from UNISOKU. All STM and 
STS measurements were performed at liquid-nitrogen 
temperature and the images were taken in a constant-
current scanning mode. The STM tips were obtained by 
chemical etching from a wire of Pt(80%) Ir(20%) alloys. 
Lateral dimensions observed in the STM images were 
calibrated using a standard graphene lattice. The STS 
spectrum, i.e., the dI/dV-V curve, was carried out with a 
standard lock-in technique using a 957 Hz a.c. modulation 
of the bias voltage. 
     Figure 1(a) shows a typical STM image of a graphene 
wrinkle at the boundary of two flat terraces of Rh(111) 
surface. Moiré patterns with identical period ~ 4.9 nm are 
observed on both the right and left terraces flanking the 
wrinkle, as shown in Fig. 1(b). For monolayer graphene on 
a Rh(111) surface, the lattice mismatch between graphene 
(0.246 nm) and Rh(111) (0.269 nm) leads to hexagonal 
moiré superstructures with the expected periodicity ~ 
about 2.9 nm resulting from a 12C/11Rh coincidence 
lattice [46-48] (see Fig. S1 in the supplemental material 
[49] for a STM image of monolayer graphene on a Rh(111) 
surface. The characteristic of the Moiré superstructures is 
distinct from that shown in Fig. 1.). The 4.9 nm periodic 
protuberance, as shown in Fig. 1, is attributed to the moiré 
pattern arising from a stacking misorientation between the  

 
FIG. 2�(color online). (a) and (b): Tunneling spectra, i.e., dI/dV-V 
curves, recorded at different positions along the line profile in Fig. 1. 
The spectra have been vertically offset for clarity. Curves 1, 2, 3, 4, 
5, 6, 7, 9, and 10 are measured on the flat twisted graphene bilayer. 
The two pronounced peaks flanking zero-bias in these tunneling 
spectra are attributed to two Van Hove singularities of local density 
of states. The interlayer coupling strength of the twisted graphene 
bilayer increases with approaching the wrinkle. This is manifested 
by the energy difference of the two VHSs, which decreases with 
increasing the interlayer coupling. The dips in these tunneling 
spectra, as marked by arrows, are attributed to the emergence of 
superlattice Dirac cones possibly generated by a weak periodic 
potential of the morié pattern between the underlayer graphene and 
the substrate Rh (111) surface. Curve 8, which show quite distinct 
characteristics, is measured at the strained wrinkle of the twisted 
graphene bilayer. The sharp peaks in curve 8 are attributed to the 
Landau level quantizations of the strained graphene bilayer in a 
large pseudomagnetic field. 

top graphene layer and the underlayer graphene. The 
twisted angle T is related to the period of the Moiré pattern 
by D = a/(2sin(T/2)) and is estimated as 2.9°. The line 
profile, as shown in Fig. 1(c), indicates that the one-
dimensional wrinkle is a strained structure of the twisted 
graphene bilayer. The average height and width (peak 
width at half-height) of the wrinkle are about 5 nm and 10 
nm respectively. Due to the large curvature of the wrinkle 
shown in Fig. 1, it is difficult to obtain atomic-resolution 
image. It is only possible to obtain atomic-resolution 
image for wrinkle of graphene with a small curvature 
[44,45]. 

To systematic study the effects of strain on the 
electronic band structures of graphene bilayer, we carried 
out following experiments. Figure 2 shows ten dI/dV-V 
curves recorded at different positions along the line profile 
in Fig. 1. Curves 1-7, 9, and 10 are measured at the flat 
twisted graphene bilayer on the Rh(111) terraces. Curve 8, 
which shows distinct characteristics comparing with that 
of curves 1-7, 9, and 10, is measured at the strained 
wrinkle. The tunneling spectrum gives direct access to the 
local density of states (LDOS) of the surface at the 
position of the STM tip. The experimental result in Fig. 2 
indicates that the strain affects the electronic band 
structures of the twisted graphene bilayer remarkably. We 
will try to understand our experimental result subsequently.   

For a twisted graphene bilayer, the Dirac points of the 
two layers no longer coincide and the zero energy states 
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occur at k = -'K/2 in layer 1 and k = 'K/2 in layer 2 (here 
'K = 2Ksin(T/2) is the shift between the corresponding 
Dirac points of the twisted graphene bilayer, and K = 
4S/3a with a ~ 0.246 nm the lattice constant of the 
hexagonal lattice). When there is a finite interlayer 
hopping tT, two saddle points are unavoidable along the 
intersection of the two Dirac cones (see Fig. S2 in the 
supplemental material [49] for the electronic band 
structure of twisted bilayer graphene with a finite 
interlayer coupling.) [30,31,50,51]. The two saddle points 
result in two low energy VHSs flanking the Dirac points in 
the LDOS. The energy difference of the two VHSs 'Evhs 
decreases with increasing the interlayer hopping tT. For 
small tT (tT < 0.1 eV), 'Evhs ~ ʄȞF'K - 2tT (Here ȞF ~ 
1.1×106 m/s is the Fermi velocity, see Fig. S3 in the 
supplemental material [49] for the relationship between 
'Evhs and tT.). The two pronounced peaks flanking zero-
bias in the tunneling spectra of curves 1-7, 9, and 10, as 
shown in Fig. 2, are attributed to the two VHSs of LDOS. 
At a fixed position, the value of 'Evhs deduced from the 
tunneling spectra is almost a constant. However, the 
energy difference of the two peaks decreases when the 
experimental position approaches the strained wrinkle 
(similar experimental result was also observed in the left 
terraces of the wrinkle, the experimental values of the 
'Evhs obtained from curves 1-7 are also plotted in Fig. S3.), 
which indicates that the interlayer coupling strength is 
much enhanced by the strained structure. This is quite 
reasonable, since that the interlayer hopping parameter tT 
is sensitive to the distance of the graphene bilayer and the 
strained wrinkle is expected to shorten the distance. For 
curve 1, the energy difference of the two VHSs is 'Evhs ~ 
0.59 eV, which is only slightly smaller than ʄȞF'K ~ 
0.625 eV at 2.9° indicating that the interlayer hopping 
parameter tT  ~ 0.017 eV in our sample. For curve 7, 'Evhs 
~ 0.38 eV, which means that the interlayer hopping 
parameter increases to tT  ~ 0.145 eV. This is slightly 
larger than the value tT ~ 0.108 eV reported by Li et al. in 
CVD-grown graphene monolayer deposited on a graphite 
surface [30].  

Besides the two VHSs, curves 1-7, 9, and 10, as shown 
in Fig. 2, show two dips in the LDOS (marked by arrows), 
symmetrically placed at about ± (1.05±0.05) eV around 
the graphene Dirac point, irrespective of the interlayer 
coupling strength, but generally of asymmetric strength. 
This reminds us the characteristic of superlattice Dirac 
cones at ESD ~ ±ʄȞF|G|/2 induced by a weak periodic 
potential of the morié pattern between the graphene and 
the substrate (G is the reciprocal superlattice vectors of the 
morié pattern) [52]. With considering the period of the 
morié pattern ~ 2.9 nm between the underlayer graphene 
and the Rh (111) surface and ȞF ~ 1.1×106 m/s, we obtain 
ESD ~ ± 0.9 eV, which is slightly smaller than our 
experimental value. This slight discrepancy may arise 
from the fact that the value of velocity far from the charge 
neutrality point of graphene is larger than 1.1×106 m/s. It 
could reach 1.5 ± 0.2×106 m/s [53]. The Fermi velocity at 
about 1.0 eV from the charge neutrality point of our 
graphene sample is therefore estimated as 1.28×106 m/s. If 
the graphene-on-graphene morié (with the period ~ 4.9 nm) 
also results in similar superlattice Dirac cones, it should 
appears at ESD ~ ± 0.5 eV. At present, it is not clear that  

 

FIG. 3� (color online). The formation of LLs of massive Dirac 
fermions in the quantum Hall regime (a) without and (b) with a 
bandgap. LLs are indexed by the orbital and valley index, (N,[) 
[[�=+1 for valley K, [�=-1 for valley K’]. When there is a gap, the 
eight-fold degenerate level at the charge neutrality point becomes 
layer-polarized quartets. The LL(0,+);(1,+) projected on the top layer 
and the LL(0,-);(1,-) on the underlayer graphene. (c) The tunneling 
spectrum at the strained wrinkle. The sharp peaks are attributed to 
the LLs. The energies of these LLs follow the progression of LLs of 
massive Dirac Fermions with a band gap. The pseudomagnetic field 
is estimated as 100 T and the gap of the valley polarization is about 
0.30 eV.    

whether there is a contribution of superlattice Dirac cones 
of the graphene-on-graphene morié to the two dips at ± 0.5 
eV (as shown in Fig. 2) or the two dips at  ± 0.5 eV of the 
spectra are just a trivial consequence of the emergence of 
the two low energy VHSs.  

Now we turn to understand the distinct spectrum 
obtained at the strained wrinkle, shown as curve 8 in Fig. 
2. The sharp peaks of the tunneling spectrum are attributed 
to the LLs of the strained graphene bilayer in a large 
pseudomagnetic field. Our analysis is summarized in Fig. 
3. It is shown that these LLs follow the progression of LLs 
of massive Dirac Fermions EN = ±ʄZc[N(N-1)]1/2, N = 
0,1,2,…, along with a band gap Eg (here Zc = eBS/m* is the 
cyclotron frequency, BS is the pseudomagnetic field, m* = 
0.03me with me the mass of electron). The pseudomagnetic 
field of the strained wrinkle estimated according to the 
spectrum is about 100 T. The wrinkle is one of the 
simplest model to study the strain-induced pseudo-
magnetic flux of a corrugated graphene sheet [13]. The 
flux of the wrinkle can be estimated by ) = (Eh2/la))0 
(here h is the height, l the width of the wrinkle, 2 < E < 3, 
a is on the order of the C-C bond length, and )0 the flux 
quantum) [13,17,18]. The strain induced pseudomagnetic 
field of the wrinkle, as shown in Fig. 1, is calculated to be 
about 90 T (with h = 5 nm and l = 10 nm), which agrees 
quite well with our experimental result. However, it is 
unexpected that the strain-induced Landau level-like 
quantizations of twisted graphene bilayer are identical to 
the Landau quantizations of massive Dirac Fermions in AB 
Bernal stacking graphene bilayer in an external magnetic 
field. This result suggests that the wrinkle structure 
completely destroy the periodic morié patterns of the 
twisted graphene bilayer along the wrinkle, which as a 
consequence affects the band structure of the strained 
wrinkle. A more thorough theoretical analysis of the band 
spectrum as shown in Fig. 3 will likely uncover interesting 
physics in strained graphene bilayer with a twist.  

The size of the LL wavefunction, i.e., the magnetic 
length lB = [ʄ/(eB)]1/2, generated by the pseudomagnetic 
field (~ 100 T) is about 2.6 nm, which is much smaller  
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invariance, the system can be infinite in the x-direction but the smooth deformation condition (�t3 ⌧ t) brings a
limitation on the transverse size L
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because �t3 is growing linearly long the y-direction. Assuming �t3(y = 0) = 0,
then �t3(Ly
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Typically for a magnetic length l
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=
p

~/eB ' 10 nm and lattice constant a0 ' 0.1 nm, the ribbon width cannot
exceed 500 nm. The strength of the e↵ective magnetic field B is proportional to the gradient of the hopping amplitude
deformation. For a similar global deformation over the whole sample, a narrow ribbon hosts a stronger magnetic field
than a broader ribbon. Note that many other deformation fields lead to the same gauge vector potential, including
(�t1, �t2, �t3) = ev

F

By(2, 0, 0) or (�t1, �t2, �t3) = ev
F

By(0, 2, 0).

Single electron wavefunctions

We derive here the wavefunctions for noninteracting Dirac fermions under a strong pseudo-magnetic field (⇠Be

z

),
or more precisely the valley-dependent gauge potential A

⇠

(x) = ⇠A(x), which are both opposite fields in the valleys

⇠ = ±. We choose B positive for definiteness, and denotes l
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consider the first quantized Hamiltonian corresponding to Eq. 7, namely:
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where the components of the gauge-independent momentum ⇧

⇠ = p + ⇠eA do not commute due to the presence of
the pseudo-magnetic field. Unlike the real magnetic field case, the sign of the commutator:
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We now focus on the zero energy Landau level. The corresponding wave function in the ⇠-valley is (0, v
⇠

) with
a
⇠

v
⇠

= 0. Hence in the zero energy level, single electron wavefunctions are finite only on one triangular sublattice,
here the B-atoms sublattice (since we have chosen the field strength B to be positive). This is a general property
valid for any strain-induced gauge field on the graphene lattice.

Now we give explicitly the wavefunctions for the Landau gauge field A = �Bye
x

. Then the equation a
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reads:
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But with a limitation on the strained region size

Why strained induced fields are so large in graphene ?
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According to Eq. 9, the corresponding strain-induced vector potential is the familiar vector potential of the Landau
gauge A = �Bye

x

describing here a uniform magnetic field B = Be

z

in the valley ⇠ = +, and the opposite field in
valley ⇠ = �. In this gauge, the natural geometry is a rectangular one with linear sizes L
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We now focus on the zero energy Landau level. The corresponding wave function in the ⇠-valley is (0, v
⇠

) with
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= 0. Hence in the zero energy level, single electron wavefunctions are finite only on one triangular sublattice,
here the B-atoms sublattice (since we have chosen the field strength B to be positive). This is a general property
valid for any strain-induced gauge field on the graphene lattice.
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Molecular graphene (Manoharan, Stanford) 

A completed ‘flake’ of molecular graphene is shown in topographic
form in Fig. 1b, demonstrating a perfect internal honeycomb lattice
and discernable edge effects at the termination boundaries. The spec-
trum shown in Fig. 1c was measured at the lattice C sites near the
centre of a lattice built using 271 CO molecules separated by a distance
d 5

ffiffiffi
3
p

a 5 19.23 Å. The spectra in all the figures show surface-state
conductance, ~g(E,r), where r denotes the measurement position.
(Henceforth, ‘tilde’ quantities refer to continuum properties of the
Dirac fermions.) These spectra are measured by taking the ratio, gR,
between the measured differential tunnelling conductance and the
spatially averaged value acquired on clean Cu(111) (Supplementary
Fig. 2). This normalization removes the featureless slope present in the
bare Cu spectrum and cancels the effect of possible energy-dependent
tunnelling matrix elements that may vary between different microscope
tips. The jump in differential conductance at the two-dimensional band
edge, g2D 5 m*/pB2 5 1.585 eV 21 nm22, additionally provides a
quantitative calibration of the surface density of states (DOS) and is
used to scale gR to meaningful units (Supplementary Information).

The edge of the gap at the M point in momentum space (Fig. 1c) is
marked by the peak in conductance at EM 5 2104 meV. The Dirac
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Figure 1 | Dirac fermions in molecular graphene. a, Sequence of constant-
current topographs during the assembly of a molecular graphene lattice
(V 5 10 mV, I 5 1 nA). b, Topograph of a molecular graphene lattice
composed of 149 CO molecules (lattice constant, d 5 8.8 Å). c, Spatially
averaged, normalized differential conductance spectrum, ~g(V) (solid line),
measured on the top sites near the centre of quasi-neutral molecular graphene
(d 5 19.2 Å), accompanied by a tight-binding DOS fit (dashed line) with
hopping parameters t 5 90 meV and t9 5 16 meV. Inset, resulting Dirac cone
realized in reciprocal space (corresponding to fit parameters). The tight-
binding spectrum is calculated by finding energy eigenvalues of a finite
graphene lattice with Lorentzian basis functions (to model the finite lifetime
due to scattering to bulk states and coupling to the two-dimensional continuum
at the graphene edges, we used an electron self-energy S 5 C/2, where the
linewidth is C 5 40 meV from observed broadening of states near EF).
d, Linearly dispersing quasi-particles revealed by the conductance spectra
~g(~E,r), plotted individually for sublattice A (filled circles: pseudospin sz 5 11/
2, |"æ) and sublattice B (open circles: pseudospin sz 5 21/2, |#æ), measured at
locations r illustrated in the inset. Points for | ~E | = eVrms, where Vrms is the
modulation voltage, are excluded from this plot because this instrumental
broadening prohibits their accurate measurement.
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Figure 2 | Dirac point engineering in a p–n–p junction. Spectroscopic
measurements made from a p–n–p lattice with alternating lattice spacings: d
changes abruptly from 17.8 to 20.4 Å and then back again. a, Topograph of the
p–n–p lattice. The conductance spectra were measured across the centre line
marked by the grey arrows. b, Intensity colour plot of the conductance spectra
~g(V ,x), where x denotes the distance along the centre line. The white line is the
locus of minima (the Dirac points (ED)) in the conductance spectra. The dashed
line marks the Fermi energy (EF). Illustrative Dirac cones are superimposed to
show the effective doping of each region. c, Spatially averaged, normalized
conductance spectra measured along the centre line (marked by arrows in
a). The first spectrum (blue, left) was measured in the left-hand, p-type, region
(d 5 17.8 Å), the second (orange, centre) was measured in the central, n-type,
region (d 5 20.4 Å) and the third (blue, right) was measured in the right-hand,
p-type, region (d 5 17.8 Å).
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surface spectrum (~g) across the lattice along the line indicated (Fig. 2a, b,
arrows), crossing all regions. Because there are no charging effects, the
interface between the p- and n-type regions is very narrow: it is about
20 Å wide (Fig. 2b). The extremely short transition between the p- and
n-type regions makes this device a suitable candidate in which to study
phenomena such as the Klein paradox18 or to create a Veselago lens19.

Using atomic manipulation, we created both pseudospin-conserving
and pseudospin-breaking local disturbances further to reveal the
Dirac nature of our system. We started with quasi-neutral molecular
graphene with ED near EF (271 CO molecules, d 5 19.2 Å) and tested
two symmetries (a C-site defect (Fig. 3a), which locally imbalances the
sublattices, and an empty-site vacancy (Fig. 3c), which locally preserves
sublattice symmetry); these two structures are topologically distinct
because their potentials correspond respectively to a local vector
potential and a local scalar potential coupling to pseudospin. By sub-
tracting two low-bias scanning tunnelling microscope topographs, one
with the impurity and the other without it, and both locked to exactly the
same area and using identical measurement parameters, we obtain
detailed pseudospin maps resulting from the tiny DOS perturbations
caused by quantum interference. The distinct patterns observed have the
three-fold symmetry (Fig. 3b) predicted for single impurities in graphene
that disrupt the Berry phase20, rather than the full six-fold symmetry of
a scalar perturbation, which conserves pseudospin21–23 (Fig. 3d).

Topological changes fundamentally alter the lattice symmetry and
are the key to unlocking physical phenomena such as electron fractio-
nalization6–8,10–12,22. In graphene, one of the simplest (yet unrealized)
deformations is the Kekulé distortion rooted in the historical inter-
pretation of benzene. This distortion breaks the bond symmetry of
graphene by forming two hopping elements, t1 and t2, in the pattern
shown in Fig. 3e. We produce this distortion using a special ‘Mercedes’
arrangement of CO molecules in the honeycomb empty sites. This has
the effect of modulating the strength of every other C–C bond along
the perimeter of each cell. Such a distortion adds an off-diagonal term
to the Hamiltonian11, such that

HG~
B~csNk DI2|2

D!I2|2 {B~csNk

! "

where I2|2 is the two-by-two identity matrix and an asterisk denotes
complex conjugate. This distortion is predicted to open an energy gap,
D, even if the underlying sublattice symmetry is not broken; notably, this
effect has never been observed. Figure 3f proves that the Kekulé distor-
tion works as theoretically predicted, creating massive Dirac fermions
out of the massless Dirac fermions in the pristine lattice. From fits to
theory, the mass of the emergent fermions is mD 5 0.1 6 0.02 me. The
Kekulé ground state10–12,24,25 has an intriguing mapping to a supercon-
ducting topological surface state26, after pseudospin is mapped to spin
and the valley degree of freedom to an isospin, equivalent to attaching a
scalar gauge field that produces a Dirac fermion mass. This scalar gauge
field is manifest in the bond-density wave mosaic structure visible in
Fig. 3e. The transition from massless to massive Dirac fermions has
been theoretically cast as a quantum phase transition3,11; the molecular
graphene system provides an experimental test bed of these ideas start-
ing with the spontaneous generation of mass observed here.

The chiral character of the electronic charge in graphene is due to the
pseudospin associated with the symmetry between the two triangular
sublattices that form the honeycomb lattice. It has been proposed that
by breaking this sublattice symmetry through strain, it is possible to
generate a pseudomagnetic field and therefore obtain Landau levels
and quantum Hall phases without breaking time reversal symmetry.
The effect of strain has recently been observed in graphene nano-
bubbles27, but tunable molecular graphene offers much more precise
and in situ control over internal gauge fields. The strain field displace-
ments in polar coordinates (r and h) suggested9 to generate a constant
field are (ur, uh) 5 (qr2sin(3h), qr2cos(3h)), where q is a parameter denot-
ing the strength of the strain. In our final experiment, we applied this
strain field to molecular graphene by means of atomic manipulation.

Topographs for successively strained graphene are shown in
Fig. 4a. The value of the pseudomagnetic field can be estimated as
~B 5 8bBq/ea 5 16pqB/3de, where b 5 2Lln(t)/Lln(a) < 2 (Supplemen-
tary Information). We study strain values up to q 5 1023 Å21, which is
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Figure 4 | Landau quantization and topological zero modes in a tunable
pseudomagnetic field. a, Sequence of topographs of molecular graphene
lattices with increasing values of triaxial strain. The position of each CO
molecule was determined by the dislocation vector defined in the main text.
From bottom to top, q 5 0, 2.5 3 1024, 5 3 1024, 7.5 3 1024 and 1023 Å21.
The corresponding values of the constant pseudomagnetic field are ~B 5 0, 15,
30, 45 and 60 T (felt in opposite directions by the two graphene valleys; see
d, top inset). b, Topograph at the centre of the lattice without strain distortion
(q 5 0 Å21), showing the unbroken symmetry between each sublattice
(pseudospin) of the honeycomb. c, Topograph at the centre of the lattice with
strain distortion (q 5 1023 Å21), showing the broken symmetry between each
sublattice (one bright and one dark) as a result of the localization of the zero
Landau level on half of the sample (bright sublattice). d, Left: normalized
conductance spectra measured on sublattice A (brighter top sites in c and
orange circles in inset schematic) for successive values of strain. The spectra
were measured near the centres of the lattices shown in a. Right: spectra
measured on sublattice B (darker top sites in c and blue circles in inset
schematic) for the same successive values of strain, showing the opening of a
Landau gap. Grey solid curves are tight-binding fits of strained finite lattices to
the experiment. The grey dotted curve shows a tight-binding calculation in a
real magnetic field, B 5 60 T, for an unstrained lattice of the same dimensions
and hopping parameters.

LETTER RESEARCH

1 5 M A R C H 2 0 1 2 | V O L 4 8 3 | N A T U R E | 3 0 9

Macmillan Publishers Limited. All rights reserved©2012

Triaxial deformation

Typical pseudofields: 60 Tesla ! 
in «pseudographene»



Fermionic cold atoms (Esslinger, ETH Zurich) 

Uniform deformation

j. The results obtained for a honeycomb lattice with V!X=ER~3:6(2),
VX=ER~0:28(1) and VY=ER~1:8(1) are displayed in Fig. 2b and
show a sharp maximum in the transferred fraction. We identify this
situation as the point of inversion symmetry, where D 5 0 (h 5p), in
good agreement with an independent calibration (Methods). At this
setting, the bandgap at the Dirac points vanishes. The population in
the second band decreases symmetrically on both sides of the peak as
the gap increases, indicating the transition from massless to massive
Dirac fermions.

The relative strength of the tunnel couplings between the different
sites of the lattice fixes the position of the Dirac points inside the
Brillouin zone, as well as the slope of the associated linear dispersion
relation5–9. However, the tunability of our optical lattice structure
allows for independent adjustment of the tunnelling parameters in
the x and y directions simply by controlling the intensity of the laser
beams. For isotropic tunnellings, the slope of the dispersion relation
around the Dirac points is the same in all directions, but is anisotropic
otherwise. The distance from the Dirac points to the corners of the
Brillouin zone along qy can be varied between 0 and qB/2, whereas
qx 5 0 is fixed by reflection symmetry20. Here qB 5 2p/l denotes the
Bloch wave vector.

We exploit the momentum resolution of the interband transitions
directly to observe the movement of the Dirac points. Starting from a
honeycomb lattice with V!X=ER~5:4(3), VX=ER~0:28(1) and
VY=ER~1:8(1), we gradually increase the tunnelling in the x direction
by decreasing the intensity of !X. The position of the Dirac points
continuously approaches the corners of the Brillouin zone (Fig. 3),
as expected from an ab initio two-dimensional band structure calcula-
tion (Methods). The deviations close to the merging point are possibly

caused by the flattening of the dispersion relation between the two
Dirac points as they approach each other8.

When they reach the corners of the Brillouin zone, the two Dirac
points merge, annihilating each other. There the dispersion relation
becomes quadratic along the qy axis, remaining linear along qx. Beyond
this critical point, a finite bandgap appears for all quasi-momenta of
the Brillouin zone. This situation signals the transition between band
structures of two different topologies, one containing two Dirac points
and the other containing none. For two-dimensional honeycomb lattices
at half-filling, it corresponds to a Lifshitz phase transition from a
semimetallic phase to a band-insulating phase6,7.

We experimentally map out the topological transition line by
recording the fraction of atoms transferred to the second band, j,
as a function of the lattice depths V!X and VX, while keeping
VY/ER 5 1.8(1). The results are shown in Fig. 4a. There the onset of
population transfer to the second band signals the appearance of Dirac
points in the band structure of the lattice. For a given value of VX, the
transferred fraction, j, decreases again for large values of V!X, as the
Dirac points lie beyond the momentum width of the cloud.

To extend the range of our measurements and probe the Dirac
points even in this region, we apply a force in the y direction. We
hence explore a new class of trajectories in quasi-momentum space.
This allows for the investigation of very anisotropic Dirac cones, which
become almost flat in the qx direction as we approach the crossover to a
one-dimensional lattice structure (V!X?VX). Along the qy trajectories,
the centre of the cloud successively passes the two Dirac points during
the Bloch cycle, effectively realizing a Stückelberg interferometer23,24 in
a two-dimensional band structure. As shown in Fig. 4b, we again
identify the topological transition by the onset of population transfer
to the second band. The results for the transition lines obtained for the

3.0 3.5 4.0 4.5 5.0 5.5
VX (ER)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
is

ta
nc

e 
to

 B
Z 

co
rn

er
 (q

B
)

qy

qx

0

W

En
er

gy
 s

pl
itt

in
g

b

a

Merging point (VX = 3.4ER)–

–

VX = 3.4ER VX = 4.0ER VX = 5.5ER
– – –

Figure 3 | Movement of the Dirac points. a, Distance from the Dirac points to
the corners of the Brillouin zone, as measured through momentum-resolved
interband transitions. The tunnelling in the x direction increases when the
lattice depth V!X is decreased. The distance is extracted from the second-band
quasi-momentum distribution after one Bloch cycle (insets). The merging of
the two Dirac points at the corners of the Brillouin zone is signalled by a single
line of missing atoms in the first band. Data show mean 6 s.d. of three to nine
measurements. The solid line is the prediction of a two-dimensional band
structure calculation without any fitting parameters. b, Energy splitting
between the two lowest bands. It shows the displacement of the Dirac cones
inside the Brillouin zone, as well as their deformation depending on the lattice
depth V!X.
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Figure 4 | Topological transition. Fraction of atoms transferred to the second
band, j, as a function of lattice depths V!X and VX, with VY/ER 5 1.8(1).
Different lattice geometries (square, chequerboard, triangular, dimer and
honeycomb) are realized (Fig. 1b). We consider trajectories in quasi-
momentum space in the qx (a) and qy (b) directions. Each data point is a single
measurement, and as a result there are at least 1,200 points per diagram. To
maximize the transfer for the qy trajectories, where the cloud successively passes
the two Dirac points, we set h 5 1.013(1)p. For both trajectories, the onset of
population transfer to the second band signals the topological transition, where
the Dirac points appear. The dashed line is the theoretical prediction for the
transition line without any fitting parameters, and the dotted line indicates the
transition from the triangular lattice to the dimer lattice. The bottom diagrams
show cuts of the band structure along the qx axis (qy 5 0; a) and qy axis (qx 5 0;
b) for the values of VX and V!X indicated.
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PART III: 
Interactions in a partially filled 

pseudo Landau level

     Interaction Hamiltonian

     Integer filling of spin-valley subbands

     Fractional filling of the spin-valley degenerated PLL



Interaction Hamiltonian 
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In this work, we study interaction e↵ects within the partially filled zero-energy flat band (n = 0 PLL) created by
strain. We consider the following interaction Hamiltonian on the honeycomb lattice:

H
int

=
X

ri 6=rj

V (r
i

� r
j

)n(r
i

)n(r
j

) + U
0

X

ri

n(r
i

)n(r
i

) + U
nnn

X

hri,rji

n(r
i

)n(r
j

) (3)

where

V (r
i

� r
j

) = e2/4⇡✏|r
i

� r
j

| (4)

denotes the bare Coulomb potential, n(r
i

) the fermion number operator on site r
i

, and hr
i

, r
j

i represents summation
over all pairs of next-nearest-neighboring (NNN) sites. The bare Coulomb interaction is the dominant interaction due
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PLL the noninteracting wave functions are localized on a single sublattice (see Supplementary). Interesting proposals
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spontaneously the time-reversal invariance of the strained graphene Hamiltonian, and spins are in a singlet state
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the eigenspinors [? ? ]. Also contrary to the real mag-
netic field Hall e↵ect, long range Coulomb interaction
prefers an Ising-like Z

2

valley polarized state rather than
a more general SU(2)-valley-rotated state (see Supple-
mental material).

We now introduce on-site Hubbard interaction U
0

while
U
nnn

= 0 in Eq. 3 and compute numerically the total en-
ergy of finite size systems on a torus (Fig. ??, squares).
As expected solely the energy of the valley polarized state
is modified while the spin polarized state is unchanged
(Fig. ??, horizontal dashed line) because double occu-
pancy is forbidden by the Pauli principle in the fully spin
polarized state. As a result, the competing valley polar-
ized state (Fig. ??, empty squares) is the groundstate
as long as the Hubbard interaction is not too repulsive
(U

0

< 0.5 in units of

e2/4⇡✏a
0

(7)

, including the pure Coulomb case. Further increase
of the on-site Hubbard interaction stabilizes the spin fer-
romagnet state. Using gating or di↵erent substrates, it
could be possible to switch the groundstate between spin
ferromagnet and valley Ising ferromagnet. Spin polarized
STM and Kerr imaging could indeed detect these com-
peting ground states. Here the valley Ising ferromagnet
is an integer quantum Hall state with two units of quan-
tized Hall conductance, that spontaneously breaks time
reversal symmetry.

In order to test the sensitivity of the phase diagram
with respect to the details of the short range part of the
interaction, we further consider a second model where the
next-nearest-neighbouring coupling U

nnn

is varied while
U
0

= 0. Interestingly we have obtained the reverse phe-
nomenology where repulsive U

nnn

tends to valley polarize
the system (Fig. ??, triangles).

Conclusion. We have shown that strained graphene
hosts various fractional topological phases which depend
on the detailed structure of the electron-electron interac-
tions. In current experiments on both real graphene [?
] and artificially designed molecular graphene [? ], the
nano-scale strained regions are small, typically of the or-
der of the magnetic length, and they are strongly coupled
to a metallic substrate. Future experiments on insulating
substrates could address bigger strained regions. Never-
theless, signatures of fractional states in restricted do-

mains and interactions with itinerant electrons outside
the strained region will be important topics for future
study. The n = 0 Landau levels are expected to be the
best isolated, since they occur at the Dirac point, where
the density of itinerant states is the smallest.

The predited phases relies on the flatness of the PLL
n = 0 which requires spacially homogeneous strained in-
duced magnetic fields in each valley. To this respect ar-
tificially patterned honeycomb lattices [? ? ? ] poten-
tially allows for a better control upon the deformation
pattern and therefore upon the flatness of the PLLs, in
comparison to the mechanical strain in real graphene.
Cold atoms in hexagonal optical lattices [? ? ] are
particularly suitable to access the attractive interaction
regime. Finally we stress that the long range part of
the Coulomb interaction is always present in our calcu-
lations. This is at odds with current experiments [? ?
? ? ] but it should be relevant for real graphene and
for future experiments on artificial graphenes realised in
surface states lying on insulating substrates. Finally this
study opens the prospect of discovering a series of new
nontrivial topological phases at other fractional fillings
and in higher pseudo Landau levels as well.
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In this work, we study interaction e↵ects within the partially filled zero-energy flat band (n = 0 PLL) created by
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over all pairs of next-nearest-neighboring (NNN) sites. The bare Coulomb interaction is the dominant interaction due
to the poor screening in neutral graphene. Nevertheless we also allow arbitrary modification of the short-distance part
of the Coulomb interaction by adding local on-site and NNN interactions with respective strengths U
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and U
nnn

. The
nearest neighbor interaction is not e↵ective in presence of strong pseudo-magnetic field because in the zero energy
PLL the noninteracting wave functions are localized on a single sublattice (see Supplementary). Interesting proposals
for altering short ranged interactions using substrates with momentum dependent dielectric susceptibility has been
discussed [? ]. Unfortunately the actual values of U

0

and U
nnn

are not known in strained graphene although first
principles calculations yield total on-site coupling U
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= 9.3 eV and a small deviation U
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of the
NNN coupling from its bare Coulomb value in freestanding (and unstrained) graphene in zero magnetic field [? ].

Fractionalized phases and superconductivity at 2/3 filling of the n = 0 PLL. Fractional Hall states in
graphene under an external magnetic field were reported experimentally [? ? ? ]. Although strain produces flat PLLs,
it is not evident that interactions can generate incompressible phases at fractional filling in time-reversal invariant
strained graphene. We focus here on the 2/3 filling of the four-fold degenerate n = 0 PLL. This 2/3 filling has been
studied so far in graphene sheets [? ? ] and in GaAs Hall bilayers [? ] under real magnetic field. In the present case
of strained graphene, this particular filling allows for interesting possibilities including valley ferromagnetism (which
breaks spontaneously time-reversal symmetry), valley symmetric topological states, and also superconductivity.

Real graphene: time reversal breaking FQH state in a single valley. We first consider real graphene with the
unscreened Coulomb interaction, namely U

0

= U
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= 0 in Eq. (??). Then the ground state is found to be a valley
polarized FQH state both for spinless (Fig. ??) and spinfull (Fig. ??) electrons. This valley-polarized state breaks
spontaneously the time-reversal invariance of the strained graphene Hamiltonian, and spins are in a singlet state
as in the 2/3 FQH states [? ? ? ] obtained under real magnetic field. We have further checked that the Chern
number is 2/3 and that the three lowest energy states form a degenerated ground state manifold. Due to the large
values of strain-induced pseudomagnetic fields, this state may be realized with elevated energy scales, allowing for the
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over all pairs of next-nearest-neighboring (NNN) sites. The bare Coulomb interaction is the dominant interaction due
to the poor screening in neutral graphene. Nevertheless we also allow arbitrary modification of the short-distance part
of the Coulomb interaction by adding local on-site and NNN interactions with respective strengths U
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nearest neighbor interaction is not e↵ective in presence of strong pseudo-magnetic field because in the zero energy
PLL the noninteracting wave functions are localized on a single sublattice (see Supplementary). Interesting proposals
for altering short ranged interactions using substrates with momentum dependent dielectric susceptibility has been
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NNN coupling from its bare Coulomb value in freestanding (and unstrained) graphene in zero magnetic field [? ].

Fractionalized phases and superconductivity at 2/3 filling of the n = 0 PLL. Fractional Hall states in
graphene under an external magnetic field were reported experimentally [? ? ? ]. Although strain produces flat PLLs,
it is not evident that interactions can generate incompressible phases at fractional filling in time-reversal invariant
strained graphene. We focus here on the 2/3 filling of the four-fold degenerate n = 0 PLL. This 2/3 filling has been
studied so far in graphene sheets [? ? ] and in GaAs Hall bilayers [? ] under real magnetic field. In the present case
of strained graphene, this particular filling allows for interesting possibilities including valley ferromagnetism (which
breaks spontaneously time-reversal symmetry), valley symmetric topological states, and also superconductivity.

Real graphene: time reversal breaking FQH state in a single valley. We first consider real graphene with the
unscreened Coulomb interaction, namely U

0

= U
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= 0 in Eq. (??). Then the ground state is found to be a valley
polarized FQH state both for spinless (Fig. ??) and spinfull (Fig. ??) electrons. This valley-polarized state breaks
spontaneously the time-reversal invariance of the strained graphene Hamiltonian, and spins are in a singlet state
as in the 2/3 FQH states [? ? ? ] obtained under real magnetic field. We have further checked that the Chern
number is 2/3 and that the three lowest energy states form a degenerated ground state manifold. Due to the large
values of strain-induced pseudomagnetic fields, this state may be realized with elevated energy scales, allowing for the



Half-filled n=0 Pseudo Landau Level

Valley ferromagnet:

3

state manifold GSM (Fig. ??.a, lines with symbols)
which is well separated from the higher energy states (Fig
??.a, lines without symbols). This valley-symmetric and
9-fold degenerated phase is called here valley fractional
topological insulator, since valley plays the role taken by
spin in the previously discussed ”spin” FTIs [? ? ? ?
]. Moreover the momentum quantum numbers of these
states are at k = 0 and other k determined by shifting
the momentum of each electron by an integer multiple
of 2⇡/N

s

, where N
s

is the PLL orbital degeneracy. This
determines three di↵erent momenta sectors (k = 0, ⇡/3,
and 2⇡/3) and there are three near degenerate states in
each sector. These sectors can be considered as ground
state flows from one sector to another upon inserting flux
through adding the twist boundary phase (Fig. ??.b).

As a complementary characterization of the valley FTI
phase, we further perform valley-pseudospin Chern num-
ber calculation [? ? ] by adding the same bound-
ary phase along x-direction, and the opposite ones along
y-direction for both valleys [? ? ]. This generalized
pseudospin Chern number is well defined as the electron
number in each valley is conserved thus that the valley-
pseudospin is a good quantum number. We find a total
Chern number quantized to 6 for all nine levels, charac-
terizing the 2/3 fractionalized valley spin-Hall e↵ect.

Finally we can also turn on and increase the intraval-
ley part of the NNN coupling Us

nnn

(see supplemen-
tary). In the limit of very large intravalley correla-
tions (Us

nnn

! 1), we expect a totally valley-decoupled
1/3 + 1/3̄ phase consisting of two 1/3 Laughlin FQH
states with opposite chiralities. We find no phase tran-
sition between the valley FTI state discussed above (at
Us

nnn

= 0 ) and the decoupled fractional valley Hall in-
sulator (see supplementary).

The above results for spinless electrons can be summa-
rized in a phase diagram (Fig. ??.c). For Uop

nnn

> �0.35
(which includes realistic graphene), electrons have a nat-
ural tendency towards valley ferromagnetism, which is
expected for repulsive interactions in a such a flat band
system. In order to realize the valley FTI, one needs
to counteract this trend by tuning an attraction between
electrons in the opposite valleys. Besides, one also notices
a narrow range of parameters (�0.58 < Uop

nnn

< �0.35)
where the valley-polarization is lost but the GSM de-
generacy not yet achieved. The understanding of this
crossover region between the valley polarized FQH insu-
lator and the valley FTI is still lacking and will be studied
elsewhere. Finally superconductivity might appear when
attraction is dominant (Uop

nnn

< �0.58). This flat band
superconductivity is discussed below in more details for
the spinfull electrons.

Spinfull fermions and spin triplet superconducting
state. We now consider spinfull fermions and we tune
U
nnn

without distinguishing the valleys. For su�ciently
large attraction (Fig. ??), namely U

nnn

 �0.8 (note
that when added to the Coulomb repulsion, this ends up

giving a somewhat smaller but still attractive next near-
est neighbor interaction of U tot

nnn

= �0.2), the ground
state of the spinful model becomes a spin triplet and
valley singlet superconducting state which is consistent
with BCS-type mean field treatment (see supplemen-
tary). The superconductivity is characterized by a finite

superfluid density n
s

= 1/2@

2
Eg

@✓

2 which is calculated from
the change of the ground state energy E

g

upon adding
a small phase twist ✓ as [? ? ]. Moreover the finite
jump for n

s

at the transition point U
nnn

= �0.8 (inset of
Fig. ??) points towards a first-order transition between
the valley polarized state and the spin polarized super-
conducting state. The typical momentum dependence of
energy (Fig. ??.c) di↵ers drastically from the 2/3 valley-
polatized FQH case (Fig. ??c) as the ground state is in
the k = 0-sector without the typical quasi-degeneracy of
FQH state.

Half-filling n = 0 PLL. We now turn to the case
of neutral graphene (filling factor ⌫ = 0) under large
pseudomagnetic fields generated by strain. Due to the
electron-hole symmetry, the n = 0 PLL is half-filled and
there is natural a competition between valley ferromag-
net:
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ground states, k labeling the Landau orbitals of the
zero energy (n = 0) PLL and (R,L) the valleys. Similar
issue of valley and spin ferromagnetism in the half-filled
n = 0 Landau level has attracted a lot of interest for
unstrained graphene under a real magnetic field [? ? ?
? ? ? ]. Here we revisit this problem in the case of a
time-reversal symmetric pseudomagnetic field.

We first consider the case of pure Coulomb interaction
(U

0

= U
nnn

= 0). Using Hartree-Fock method [? ? ]
we find that the valley and spin polarized states have
the same energy when only dominant density-density
terms are taken into account. We find that the inter-
valley backscattering terms lift this degeneracy by favor-
ing the valley polarization. Note that for real magnetic
field, those backscattering terms are absent in the zero-
energy Landau level (n = 0) due to the symmetry of
the eigenspinors [? ? ]. Also contrary to the real mag-
netic field Hall e↵ect, long range Coulomb interaction
prefers an Ising-like Z

2

valley polarized state rather than
a more general SU(2)-valley-rotated state (see Supple-
mental material).

Spin ferromagnet:

3

state manifold GSM (Fig. ??.a, lines with symbols)
which is well separated from the higher energy states (Fig
??.a, lines without symbols). This valley-symmetric and
9-fold degenerated phase is called here valley fractional
topological insulator, since valley plays the role taken by
spin in the previously discussed ”spin” FTIs [? ? ? ?
]. Moreover the momentum quantum numbers of these
states are at k = 0 and other k determined by shifting
the momentum of each electron by an integer multiple
of 2⇡/N

s

, where N
s

is the PLL orbital degeneracy. This
determines three di↵erent momenta sectors (k = 0, ⇡/3,
and 2⇡/3) and there are three near degenerate states in
each sector. These sectors can be considered as ground
state flows from one sector to another upon inserting flux
through adding the twist boundary phase (Fig. ??.b).

As a complementary characterization of the valley FTI
phase, we further perform valley-pseudospin Chern num-
ber calculation [? ? ] by adding the same bound-
ary phase along x-direction, and the opposite ones along
y-direction for both valleys [? ? ]. This generalized
pseudospin Chern number is well defined as the electron
number in each valley is conserved thus that the valley-
pseudospin is a good quantum number. We find a total
Chern number quantized to 6 for all nine levels, charac-
terizing the 2/3 fractionalized valley spin-Hall e↵ect.

Finally we can also turn on and increase the intraval-
ley part of the NNN coupling Us

nnn

(see supplemen-
tary). In the limit of very large intravalley correla-
tions (Us

nnn

! 1), we expect a totally valley-decoupled
1/3 + 1/3̄ phase consisting of two 1/3 Laughlin FQH
states with opposite chiralities. We find no phase tran-
sition between the valley FTI state discussed above (at
Us

nnn

= 0 ) and the decoupled fractional valley Hall in-
sulator (see supplementary).

The above results for spinless electrons can be summa-
rized in a phase diagram (Fig. ??.c). For Uop

nnn

> �0.35
(which includes realistic graphene), electrons have a nat-
ural tendency towards valley ferromagnetism, which is
expected for repulsive interactions in a such a flat band
system. In order to realize the valley FTI, one needs
to counteract this trend by tuning an attraction between
electrons in the opposite valleys. Besides, one also notices
a narrow range of parameters (�0.58 < Uop

nnn

< �0.35)
where the valley-polarization is lost but the GSM de-
generacy not yet achieved. The understanding of this
crossover region between the valley polarized FQH insu-
lator and the valley FTI is still lacking and will be studied
elsewhere. Finally superconductivity might appear when
attraction is dominant (Uop

nnn

< �0.58). This flat band
superconductivity is discussed below in more details for
the spinfull electrons.

Spinfull fermions and spin triplet superconducting
state. We now consider spinfull fermions and we tune
U
nnn

without distinguishing the valleys. For su�ciently
large attraction (Fig. ??), namely U

nnn

 �0.8 (note
that when added to the Coulomb repulsion, this ends up

giving a somewhat smaller but still attractive next near-
est neighbor interaction of U tot

nnn

= �0.2), the ground
state of the spinful model becomes a spin triplet and
valley singlet superconducting state which is consistent
with BCS-type mean field treatment (see supplemen-
tary). The superconductivity is characterized by a finite

superfluid density n
s

= 1/2@

2
Eg
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2 which is calculated from
the change of the ground state energy E

g

upon adding
a small phase twist ✓ as [? ? ]. Moreover the finite
jump for n

s

at the transition point U
nnn

= �0.8 (inset of
Fig. ??) points towards a first-order transition between
the valley polarized state and the spin polarized super-
conducting state. The typical momentum dependence of
energy (Fig. ??.c) di↵ers drastically from the 2/3 valley-
polatized FQH case (Fig. ??c) as the ground state is in
the k = 0-sector without the typical quasi-degeneracy of
FQH state.

Half-filling n = 0 PLL. We now turn to the case
of neutral graphene (filling factor ⌫ = 0) under large
pseudomagnetic fields generated by strain. Due to the
electron-hole symmetry, the n = 0 PLL is half-filled and
there is natural a competition between valley ferromag-
net:
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ground states, k labeling the Landau orbitals of the
zero energy (n = 0) PLL and (R,L) the valleys. Similar
issue of valley and spin ferromagnetism in the half-filled
n = 0 Landau level has attracted a lot of interest for
unstrained graphene under a real magnetic field [? ? ?
? ? ? ]. Here we revisit this problem in the case of a
time-reversal symmetric pseudomagnetic field.

We first consider the case of pure Coulomb interaction
(U

0

= U
nnn

= 0). Using Hartree-Fock method [? ? ]
we find that the valley and spin polarized states have
the same energy when only dominant density-density
terms are taken into account. We find that the inter-
valley backscattering terms lift this degeneracy by favor-
ing the valley polarization. Note that for real magnetic
field, those backscattering terms are absent in the zero-
energy Landau level (n = 0) due to the symmetry of
the eigenspinors [? ? ]. Also contrary to the real mag-
netic field Hall e↵ect, long range Coulomb interaction
prefers an Ising-like Z

2

valley polarized state rather than
a more general SU(2)-valley-rotated state (see Supple-
mental material).

Reminiscent of the same problem for a real field:

but here SU(4) symmetry is reduced to SU(2)xZ2

M. O. Goerbig, R. Moessner, and B. Douçot, Phys. Rev. B 74, 161407, 2006

J. Alicea and M.P.A. Fisher, Phys. Rev. B 74, 075422, 2006
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Coulomb + on-site Hubbard corrections U0

On-site repulsion favors the spin ferromagnet

No Zeeman effect at all (in contrast to real field)

3

rather than a more general SU(2)-valley-rotated state
(see Supplementary).

We now introduce short ranged Hubbard correlations
and compute numerically the total energy of finite size
systems on a torus. First we have checked that the val-
ley polarized state has indeed lower energy for the pure
Coulomb case (Fig. 2). As a simplest type of perturba-
tion, we have introduced strictly on-site Hubbard inter-
action U

0

�
ij

n(r
i

)n(r
j

) on top of the bare Coulomb in-
teraction. As expected solely the energy of the valley
polarized state is modified while the spin polarized state
is unchanged (Fig. 2). Indeed in the valley polarized
state, double occupancy of a single site is allowed thereby
providing an energy proportional to U

0

. In contrast, in
the spin polarized state, double occupancy is forbidden
by the Pauli principle and the total energy is therefore
insensitive to the on-site Hubbard coupling. As a result,
the competing valley polarized state (empty square, Fig.
3) is the groundstate as long as the Hubbard interaction
is not too repulsive (U

0

< 0.5 in units of e2/4⇡✏a ' 10
eV), including the pure Coulomb case and further in-
crease of the on-site Hubbard interaction stabilize the
spin ferromagnet state.

In order to test the sensitivity of the phase diagram
with respect to the details of the short range part of
the interaction, we have replaced the on-site Hubbard
interaction by the NNN coupling U

nnn

. Interestingly we
have obtained the reverse phenomenology where repul-
sive U

nnn

tends to valley polarize the system. Indeed
both spin and valley ferromagnets are a↵ected by the
Hubbard NNN coupling, and the spin polarized state
(filled triangle) is now stabilized for su�ciently attrac-
tive (U

nnn

< �0.5 in units of e2/4⇡✏a ' 10 eV). The
electrons in the opposite valleys are easier to pair up
driven by the NNN attracting interaction. These results
can also be derived within the Hartree-Fock approxima-
tion (see supplementary).

The very contrasted phase diagrams for strictly one-
site and NNN couplings thus demonstrate that the
ground state is very sensitive to lattice scale details of
the interaction (Fig. 2,b). This is related to the fact
that competing states are nearly degenerated if one only
takes into account the long distance Coulomb interac-
tion. Unfortunately the actual values of U

0

and U
nnn

in
strained graphene samples are not known so it is di�cult
to conclude reliably whether spin or valley gets polarized.
Nevertheless recent first principles calculations yield to-
tal on-site coupling U

0

= 9.3 eV and total NNN coupling
of 5.4 eV for freestanding (and unstrained) graphene in
zero magnetic field27. In our units (e2/4⇡✏a ' 10 eV)
those values correspond to U

0

' 1 pointing towards
the spin ferromagnetic phase (Fig. 2,b). The devia-
tion U

nnn

' �0.04 of the NNN coupling from its bare
Coulomb value can be neglected. Using gating or di↵er-
ent substrates, it could be possible to switch the ground-
state between spin ferromagnet and valley Ising ferro-
magnet. Spin polarized STM and Kerr imaging could
indeed detect these competing ground states. Note, the
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FIG. 2: (Color online) Filling ⌫ = 0. (a) The energy of the
di↵erent Hartree-Fock states are compared in the presence
of either on-site Hubbard term (U0) or NNN one (U

nnn

).
All energies remain linearly depending on Hubbard U0(Unnn

)
for all parameters. The degeneracy of LL orbits is N

s

= 48
while electron number in di↵erent valleys (or spins) sum up
to N

e

= 96. The lattice we considered has 96 ⇥ 96 sites. (b)
Phase diagrams for two di↵erent types of Hubbard correla-
tions: one-site (U0) and NNN (U

nnn

). The energy is in units
of e2/4⇡✏a with a as the distance between the NN sites. Red
dots indicate the values of the coupling strengths for free-
standing and unstrained graphene according to Ref.27.

valley Ising ferromagnet is an integer quantum Hall state
with two units of quantized Hall conductance, that spon-
taneously breaks time reversal symmetry.

V. FRACTIONALIZED PHASES AND
SUPERCONDUCTIVITY

Fractional Hall states in graphene under an external
magnetic field were reported experimentally only very
recently28–30. Although strain produces flat pseudo Lan-
dau levels, it is not evident that interactions can generate
incompressible phases at fractional filling in time-reversal
invariant strained graphene. Using exact diagonalization
of finite size systems, we actually find such interaction-
driven ordered states at filling ⌫ = �2 + 2/3 = �4/3
(i.e. at this filling the electron density can fill 2/3 of a
single Landau level, of the four sets of degenerate Lan-
dau levels). At this particular filling, a natural question
to ask is whether: i) a single valley develops a full 2/3
Laughlin state thereby breaking time-reversal symmetry,
or ii) each valley builds up its own 1/3 Laughlin state

T.O. Wehling et al. PRL 106, 236805 (2011)  
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rather than a more general SU(2)-valley-rotated state
(see Supplementary).

We now introduce short ranged Hubbard correlations
and compute numerically the total energy of finite size
systems on a torus. First we have checked that the val-
ley polarized state has indeed lower energy for the pure
Coulomb case (Fig. 2). As a simplest type of perturba-
tion, we have introduced strictly on-site Hubbard inter-
action U

0
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n(r
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j

) on top of the bare Coulomb in-
teraction. As expected solely the energy of the valley
polarized state is modified while the spin polarized state
is unchanged (Fig. 2). Indeed in the valley polarized
state, double occupancy of a single site is allowed thereby
providing an energy proportional to U

0

. In contrast, in
the spin polarized state, double occupancy is forbidden
by the Pauli principle and the total energy is therefore
insensitive to the on-site Hubbard coupling. As a result,
the competing valley polarized state (empty square, Fig.
3) is the groundstate as long as the Hubbard interaction
is not too repulsive (U

0

< 0.5 in units of e2/4⇡✏a ' 10
eV), including the pure Coulomb case and further in-
crease of the on-site Hubbard interaction stabilize the
spin ferromagnet state.

In order to test the sensitivity of the phase diagram
with respect to the details of the short range part of
the interaction, we have replaced the on-site Hubbard
interaction by the NNN coupling U

nnn

. Interestingly we
have obtained the reverse phenomenology where repul-
sive U

nnn

tends to valley polarize the system. Indeed
both spin and valley ferromagnets are a↵ected by the
Hubbard NNN coupling, and the spin polarized state
(filled triangle) is now stabilized for su�ciently attrac-
tive (U

nnn

< �0.5 in units of e2/4⇡✏a ' 10 eV). The
electrons in the opposite valleys are easier to pair up
driven by the NNN attracting interaction. These results
can also be derived within the Hartree-Fock approxima-
tion (see supplementary).

The very contrasted phase diagrams for strictly one-
site and NNN couplings thus demonstrate that the
ground state is very sensitive to lattice scale details of
the interaction (Fig. 2,b). This is related to the fact
that competing states are nearly degenerated if one only
takes into account the long distance Coulomb interac-
tion. Unfortunately the actual values of U

0

and U
nnn

in
strained graphene samples are not known so it is di�cult
to conclude reliably whether spin or valley gets polarized.
Nevertheless recent first principles calculations yield to-
tal on-site coupling U

0

= 9.3 eV and total NNN coupling
of 5.4 eV for freestanding (and unstrained) graphene in
zero magnetic field27. In our units (e2/4⇡✏a ' 10 eV)
those values correspond to U

0

' 1 pointing towards
the spin ferromagnetic phase (Fig. 2,b). The devia-
tion U

nnn

' �0.04 of the NNN coupling from its bare
Coulomb value can be neglected. Using gating or di↵er-
ent substrates, it could be possible to switch the ground-
state between spin ferromagnet and valley Ising ferro-
magnet. Spin polarized STM and Kerr imaging could
indeed detect these competing ground states. Note, the
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FIG. 2: (Color online) Filling ⌫ = 0. (a) The energy of the
di↵erent Hartree-Fock states are compared in the presence
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).
All energies remain linearly depending on Hubbard U0(Unnn

)
for all parameters. The degeneracy of LL orbits is N
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valley Ising ferromagnet is an integer quantum Hall state
with two units of quantized Hall conductance, that spon-
taneously breaks time reversal symmetry.

V. FRACTIONALIZED PHASES AND
SUPERCONDUCTIVITY

Fractional Hall states in graphene under an external
magnetic field were reported experimentally only very
recently28–30. Although strain produces flat pseudo Lan-
dau levels, it is not evident that interactions can generate
incompressible phases at fractional filling in time-reversal
invariant strained graphene. Using exact diagonalization
of finite size systems, we actually find such interaction-
driven ordered states at filling ⌫ = �2 + 2/3 = �4/3
(i.e. at this filling the electron density can fill 2/3 of a
single Landau level, of the four sets of degenerate Lan-
dau levels). At this particular filling, a natural question
to ask is whether: i) a single valley develops a full 2/3
Laughlin state thereby breaking time-reversal symmetry,
or ii) each valley builds up its own 1/3 Laughlin state
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Numerical Hartree-Fock calculation of the groundstate 
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invariant state.
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According to Eq. 9, the corresponding strain-induced vector potential is the familiar vector potential of the Landau
gauge A = �Bye

x

describing here a uniform magnetic field B = Be

z

in the valley ⇠ = +, and the opposite field in
valley ⇠ = �. In this gauge, the natural geometry is a rectangular one with linear sizes L

x

and L
y

. Due to translational
invariance, the system can be infinite in the x-direction but the smooth deformation condition (�t3 ⌧ t) brings a
limitation on the transverse size L

y

because �t3 is growing linearly long the y-direction. Assuming �t3(y = 0) = 0,
then �t3(Ly

) = ev
F

BL
y

cannot exceed a reasonable fraction of t = 2~v
F

/3a which leads to the condition:

L
y

⌧ �0

|B|
1

a
=

l2
B

a
' 500nm (15)

Typically for a magnetic length l
B

=
p

~/eB ' 10 nm and lattice constant a0 ' 0.1 nm, the ribbon width cannot
exceed 500 nm. The strength of the e↵ective magnetic field B is proportional to the gradient of the hopping amplitude
deformation. For a similar global deformation over the whole sample, a narrow ribbon hosts a stronger magnetic field
than a broader ribbon. Note that many other deformation fields lead to the same gauge vector potential, including
(�t1, �t2, �t3) = ev

F

By(2, 0, 0) or (�t1, �t2, �t3) = ev
F

By(0, 2, 0).

B
eff

' �0

a2
.
�a

�y
(16)

105 Tesla
few 10�3

N
e

= 8
N

�

= 12
�0/48
24x24

Single electron wavefunctions

We derive here the wavefunctions for noninteracting Dirac fermions under a strong pseudo-magnetic field (⇠Be

z

),
or more precisely the valley-dependent gauge potential A

⇠

(x) = ⇠A(x), which are both opposite fields in the valleys

⇠ = ±. We choose B positive for definiteness, and denotes l
B

=
p

~/eB the magnetic length. For each valley, we
consider the first quantized Hamiltonian corresponding to Eq. 7, namely:

h
⇠

= v
F

X

⇠

(⇠⇧⇠

x

�
x

+⇧⇠

y

�
y

), (17)

where the components of the gauge-independent momentum ⇧

⇠ = p + ⇠eA do not commute due to the presence of
the pseudo-magnetic field. Unlike the real magnetic field case, the sign of the commutator:

[⇧⇠

x

,⇧⇠

y

] = �i⇠
~2
l2
B

, (18)

depends on the valley index ⇠. Hence the ladder operators are defined as

a
⇠

=
l
Bp
2~

(⇧⇠

x

� i⇠⇧⇠

y

), (19)

in order to enforce the proper commutation relation [a
⇠

, a†
⇠

] = 1. The Hamiltonian can be written as:

h
⇠

= ⇠
~v

F

p
2

l
B

✓
0 a

⇠

a†
⇠

0

◆
. (20)

We now focus on the zero energy Landau level. The corresponding wave function in the ⇠-valley is (0, v
⇠

) with
a
⇠

v
⇠

= 0. Hence in the zero energy level, single electron wavefunctions are finite only on one triangular sublattice,
here the B-atoms sublattice (since we have chosen the field strength B to be positive). This is a general property
valid for any strain-induced gauge field on the graphene lattice.
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in a time-reversal invariant way, for the orbital wave-
function. Below it is shown that both these scenarios are
possible leading to qualitatively di↵erent states than the
2/3 FQH states under real magnetic field studied so far
in graphene sheets31,32 and in GaAs Hall bilayers33. For
graphene with dominant Coulomb interaction, the 2/3
valley polarized state is realized, with spins in a singlet.
In order to destabilize this 2/3 state, we have introduced
a form of NNN interaction in addition to Coulomb in-
teractions. For convenience we assume this acts only be-
tween opposite valley fermions (Uop

nnn

), while electrons in
the same valley only interact via Coulomb potential Eq.
2 (i.e. Us

nnn

= 0). Then a valley unpolarized Hall state
with nine fold degenerated groundstate is realized for in-
termediate coupling (�0.73 < Uop

nnn

< �0.58), which is
labeled a fractional topological insulator (FTI). Moreover
a spin triplet superconducting state is stabilized at larger
attraction (Fig. 3). Hereafter we present detailed nu-
merical results supporting the existence of each of those
quantum phases.

A. Laughlin 2/3 state in a single valley

For the pure Coulomb interaction (U
nnn

= 0), corre-
sponding to realistic graphene , the ground state is val-
ley polarized, thereby spontaneously breaking the time-
reversal invariance of the strained graphene Hamiltonian.
Spins are in a singlet state33, as in the spin singlet 2/3
FQHE state33. The observation of such a state can be
made easier by the very large values of pseudomagnetic
field seen in a single valley.

B. Time-reversal invariant state

In the range of interaction strength (�0.73 < Uop

nnn

<
�0.58), an interesting quantum phase emerges with a
nine-fold near degenerating states forming the ground
state manifold (GSM) as demonstrated in Fig. 3. The
momentum quantum numbers of these states are at k = 0
and other k determined by shifting the momentum of
each electron by an integer multiple of 2⇡/N

s

, where N
s

is the PLL orbital degeneracy. This determines three dif-
ferent momenta sectors (k = 0, ⇡/3, and 2⇡/3) and there
are three near degenerate states in each sector. These
sectors can be considered as ground state flows from one
sector to another upon inserting flux through adding the
twist boundary phase. In this parameter region, we see
that other excited states (Fig 3a, lines without symbols)
are well separated from the lower energy the GSM (Fig.
3a, lines with symbols). By tuning the boundary phase
for a system at Uop

nnn

= �0.6, we see that the nine near
degenerate states remain well separated from other ex-
cited states as shown in Fig. 3b.

As a second evidence, we further perform valley-
pseudospin Chern number calculation34,35 by adding the
same boundary phase along x-direction, and the opposite
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FIG. 3: (Color online) (a) Fractional topological insulating
(FTI) phase at filling ⌫ = �2 + 2/3 (⌫ = 0 is the neutral
point). The noninteracting orbitals are determined on a 24⇤24
lattice with a pseudomagnetic flux �0/48 per hexagon . Then
the e↵ective interaction is calculated in the n = 0 PLL whose
degeneracy is N

s

= 12 per spin direction and per valley. The
low energy spectrum is calculated for N

e

= 8 (N
L

= N
R

= 4)
electrons with polarized spin occupying those N

s

= 12 states.
In the parameter region �0.73 < U

opp

< �0.58, the nine
lowest energy states become close together and almost degen-
erated, thereby forming the groundstate manifold (GSM). (b)
The boundary phase dependence and the robust gap between
the GSM and other excited states are shown for Uop

nnn

= �0.6
inside the FTI (fractional topological insulator) phase. (c) A
phase diagram as a function of Uop

nnn

for spinless electrons.
Energies are given in units of e2/4⇡✏a ' 10 eV.
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in a time-reversal invariant way, for the orbital wave-
function. Below it is shown that both these scenarios are
possible leading to qualitatively di↵erent states than the
2/3 FQH states under real magnetic field studied so far
in graphene sheets31,32 and in GaAs Hall bilayers33. For
graphene with dominant Coulomb interaction, the 2/3
valley polarized state is realized, with spins in a singlet.
In order to destabilize this 2/3 state, we have introduced
a form of NNN interaction in addition to Coulomb in-
teractions. For convenience we assume this acts only be-
tween opposite valley fermions (Uop

nnn

), while electrons in
the same valley only interact via Coulomb potential Eq.
2 (i.e. Us

nnn

= 0). Then a valley unpolarized Hall state
with nine fold degenerated groundstate is realized for in-
termediate coupling (�0.73 < Uop

nnn

< �0.58), which is
labeled a fractional topological insulator (FTI). Moreover
a spin triplet superconducting state is stabilized at larger
attraction (Fig. 3). Hereafter we present detailed nu-
merical results supporting the existence of each of those
quantum phases.

A. Laughlin 2/3 state in a single valley

For the pure Coulomb interaction (U
nnn

= 0), corre-
sponding to realistic graphene , the ground state is val-
ley polarized, thereby spontaneously breaking the time-
reversal invariance of the strained graphene Hamiltonian.
Spins are in a singlet state33, as in the spin singlet 2/3
FQHE state33. The observation of such a state can be
made easier by the very large values of pseudomagnetic
field seen in a single valley.

B. Time-reversal invariant state

In the range of interaction strength (�0.73 < Uop

nnn

<
�0.58), an interesting quantum phase emerges with a
nine-fold near degenerating states forming the ground
state manifold (GSM) as demonstrated in Fig. 3. The
momentum quantum numbers of these states are at k = 0
and other k determined by shifting the momentum of
each electron by an integer multiple of 2⇡/N

s

, where N
s

is the PLL orbital degeneracy. This determines three dif-
ferent momenta sectors (k = 0, ⇡/3, and 2⇡/3) and there
are three near degenerate states in each sector. These
sectors can be considered as ground state flows from one
sector to another upon inserting flux through adding the
twist boundary phase. In this parameter region, we see
that other excited states (Fig 3a, lines without symbols)
are well separated from the lower energy the GSM (Fig.
3a, lines with symbols). By tuning the boundary phase
for a system at Uop

nnn

= �0.6, we see that the nine near
degenerate states remain well separated from other ex-
cited states as shown in Fig. 3b.

As a second evidence, we further perform valley-
pseudospin Chern number calculation34,35 by adding the
same boundary phase along x-direction, and the opposite
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FIG. 3: (Color online) (a) Fractional topological insulating
(FTI) phase at filling ⌫ = �2 + 2/3 (⌫ = 0 is the neutral
point). The noninteracting orbitals are determined on a 24⇤24
lattice with a pseudomagnetic flux �0/48 per hexagon . Then
the e↵ective interaction is calculated in the n = 0 PLL whose
degeneracy is N

s

= 12 per spin direction and per valley. The
low energy spectrum is calculated for N

e

= 8 (N
L

= N
R

= 4)
electrons with polarized spin occupying those N

s

= 12 states.
In the parameter region �0.73 < U

opp

< �0.58, the nine
lowest energy states become close together and almost degen-
erated, thereby forming the groundstate manifold (GSM). (b)
The boundary phase dependence and the robust gap between
the GSM and other excited states are shown for Uop

nnn

= �0.6
inside the FTI (fractional topological insulator) phase. (c) A
phase diagram as a function of Uop

nnn

for spinless electrons.
Energies are given in units of e2/4⇡✏a ' 10 eV.
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in a time-reversal invariant way, for the orbital wave-
function. Below it is shown that both these scenarios are
possible leading to qualitatively di↵erent states than the
2/3 FQH states under real magnetic field studied so far
in graphene sheets31,32 and in GaAs Hall bilayers33. For
graphene with dominant Coulomb interaction, the 2/3
valley polarized state is realized, with spins in a singlet.
In order to destabilize this 2/3 state, we have introduced
a form of NNN interaction in addition to Coulomb in-
teractions. For convenience we assume this acts only be-
tween opposite valley fermions (Uop

nnn

), while electrons in
the same valley only interact via Coulomb potential Eq.
2 (i.e. Us

nnn

= 0). Then a valley unpolarized Hall state
with nine fold degenerated groundstate is realized for in-
termediate coupling (�0.73 < Uop

nnn

< �0.58), which is
labeled a fractional topological insulator (FTI). Moreover
a spin triplet superconducting state is stabilized at larger
attraction (Fig. 3). Hereafter we present detailed nu-
merical results supporting the existence of each of those
quantum phases.

A. Laughlin 2/3 state in a single valley

For the pure Coulomb interaction (U
nnn

= 0), corre-
sponding to realistic graphene , the ground state is val-
ley polarized, thereby spontaneously breaking the time-
reversal invariance of the strained graphene Hamiltonian.
Spins are in a singlet state33, as in the spin singlet 2/3
FQHE state33. The observation of such a state can be
made easier by the very large values of pseudomagnetic
field seen in a single valley.

B. Time-reversal invariant state

In the range of interaction strength (�0.73 < Uop

nnn

<
�0.58), an interesting quantum phase emerges with a
nine-fold near degenerating states forming the ground
state manifold (GSM) as demonstrated in Fig. 3. The
momentum quantum numbers of these states are at k = 0
and other k determined by shifting the momentum of
each electron by an integer multiple of 2⇡/N

s

, where N
s

is the PLL orbital degeneracy. This determines three dif-
ferent momenta sectors (k = 0, ⇡/3, and 2⇡/3) and there
are three near degenerate states in each sector. These
sectors can be considered as ground state flows from one
sector to another upon inserting flux through adding the
twist boundary phase. In this parameter region, we see
that other excited states (Fig 3a, lines without symbols)
are well separated from the lower energy the GSM (Fig.
3a, lines with symbols). By tuning the boundary phase
for a system at Uop

nnn

= �0.6, we see that the nine near
degenerate states remain well separated from other ex-
cited states as shown in Fig. 3b.

As a second evidence, we further perform valley-
pseudospin Chern number calculation34,35 by adding the
same boundary phase along x-direction, and the opposite
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point). The noninteracting orbitals are determined on a 24⇤24
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the e↵ective interaction is calculated in the n = 0 PLL whose
degeneracy is N

s

= 12 per spin direction and per valley. The
low energy spectrum is calculated for N
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= 8 (N
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= 4)
electrons with polarized spin occupying those N

s

= 12 states.
In the parameter region �0.73 < U

opp

< �0.58, the nine
lowest energy states become close together and almost degen-
erated, thereby forming the groundstate manifold (GSM). (b)
The boundary phase dependence and the robust gap between
the GSM and other excited states are shown for Uop
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where δta(ri) is the strain-induced variation of the near-
est neighbor hopping amplitude (with respect to the un-
perturbed value t ! 2.7 eV) between A-site at ri and
B-site at ri + δa of the bipartite honeycomb lattice [1].
The smooth deformation field δta(ri) is chosen in such
a way to produce a nearly uniform magnetic field with
a valley-dependent sign [2, 26]. The valley dependent

vector potential Aξ(r) = ξ
∑

a=1,2,3 δta(r)e
iK.δa mini-

mally couples to linearly dispersing low energy excita-
tions near the Dirac points located at momenta ξK with
K = (4π/3

√
3a0)ex and ξ = ±1, a0 being the carbon-

carbon bond length [1]. The uniform pseudomagnetic
field induces a pseudo Landau level (PLL) electronic
structure En = ξ

√

2e!v2FB|n|, where n is the relative
integer labelling the nearly flat levels (see supplemen-
tary). Beside the macroscopic orbital degeneracy, each
of those PLLs has a four-fold degeneracy associated with
the spin and valley isospin degrees of freedom. In con-
trast to the full SU(4) symmetry of graphene in an ex-
ternal real magnetic field [27, 28], the internal symmetry
of strained graphene is SU(2) for the spin and only Z2

for the valley degree of freedom.
In this work, we study interaction effects within the

partially filled zero-energy flat band (n = 0 PLL) cre-
ated by strain. We consider the following interaction
Hamiltonian on the honeycomb lattice:

Hint =
∑

ri !=rj

V (ri − rj)n(ri)n(rj) + U0

∑

ri

n(ri)n(ri)

(2)

+ Unnn

∑

〈ri,rj〉

n(ri)n(rj),

where V (ri − rj) = e2/4πε|ri − rj| denotes the bare
Coulomb potential, n(ri) the fermion number operator
on site ri, and 〈ri, rj〉 represents summation over all
pairs of next-nearest-neighboring (NNN) sites. The bare
Coulomb interaction is the dominant interaction due to
the poor screening in neutral graphene. Nevertheless we
also allow arbitrary modification of the short-distance
part of the Coulomb interaction by adding local on-site
and NNN interactions with respective strengths U0 and
Unnn. The nearest neighbor interaction is not effective
in presence of strong pseudo-magnetic field because in
the zero energy PLL the noninteracting wave functions
are localized on a single sublattice (see Supplementary).
Interesting proposals for altering short ranged interac-
tions using substrates with momentum dependent di-
electric susceptibility has been discussed [29]. Unfortu-
nately the actual values of U0 and Unnn are not known
in strained graphene although first principles calculations
yield total on-site coupling U0 = 9.3 eV and a small devi-
ation Unnn ! −0.04e2/4πεa0 of the NNN coupling from
its bare Coulomb value in freestanding (and unstrained)
graphene in zero magnetic field [25].
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FIG. 1: (Color online). The n = 0 PLL at fractional
filling factor ν = −2 + 2/3: spinless electrons. Up-
per panel left: Low energy spectrum as a function of the
next-nearest-neighboring coupling Uop

nnn between opposite val-
leys (deviation from the pure Coulomb value). In the region
−0.73 < Uop

nnn < −0.58, the nine lowest energy states be-
come close together and almost degenerated, thereby forming
the groundstate manifold (GSM) of the valley FTI. The inset
shows the groundstate energies of the valley polarized (V-
2/3 FQH) and FTI states. Upper panel right: The boundary
phase dependence and the robust gap between the GSM and
higher energy states for Uop

nnn = −0.6 inside the FTI phase.
Lower panel: Phase diagram as a function of Uop

nnn for spin-
less electrons. Parameters for the exact diagonalization: The
noninteracting orbitals are determined on a 24 × 24 lattice
with a pseudomagnetic flux Φ0/48 per hexagon (see supple-
mentary material). The degeneracy of n = 0 PLL is Ns = 12
per spin direction and per valley. The low energy spectrum
is calculated for Ne = 8 (NL = NR = 4) electrons with polar-
ized spin occupying those Ns = 12 states. Energies are given
in units of e2/4πεa0 # 10 eV.

Fractionalized phases and superconductivity at
2/3 filling of the n = 0 PLL. Fractional Hall states in
graphene under an external magnetic field were reported
experimentally [30–32]. Although strain produces flat
PLLs, it is not evident that interactions can generate in-
compressible phases at fractional filling in time-reversal
invariant strained graphene. We focus here on the 2/3
filling of the four-fold degenerate n = 0 PLL. This 2/3 fill-
ing has been studied so far in graphene sheets [33, 34] and
in GaAs Hall bilayers [35] under real magnetic field. In
the present case of strained graphene, this particular fill-
ing allows for interesting possibilities including valley fer-
romagnetism (which breaks spontaneously time-reversal
symmetry), valley symmetric topological states, and also
superconductivity.

9-fold degenerated valley Fractional Topological Insulator 



Phase diagram: spinless case 

2

where δta(ri) is the strain-induced variation of the near-
est neighbor hopping amplitude (with respect to the un-
perturbed value t ! 2.7 eV) between A-site at ri and
B-site at ri + δa of the bipartite honeycomb lattice [1].
The smooth deformation field δta(ri) is chosen in such
a way to produce a nearly uniform magnetic field with
a valley-dependent sign [2, 26]. The valley dependent

vector potential Aξ(r) = ξ
∑

a=1,2,3 δta(r)e
iK.δa mini-

mally couples to linearly dispersing low energy excita-
tions near the Dirac points located at momenta ξK with
K = (4π/3

√
3a0)ex and ξ = ±1, a0 being the carbon-

carbon bond length [1]. The uniform pseudomagnetic
field induces a pseudo Landau level (PLL) electronic
structure En = ξ

√

2e!v2FB|n|, where n is the relative
integer labelling the nearly flat levels (see supplemen-
tary). Beside the macroscopic orbital degeneracy, each
of those PLLs has a four-fold degeneracy associated with
the spin and valley isospin degrees of freedom. In con-
trast to the full SU(4) symmetry of graphene in an ex-
ternal real magnetic field [27, 28], the internal symmetry
of strained graphene is SU(2) for the spin and only Z2

for the valley degree of freedom.
In this work, we study interaction effects within the

partially filled zero-energy flat band (n = 0 PLL) cre-
ated by strain. We consider the following interaction
Hamiltonian on the honeycomb lattice:

Hint =
∑

ri !=rj

V (ri − rj)n(ri)n(rj) + U0

∑

ri

n(ri)n(ri)

(2)

+ Unnn

∑

〈ri,rj〉

n(ri)n(rj),

where V (ri − rj) = e2/4πε|ri − rj| denotes the bare
Coulomb potential, n(ri) the fermion number operator
on site ri, and 〈ri, rj〉 represents summation over all
pairs of next-nearest-neighboring (NNN) sites. The bare
Coulomb interaction is the dominant interaction due to
the poor screening in neutral graphene. Nevertheless we
also allow arbitrary modification of the short-distance
part of the Coulomb interaction by adding local on-site
and NNN interactions with respective strengths U0 and
Unnn. The nearest neighbor interaction is not effective
in presence of strong pseudo-magnetic field because in
the zero energy PLL the noninteracting wave functions
are localized on a single sublattice (see Supplementary).
Interesting proposals for altering short ranged interac-
tions using substrates with momentum dependent di-
electric susceptibility has been discussed [29]. Unfortu-
nately the actual values of U0 and Unnn are not known
in strained graphene although first principles calculations
yield total on-site coupling U0 = 9.3 eV and a small devi-
ation Unnn ! −0.04e2/4πεa0 of the NNN coupling from
its bare Coulomb value in freestanding (and unstrained)
graphene in zero magnetic field [25].
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FIG. 1: (Color online). The n = 0 PLL at fractional
filling factor ν = −2 + 2/3: spinless electrons. Up-
per panel left: Low energy spectrum as a function of the
next-nearest-neighboring coupling Uop

nnn between opposite val-
leys (deviation from the pure Coulomb value). In the region
−0.73 < Uop

nnn < −0.58, the nine lowest energy states be-
come close together and almost degenerated, thereby forming
the groundstate manifold (GSM) of the valley FTI. The inset
shows the groundstate energies of the valley polarized (V-
2/3 FQH) and FTI states. Upper panel right: The boundary
phase dependence and the robust gap between the GSM and
higher energy states for Uop

nnn = −0.6 inside the FTI phase.
Lower panel: Phase diagram as a function of Uop

nnn for spin-
less electrons. Parameters for the exact diagonalization: The
noninteracting orbitals are determined on a 24 × 24 lattice
with a pseudomagnetic flux Φ0/48 per hexagon (see supple-
mentary material). The degeneracy of n = 0 PLL is Ns = 12
per spin direction and per valley. The low energy spectrum
is calculated for Ne = 8 (NL = NR = 4) electrons with polar-
ized spin occupying those Ns = 12 states. Energies are given
in units of e2/4πεa0 # 10 eV.

Fractionalized phases and superconductivity at
2/3 filling of the n = 0 PLL. Fractional Hall states in
graphene under an external magnetic field were reported
experimentally [30–32]. Although strain produces flat
PLLs, it is not evident that interactions can generate in-
compressible phases at fractional filling in time-reversal
invariant strained graphene. We focus here on the 2/3
filling of the four-fold degenerate n = 0 PLL. This 2/3 fill-
ing has been studied so far in graphene sheets [33, 34] and
in GaAs Hall bilayers [35] under real magnetic field. In
the present case of strained graphene, this particular fill-
ing allows for interesting possibilities including valley fer-
romagnetism (which breaks spontaneously time-reversal
symmetry), valley symmetric topological states, and also
superconductivity.

opposite valley
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2

where δta(ri) is the strain-induced variation of the near-
est neighbor hopping amplitude (with respect to the un-
perturbed value t ! 2.7 eV) between A-site at ri and
B-site at ri + δa of the bipartite honeycomb lattice [1].
The smooth deformation field δta(ri) is chosen in such
a way to produce a nearly uniform magnetic field with
a valley-dependent sign [2, 26]. The valley dependent

vector potential Aξ(r) = ξ
∑

a=1,2,3 δta(r)e
iK.δa mini-

mally couples to linearly dispersing low energy excita-
tions near the Dirac points located at momenta ξK with
K = (4π/3

√
3a0)ex and ξ = ±1, a0 being the carbon-

carbon bond length [1]. The uniform pseudomagnetic
field induces a pseudo Landau level (PLL) electronic
structure En = ξ

√

2e!v2FB|n|, where n is the relative
integer labelling the nearly flat levels (see supplemen-
tary). Beside the macroscopic orbital degeneracy, each
of those PLLs has a four-fold degeneracy associated with
the spin and valley isospin degrees of freedom. In con-
trast to the full SU(4) symmetry of graphene in an ex-
ternal real magnetic field [27, 28], the internal symmetry
of strained graphene is SU(2) for the spin and only Z2

for the valley degree of freedom.
In this work, we study interaction effects within the

partially filled zero-energy flat band (n = 0 PLL) cre-
ated by strain. We consider the following interaction
Hamiltonian on the honeycomb lattice:

Hint =
∑

ri !=rj

V (ri − rj)n(ri)n(rj) + U0

∑

ri

n(ri)n(ri)

(2)

+ Unnn

∑

〈ri,rj〉

n(ri)n(rj),

where V (ri − rj) = e2/4πε|ri − rj| denotes the bare
Coulomb potential, n(ri) the fermion number operator
on site ri, and 〈ri, rj〉 represents summation over all
pairs of next-nearest-neighboring (NNN) sites. The bare
Coulomb interaction is the dominant interaction due to
the poor screening in neutral graphene. Nevertheless we
also allow arbitrary modification of the short-distance
part of the Coulomb interaction by adding local on-site
and NNN interactions with respective strengths U0 and
Unnn. The nearest neighbor interaction is not effective
in presence of strong pseudo-magnetic field because in
the zero energy PLL the noninteracting wave functions
are localized on a single sublattice (see Supplementary).
Interesting proposals for altering short ranged interac-
tions using substrates with momentum dependent di-
electric susceptibility has been discussed [29]. Unfortu-
nately the actual values of U0 and Unnn are not known
in strained graphene although first principles calculations
yield total on-site coupling U0 = 9.3 eV and a small devi-
ation Unnn ! −0.04e2/4πεa0 of the NNN coupling from
its bare Coulomb value in freestanding (and unstrained)
graphene in zero magnetic field [25].
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FIG. 1: (Color online). The n = 0 PLL at fractional
filling factor ν = −2 + 2/3: spinless electrons. Up-
per panel left: Low energy spectrum as a function of the
next-nearest-neighboring coupling Uop

nnn between opposite val-
leys (deviation from the pure Coulomb value). In the region
−0.73 < Uop

nnn < −0.58, the nine lowest energy states be-
come close together and almost degenerated, thereby forming
the groundstate manifold (GSM) of the valley FTI. The inset
shows the groundstate energies of the valley polarized (V-
2/3 FQH) and FTI states. Upper panel right: The boundary
phase dependence and the robust gap between the GSM and
higher energy states for Uop

nnn = −0.6 inside the FTI phase.
Lower panel: Phase diagram as a function of Uop

nnn for spin-
less electrons. Parameters for the exact diagonalization: The
noninteracting orbitals are determined on a 24 × 24 lattice
with a pseudomagnetic flux Φ0/48 per hexagon (see supple-
mentary material). The degeneracy of n = 0 PLL is Ns = 12
per spin direction and per valley. The low energy spectrum
is calculated for Ne = 8 (NL = NR = 4) electrons with polar-
ized spin occupying those Ns = 12 states. Energies are given
in units of e2/4πεa0 # 10 eV.

Fractionalized phases and superconductivity at
2/3 filling of the n = 0 PLL. Fractional Hall states in
graphene under an external magnetic field were reported
experimentally [30–32]. Although strain produces flat
PLLs, it is not evident that interactions can generate in-
compressible phases at fractional filling in time-reversal
invariant strained graphene. We focus here on the 2/3
filling of the four-fold degenerate n = 0 PLL. This 2/3 fill-
ing has been studied so far in graphene sheets [33, 34] and
in GaAs Hall bilayers [35] under real magnetic field. In
the present case of strained graphene, this particular fill-
ing allows for interesting possibilities including valley fer-
romagnetism (which breaks spontaneously time-reversal
symmetry), valley symmetric topological states, and also
superconductivity.
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FIG. 2. (Color online) Two-particle correlation function g↑↓(r)
between different spin orientations, obtained by exact diagonalization
on a torus with square geometry Lx = Ly for number of electrons
N↑ = N↓ = 5 and number of flux quanta Nf = 15, as a function of
(x/Lx ,y/Ly). (a) The large hump around y/Ly = 0.5 with K = (5,7)
indicates the phase separation.10 (b) The maximum of g↑↓ at the origin
is indicative of the paired character of the ground state with K = 0
which has highest symmetry in the Brillouin zone.

it is thus natural to attach opposite flux to electrons with
opposite spins. This leads to the following effective field theory
Lagrangian density:

L = L↑ + L↓ + Lp + Lcs + g(φψ↑ψ↓ + φψ↑ψ↓), (2)

Lσ = ψσ

(
i∂t − aσ

0

)
ψσ − µ|ψσ |2

+ 1
2m

|(−i∇ − Aσ − aσ )ψσ |2 + · · · , (3)

Lp = φ(i∂t − a
↑
0 − a

↓
0 )φ − (2µ − δ)|φ|2

+ 1
2M

|(−i∇ − a↑ − a↓)φ|2 + · · · , (4)

Lcs = L↑
cs − L↓

cs = 1
4π

π

θ
εµνλ[a↑

µ∂νa
↑
λ − a↓

µ∂νa
↓
λ ]. (5)
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FIG. 3. (Color online) Overlaps between actual ground state
with ideal model states for the fractional topological insulator
(ϕF = π/2) and superfluid (ϕS = π ) phases (b), and resultant phase
diagram and boundaries (a). FTI, SF, and PS stand for fractional
topological insulator, superfluid, and phase separation, respectively.
These overlaps are obtained by exact diagonalization on a torus with
square geometry Lx = Ly for number of electrons N↑ = N↓ = 5
and number of flux quanta Nf = 15. The inset presents results with
system size Nf = 12 (with N↑ = N↓ = 4), showing very little size
dependence.

Here ψσ are composite boson fields for (bosonized) electrons,
while aσ is the Chern-Simons (CS) gauge field that attaches
flux to spin-σ composite bosons, which cancels external gauge
field A↑ = −A↓ in average. θ determines the amount of flux
attached to each particle; in the present case θ = 3π for the
1/3 Laughlin state. Notice the minus sign between L

↑
cs and

L
↓
cs; this indicates the flux is in opposite directions for up-

and down-spin composite bosons. The presence of pairing (or
attractive) interaction between up- and down-spin electrons
is encoded by introducing a pair field φ, with Lagrangian
density Lp. It represents the bound state of up- and down-spin
composite bosons, and sees no external gauge field A, due
to the cancellation between A↑ and A↓. On the other hand,
it couples equally to the CS gauge fields a↑ and a↓. Using
terminology familiar in cold atom contexts, we call the
parameter δ detuning; positive δ favors unbound electrons,
while negative δ favors pair formation. Thus decreasing δ
corresponds to increasing pairing strength. The g term in
Eq. (2) describes pair formation and decay processes. Generic
density-density interactions among the particles are kept
implicit and represented by . . .. Due to the relation between
particle and CS flux density enforced by the CS terms, such
density-density interactions can also be written in terms of CS
flux density bσ = εij∂ia

σ
j .

The distinction between the FTI and SF phases is the
following. In the FTI phase, which is topologically equivalent
to two independent FQH states, composite bosons with up- and
down-spins both condense, namely 〈ψσ 〉 &= 0;12 this gives rise
to Anderson-Higgs masses to the CS gauge fields, and the cor-
responding Meisnner effect is equivalent to incompressibility
responsible for FQHE. Due to the g term in Eq. (2), this implies
〈φ〉 &= 0. In the SF phase however, there is only a pairing
gap that penalizes imbalance between up- and down-spin
electron numbers, but no overall charge incompressibility. This
suggests in the SF phase 〈ψσ 〉 = 0 while we still have 〈φ〉 &= 0,
as φ couples only to the combination a↑ + a↓ whose flux is
the difference between up- and down-spin electron density.
Thus the FTI and SF phases differ by one U(1) condensate,
and the transition is driven by the appearance/disappearance
of this condensate. The situation is somewhat similar to a
transition between integer and fractional quantum Hall states
driven by pairing interaction studied in Ref. 13. In particular,
if we completely suppress the fluctuations of CS gauge fields,
the critical theory will reduce to that of the (2 + 1)D XY
model just as in Ref. 13, with the critical U(1) field being
ψ− = (ψ↑ − ψ↓)/

√
2.

Also like in Ref. 13, fluctuations of CS gauge fields change
the physics, but in a very different manner here. To proceed,
we introduce new combinations of CS gauge fields, a±

µ =
(a↑

µ ± a↓
µ)/2, in terms of which Eqs. (3), (4), and (5) take the

form

L↑ = ψ↑(i∂t − a+
0 − a−

0 )ψ↑ − µ|ψ↑|2

+ 1
2m

|(−i∇ − A − a+ − a−)ψ↑|2 + · · · , (6)

L↓ = ψ↓(i∂t − a+
0 + a−

0 )ψ↓ − µ|ψ↓|2

+ 1
2m

|(−i∇ + A − a+ + a−)ψ↓|2 + · · · , (7)
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We study two species of (or spin-1/2) fermions with short-range intraspecies repulsion in the presence
of opposite (effective) magnetic field, each at Landau level filling factor 1/3. In the absence of interspecies
interaction, the ground state is simply two copies of the 1/3 Laughlin state, with opposite chirality, representing
the fractional topological insulator (FTI) phase. We show this phase is stable against moderate interspecies
interactions. However, strong enough interspecies repulsion leads to phase separation, while strong enough
interspecies attraction drives the system into a superfluid phase. We obtain the phase diagram through exact
diagonalization calculations. The FTI-superfluid phase transition is shown to be in the (2 + 1)-dimensional XY
universality class, using an appropriate Chern-Simons-Ginsburg-Landau effective field theory.
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I. INTRODUCTION

Topological phases of matter are of strong interest to
physicists.1 Exciting recent developments in this area are the
discoveries of topological insulators, which can be viewed as
time-reversal invariant analogs of integer quantum Hall states.2

A natural question is if the nature supports time-reversal
invariant analogs of fractional quantum Hall (FQH) states,
namely fractional topological insulators (FTIs). Just like FQH
states, FTIs are expected to be stabilized by strong interaction.

Perhaps the simplest FTI state3 is two (decoupled) copies
of Laughlin states for up- and down-spin electrons, with
opposite chirality. Such states are the exact ground states
of model Hamiltonians4 with special short-range repulsions
between electrons with the same spin, but no interaction
between electrons with opposite spins. More recently, lattice
models that support FTIs have been constructed in both two
dimensions (2D)5 and three dimensions (3D).6 Since FTIs are
stabilized by specific forms of interactions, it is important to
understand the stability of FTIs when interactions are varied
and, in particular, what kind of competing phases FTIs yield
to when quantum phase transitions (QPTs) are triggered by
varying interactions. Also of strong interest is the nature of
such QPTs, and the critical properties of the QPT when it is
continuous.

Motivated by the above we consider the stability of the
simplest FTI state3 in the presence of more general electron-
electron interaction, in particular interspin interactions. We
show that sufficiently strong interspin repulsion leads to phase
separation, while interspin attraction drives the system into a
superfluid (SF) phase. The FTI-SF transition is second order,
and in the 3D XY universality class. We also show that the
FTI and SF phases have natural analogs in bilayer quantum
Hall systems at total filling factor 1 with layer imbalance;7

our results are thus relevant to that system which is of strong
interest in its own right.

The rest of the paper is organized as follows. In Sec. II
we introduce the simplified model and discuss the related
symmetry. In Sec. III we focus on the numerical result
on various properties of different phases, including energy
spectrum, pair correlation function, and global phase diagram.
The corresponding effective field theory is constructed in

Sec. IV. Finally, we discuss the essential relation between SF
phase and bilayer layer quantum Hall systems at total filling
factor 1 in Sec. V.

II. MODEL AND SYMMETRY

In this work we use a simple model to study FTIs, in which
Landau levels are created by the spin-orbit coupling in the
presence of a strain.3,8 Unlike external magnetic field, strain
does not break time reversal symmetry. As a result electrons
with opposite spins experience opposite effective orbital
magnetic fields, and Landau levels with opposite chirality
appear for opposite spin orientations. The single-particle
Hamiltonian is given by Ĥσ

0 (r) = 1
2m

(p̂ + e
c
Aσ )2 with spin

dependent vector potential Aσ = σBeff(y,0,0), with σ = ±1
for up- and down-spin electrons. Reference 3 discussed how
to realize such a situation in specific semiconductor materials;
here we use this as an idealized model to study the stability of
FTIs.

Just like in FQH states electrons are confined to the lowest
Landau level, and electron-electron interaction dominates. In
this work, we consider hard-core interaction V1l

4
B∇2δ(2)(r)

between same spin fermions, and V0l
2
Bδ(2)(r) between opposite

spin fermions; lB is magnetic length. The intraspin interaction
V1 is the energy of a pair of electrons with relative angular
momentum 1 which is first introduced by Haldane.4 It captures
the essence of the topological phases and gives rise to the
exact model ground state, Laughlin state. The interacting
Hamiltonian Ĥint is defined by setting V1 = V sin(ϕ) and
V0 = V cos(ϕ), where the parameter ϕ tunes the relative
strength between the V1 and V0 terms. Throughout the paper
we set the overall energy scale V as energy unit and magnetic
length lB as length unit. We also use torus geometry by
imposing (magnetic) periodic boundary conditions. In second
quantization the interacting Hamiltonian reads

Ĥint = 1
2

sin(ϕ)
∑

{ji }σ
V σσ

j1j2j3j4
c
†
j1σ

c
†
j2σ

cj3σ cj4σ

+ 1
2

cos(ϕ)
∑

{ji }σ
V σσ

j1j2j3j4
c
†
j1σ

c
†
j2σ

cj3σ cj4σ , (1)
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FIG. 2. (Color online) Two-particle correlation function g↑↓(r)
between different spin orientations, obtained by exact diagonalization
on a torus with square geometry Lx = Ly for number of electrons
N↑ = N↓ = 5 and number of flux quanta Nf = 15, as a function of
(x/Lx ,y/Ly). (a) The large hump around y/Ly = 0.5 with K = (5,7)
indicates the phase separation.10 (b) The maximum of g↑↓ at the origin
is indicative of the paired character of the ground state with K = 0
which has highest symmetry in the Brillouin zone.

it is thus natural to attach opposite flux to electrons with
opposite spins. This leads to the following effective field theory
Lagrangian density:

L = L↑ + L↓ + Lp + Lcs + g(φψ↑ψ↓ + φψ↑ψ↓), (2)

Lσ = ψσ

(
i∂t − aσ

0

)
ψσ − µ|ψσ |2

+ 1
2m

|(−i∇ − Aσ − aσ )ψσ |2 + · · · , (3)

Lp = φ(i∂t − a
↑
0 − a

↓
0 )φ − (2µ − δ)|φ|2

+ 1
2M

|(−i∇ − a↑ − a↓)φ|2 + · · · , (4)

Lcs = L↑
cs − L↓

cs = 1
4π

π

θ
εµνλ[a↑

µ∂νa
↑
λ − a↓

µ∂νa
↓
λ ]. (5)
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FIG. 3. (Color online) Overlaps between actual ground state
with ideal model states for the fractional topological insulator
(ϕF = π/2) and superfluid (ϕS = π ) phases (b), and resultant phase
diagram and boundaries (a). FTI, SF, and PS stand for fractional
topological insulator, superfluid, and phase separation, respectively.
These overlaps are obtained by exact diagonalization on a torus with
square geometry Lx = Ly for number of electrons N↑ = N↓ = 5
and number of flux quanta Nf = 15. The inset presents results with
system size Nf = 12 (with N↑ = N↓ = 4), showing very little size
dependence.

Here ψσ are composite boson fields for (bosonized) electrons,
while aσ is the Chern-Simons (CS) gauge field that attaches
flux to spin-σ composite bosons, which cancels external gauge
field A↑ = −A↓ in average. θ determines the amount of flux
attached to each particle; in the present case θ = 3π for the
1/3 Laughlin state. Notice the minus sign between L

↑
cs and

L
↓
cs; this indicates the flux is in opposite directions for up-

and down-spin composite bosons. The presence of pairing (or
attractive) interaction between up- and down-spin electrons
is encoded by introducing a pair field φ, with Lagrangian
density Lp. It represents the bound state of up- and down-spin
composite bosons, and sees no external gauge field A, due
to the cancellation between A↑ and A↓. On the other hand,
it couples equally to the CS gauge fields a↑ and a↓. Using
terminology familiar in cold atom contexts, we call the
parameter δ detuning; positive δ favors unbound electrons,
while negative δ favors pair formation. Thus decreasing δ
corresponds to increasing pairing strength. The g term in
Eq. (2) describes pair formation and decay processes. Generic
density-density interactions among the particles are kept
implicit and represented by . . .. Due to the relation between
particle and CS flux density enforced by the CS terms, such
density-density interactions can also be written in terms of CS
flux density bσ = εij∂ia

σ
j .

The distinction between the FTI and SF phases is the
following. In the FTI phase, which is topologically equivalent
to two independent FQH states, composite bosons with up- and
down-spins both condense, namely 〈ψσ 〉 &= 0;12 this gives rise
to Anderson-Higgs masses to the CS gauge fields, and the cor-
responding Meisnner effect is equivalent to incompressibility
responsible for FQHE. Due to the g term in Eq. (2), this implies
〈φ〉 &= 0. In the SF phase however, there is only a pairing
gap that penalizes imbalance between up- and down-spin
electron numbers, but no overall charge incompressibility. This
suggests in the SF phase 〈ψσ 〉 = 0 while we still have 〈φ〉 &= 0,
as φ couples only to the combination a↑ + a↓ whose flux is
the difference between up- and down-spin electron density.
Thus the FTI and SF phases differ by one U(1) condensate,
and the transition is driven by the appearance/disappearance
of this condensate. The situation is somewhat similar to a
transition between integer and fractional quantum Hall states
driven by pairing interaction studied in Ref. 13. In particular,
if we completely suppress the fluctuations of CS gauge fields,
the critical theory will reduce to that of the (2 + 1)D XY
model just as in Ref. 13, with the critical U(1) field being
ψ− = (ψ↑ − ψ↓)/

√
2.

Also like in Ref. 13, fluctuations of CS gauge fields change
the physics, but in a very different manner here. To proceed,
we introduce new combinations of CS gauge fields, a±

µ =
(a↑

µ ± a↓
µ)/2, in terms of which Eqs. (3), (4), and (5) take the

form

L↑ = ψ↑(i∂t − a+
0 − a−

0 )ψ↑ − µ|ψ↑|2

+ 1
2m

|(−i∇ − A − a+ − a−)ψ↑|2 + · · · , (6)

L↓ = ψ↓(i∂t − a+
0 + a−

0 )ψ↓ − µ|ψ↓|2

+ 1
2m

|(−i∇ + A − a+ + a−)ψ↓|2 + · · · , (7)
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ones along y-direction for both valleys36,37. This gener-
alized pseudospin Chern number is well defined as the
electron number in each valley is conserved thus that
the valley-pseudospin is a good quantum number. We
find a total Chern number quantized to 6 for all nine
levels, characterizing the 2/3 fractionalized valley spin-
Hall e↵ect. This spin polarized state turns out to have
lower energy comparing to the valley polarized 2/3 FQHE
Laughlin state as shown in the inset of Fig. 3. In order to
realize the FTI, one needs to be able to tune an attraction
between electrons in the opposite valleys. this is further
discussed below, here we simply note that Coulomb inter-
actions alone tend to polarize valleys, a form of flat band
ferromagnetism, but this is not a necessary outcome of
other repulsive interactions.

Further evidence of such an FTI state (here since valley
plays the role of spin it may also be called the fractional
valley Hall insulator) can be obtained by turning on and
increasing the intravalley part of the NNN coupling Us

nnn

and compare the current state with the valley-decoupled
1/3 + 1/3̄ fractional valley Hall insulator at large Us

nnn

limit. Indeed, we find there is no phase transition be-
tween this state and the decoupled fractional valley Hall
insulator, see in the supplementary.

C. Triplet superconducting state

Consider tuning U
nnn

without distinguishing the val-
leys. For su�ciently large attraction (Fig. 4), the ground
state of the spinful model becomes spin-polarized at
U
nnn

 �0.8. (Note, when added to the Coulomb re-
pulsion, this ends up giving a somewhat smaller but still
attractive next nearest neighbor interaction of U tot

nnn

=
�0.2). We have identified this phase as a spin triplet and
valley singlet superconducting state with a small but fi-
nite superfluid density n

s

. We obtain n
s

from the change
of the ground state energy E

g

with adding a small phase

twist ✓ as n
s

= 1/2@

2
Eg

@✓

2
36,38. Moreover the finite jump

for n
s

at the transition point U
nnn

= �0.8 (inset of Fig.
4) indicates the first-order transition between the valley
polarized state and the spin polarized superconducting
state. The typical momentum dependence of energy is
quite opposite to the 2/3 FQHE case as the ground state
is in the k = 0-sector without quasi-degeneracy (Fig. 4c).
Indeed using the extended BCS framework with next-
nearest neighbour interaction, it can be shown that the
spin triplet superconducting state has generically lower
energy than the spin singlet, since more inter-valley scat-
terings are participating in the pairing (see supplemen-
tary). Such flat band superconductivity is expected to
have enhanced pairing18–20, arising from the larger den-
sity of states (see Supplementary).
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FIG. 4: (Color online) (a) The energy of di↵erent states at
filling ⌫ = �2 + 2/3 as a function of U

nnn

. The LL degen-
eracy is N

s

= 12 and we have N
e

= 8 electrons. The lattice
system has 24 ⇤ 24 sites. With weak attraction or repulsion
(U

nnn

> �0.8), the ground state is valley polarized FQHE
state. At U

nnn

< �0.8 side, the valley unpolarized super-
conducting state with the spontaneous spin-polarization wins.
This superconducting phase is characterized by a finite super-
fluid density as shown in the inset. (b-c) Two lowest energies
in each momentum sector for spin polarized and valley polar-
ized states are shown as a function of k at U

nnn

= �0.6 (b)
and �1.0 (c). Energies are given in units of e2/4⇡✏a ' 10 eV.

Zeeman energy is strictly zero

Valley unpolarized + spin singlet stabilized by Unnn<0 but
no fractional topological insulator :-(

Valley K: +B Valley K’: -B

Four different states

Valley polarized + spin singlet for Unnn=0 (Pure Coulomb)



Experiments vs theory

Status of experiments:
- Spectroscopy of pseudo Landau levels 
- Few flux quanta in samples
- No magnetotransport experiments so far

Possible improvements:
- Samples on insulating substrate 
- Bigger samples (larger orbital degeneracy of the PLL)

Interactions in current experiments:
- Strained graphene and molecular graphene: interactions are 
screened by metallic substrate



Conclusions and perspectives

Real graphene: valley polarized state at partial filling. Spin (or 
valley) Hall ferromagnet at neutrality.

Tuned interactions: valley Fractional Topological Insulator 

New platforms to generate high fields and correlated phases. 

Potentially the richness of Quantum Hall physics but with 
additional competition between time-reversal breaking (FQH 
like) and time reversal invariant states.

Still a lot to study: activation gaps, excitations, role of 
additional real magnetic field, superconductivity ...



Thanks for your attention !
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FIG. 2: (Color online) The n = 0 PLL at fractional filling
factor ν = −2 + 2/3: spinfull electrons. Left panel: The
energy of different ground states as a function of the next-
nearest-neighboring coupling Unnn defined in Eq. (2). In the
range Unnn < −0.8, which includes the pure Coulomb inter-
action of realistic graphene (Unnn = 0), the ground state is
a valley polarized and spin singlet FQH state (green crosses).
Only a very significant attraction Unnn < −0.8 can destabi-
lize this state towards a valley unpolarized and spin polar-
ized superconducting state (red crosses). This superconduct-
ing phase is characterized by a finite superfluid density as
shown in the inset. Right panel: Two lowest energies in each
momentum sector as a function of k for the valley-polarized
state (Unnn = −0.6, upper) and for the spin-polarized su-
perconductor (Unnn = −1, lower). Parameters for the exact
diagonalization: same than in Fig. 1 but with the spin degree
of freedom.

Real graphene: time reversal breaking FQH state in a
single valley. We first consider real graphene with the
unscreened Coulomb interaction, namely U0 = Unnn = 0
in Eq. (2). Then the ground state is found to be a
valley polarized FQH state both for spinless (Fig. 1) and
spinfull (Fig. 2) electrons. This valley-polarized state
breaks spontaneously the time-reversal invariance of the
strained graphene Hamiltonian, and spins are in a singlet
state as in the 2/3 FQH states [33–35] obtained under
real magnetic field. We have further checked that the
Chern number is 2/3 and that the three lowest energy
states form a degenerated ground state manifold. Due to
the large values of strain-induced pseudomagnetic fields,
this state may be realized with elevated energy scales,
allowing for the stabilization of fragile states. In order
to test quantitatively the robustness of the 2/3 valley
polarized FQH state, we now vary the parameter Unnn in
the Hamiltonian Eq. (2). It turns out that the 2/3 valley
polarized state is rather stable both in the spinless (Fig.
1) and spinfull (Fig. 2) cases. Nevertheless when Unnn

is sufficiently negative, exotic valley symmetric phases
can also be realized as detailled below. For clarity we
describe separately the spinless and spinfull cases.

Spinless fermions and valley fractional topological in-
sulator (FTI): Let us consider spinless electrons and de-
compose the NNN coupling of Eq.(2) into an interaction
between opposite-valley electrons (Uop

nnn) and an interac-

tion between same-valley electrons (Us
nnn). We first tune

the intervalley correlations (Uop
nnn) while Us

nnn = 0 (but
note that electrons in the same valley still interact via
the bare Coulomb potential).
In some intermediate parameter range (−0.73 <

Uop
nnn < −0.58), an interesting quantum phase emerges

with nine nearly degenerated states forming a ground
state manifold GSM (Fig. 1.a, lines with symbols) which
is well separated from the higher energy states (Fig 1.a,
lines without symbols). This valley-symmetric and 9-fold
degenerated phase is called here valley fractional topolog-
ical insulator, since valley plays the role taken by spin in
the previously discussed ”spin” FTIs [19–22]. Moreover
the momentum quantum numbers of these states are at
k = 0 and other k determined by shifting the momen-
tum of each electron by an integer multiple of 2π/Ns,
where Ns is the PLL orbital degeneracy. This determines
three different momenta sectors (k = 0, π/3, and 2π/3)
and there are three near degenerate states in each sector.
These sectors can be considered as ground state flows
from one sector to another upon inserting flux through
adding the twist boundary phase (Fig. 1.b).
As a complementary characterization of the valley FTI

phase, we further perform valley-pseudospin Chern num-
ber calculation [36, 37] by adding the same boundary
phase along x-direction, and the opposite ones along
y-direction for both valleys [38, 39]. This generalized
pseudospin Chern number is well defined as the electron
number in each valley is conserved thus that the valley-
pseudospin is a good quantum number. We find a total
Chern number quantized to 6 for all nine levels, charac-
terizing the 2/3 fractionalized valley spin-Hall effect.
Finally we can also turn on and increase the intraval-

ley part of the NNN coupling Us
nnn (see supplemen-

tary). In the limit of very large intravalley correla-
tions (Us

nnn → ∞), we expect a totally valley-decoupled
1/3 + 1/3̄ phase consisting of two 1/3 Laughlin FQH
states with opposite chiralities. We find no phase tran-
sition between the valley FTI state discussed above (at
Us
nnn = 0 ) and the decoupled fractional valley Hall in-

sulator (see supplementary).
The above results for spinless electrons can be summa-

rized in a phase diagram (Fig. 1.c). For Uop
nnn > −0.35

(which includes realistic graphene), electrons have a nat-
ural tendency towards valley ferromagnetism, which is
expected for repulsive interactions in a such a flat band
system. In order to realize the valley FTI, one needs
to counteract this trend by tuning an attraction between
electrons in the opposite valleys. Besides, one also notices
a narrow range of parameters (−0.58 < Uop

nnn < −0.35)
where the valley-polarization is lost but the GSM de-
generacy not yet achieved. The understanding of this
crossover region between the valley polarized FQH insu-
lator and the valley FTI is still lacking and will be studied
elsewhere. Finally superconductivity might appear when
attraction is dominant (Uop

nnn < −0.58). This flat band
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FIG. 2: (Color online) The n = 0 PLL at fractional filling
factor ν = −2 + 2/3: spinfull electrons. Left panel: The
energy of different ground states as a function of the next-
nearest-neighboring coupling Unnn defined in Eq. (2). In the
range Unnn < −0.8, which includes the pure Coulomb inter-
action of realistic graphene (Unnn = 0), the ground state is
a valley polarized and spin singlet FQH state (green crosses).
Only a very significant attraction Unnn < −0.8 can destabi-
lize this state towards a valley unpolarized and spin polar-
ized superconducting state (red crosses). This superconduct-
ing phase is characterized by a finite superfluid density as
shown in the inset. Right panel: Two lowest energies in each
momentum sector as a function of k for the valley-polarized
state (Unnn = −0.6, upper) and for the spin-polarized su-
perconductor (Unnn = −1, lower). Parameters for the exact
diagonalization: same than in Fig. 1 but with the spin degree
of freedom.

Real graphene: time reversal breaking FQH state in a
single valley. We first consider real graphene with the
unscreened Coulomb interaction, namely U0 = Unnn = 0
in Eq. (2). Then the ground state is found to be a
valley polarized FQH state both for spinless (Fig. 1) and
spinfull (Fig. 2) electrons. This valley-polarized state
breaks spontaneously the time-reversal invariance of the
strained graphene Hamiltonian, and spins are in a singlet
state as in the 2/3 FQH states [33–35] obtained under
real magnetic field. We have further checked that the
Chern number is 2/3 and that the three lowest energy
states form a degenerated ground state manifold. Due to
the large values of strain-induced pseudomagnetic fields,
this state may be realized with elevated energy scales,
allowing for the stabilization of fragile states. In order
to test quantitatively the robustness of the 2/3 valley
polarized FQH state, we now vary the parameter Unnn in
the Hamiltonian Eq. (2). It turns out that the 2/3 valley
polarized state is rather stable both in the spinless (Fig.
1) and spinfull (Fig. 2) cases. Nevertheless when Unnn

is sufficiently negative, exotic valley symmetric phases
can also be realized as detailled below. For clarity we
describe separately the spinless and spinfull cases.

Spinless fermions and valley fractional topological in-
sulator (FTI): Let us consider spinless electrons and de-
compose the NNN coupling of Eq.(2) into an interaction
between opposite-valley electrons (Uop

nnn) and an interac-

tion between same-valley electrons (Us
nnn). We first tune

the intervalley correlations (Uop
nnn) while Us

nnn = 0 (but
note that electrons in the same valley still interact via
the bare Coulomb potential).
In some intermediate parameter range (−0.73 <

Uop
nnn < −0.58), an interesting quantum phase emerges

with nine nearly degenerated states forming a ground
state manifold GSM (Fig. 1.a, lines with symbols) which
is well separated from the higher energy states (Fig 1.a,
lines without symbols). This valley-symmetric and 9-fold
degenerated phase is called here valley fractional topolog-
ical insulator, since valley plays the role taken by spin in
the previously discussed ”spin” FTIs [19–22]. Moreover
the momentum quantum numbers of these states are at
k = 0 and other k determined by shifting the momen-
tum of each electron by an integer multiple of 2π/Ns,
where Ns is the PLL orbital degeneracy. This determines
three different momenta sectors (k = 0, π/3, and 2π/3)
and there are three near degenerate states in each sector.
These sectors can be considered as ground state flows
from one sector to another upon inserting flux through
adding the twist boundary phase (Fig. 1.b).
As a complementary characterization of the valley FTI

phase, we further perform valley-pseudospin Chern num-
ber calculation [36, 37] by adding the same boundary
phase along x-direction, and the opposite ones along
y-direction for both valleys [38, 39]. This generalized
pseudospin Chern number is well defined as the electron
number in each valley is conserved thus that the valley-
pseudospin is a good quantum number. We find a total
Chern number quantized to 6 for all nine levels, charac-
terizing the 2/3 fractionalized valley spin-Hall effect.
Finally we can also turn on and increase the intraval-

ley part of the NNN coupling Us
nnn (see supplemen-

tary). In the limit of very large intravalley correla-
tions (Us

nnn → ∞), we expect a totally valley-decoupled
1/3 + 1/3̄ phase consisting of two 1/3 Laughlin FQH
states with opposite chiralities. We find no phase tran-
sition between the valley FTI state discussed above (at
Us
nnn = 0 ) and the decoupled fractional valley Hall in-

sulator (see supplementary).
The above results for spinless electrons can be summa-

rized in a phase diagram (Fig. 1.c). For Uop
nnn > −0.35

(which includes realistic graphene), electrons have a nat-
ural tendency towards valley ferromagnetism, which is
expected for repulsive interactions in a such a flat band
system. In order to realize the valley FTI, one needs
to counteract this trend by tuning an attraction between
electrons in the opposite valleys. Besides, one also notices
a narrow range of parameters (−0.58 < Uop

nnn < −0.35)
where the valley-polarization is lost but the GSM de-
generacy not yet achieved. The understanding of this
crossover region between the valley polarized FQH insu-
lator and the valley FTI is still lacking and will be studied
elsewhere. Finally superconductivity might appear when
attraction is dominant (Uop

nnn < −0.58). This flat band
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FIG. 1: The Haldane model on the honeycomb lattice. A and
B sublattices are colored in red and green, respectively. The
lattice translation vectors are b1 = a2 �a3 and b2 = a3 �a1.
The hopping between NN is t1, and the hopping between NNN
is t2e

i� in the direction of arrows. The density-density repul-
sion between nearest neighbors is depicted in gray ellipses.

we highlight several structures in the higher levels of the
particle entanglement spectrum35,36 of the ground state
at filling 1/3 that may serve as a hint for the stable ex-
istence of other FQH states at other fillings, such as the
Read-Rezayi series37.

II. HALDANE MODEL

The Haldane model1 is the first studied example of a
topological insulator. We would like to see if this model
can host fermionic FCI phases (the bosonic version has
recently been reported in Refs. 17,18). We adopt the hon-
eycomb lattice layout from Ref. 13. As shown in Fig. 1,
the two sublattices A and B are connected by the vec-
tors a

1

= (0,�1), a
2

= (
p
3/2, 1/2), a

3

= (�
p
3/2, 1/2).

We define the lattice translation vectors b
1

= a
2

� a
3

,
b
2

= a
3

� a
1

. The Haldane model1 has real hopping
amplitude t

1

between nearest neighbors (NN), complex
hopping amplitude t

2

e±i� between next-nearest neigh-
bors (NNN), and an inversion-breaking sublattice poten-
tial M .

After a Fourier transform to the first Brillouin
zone and a gauge transform on the B sublat-
tice  k,B ! eik·(b1+2b2)/3 k,B , the single-particle
Hamiltonian can be put in Bloch form as H =P

k( 
†
k,A, 

†
k,B)h(k)( k,A, k,B)T. Here the lattice mo-

mentum k = (k · b
1

,k · b
2

) ⌘ (k
x

, k
y

) is summed over
the first Brillouin zone, and the h(k) matrix can be ex-
pressed in terms of the identity and 3 Pauli matrices,

h(k) = d
0

I+
P

i

d
i

�
i

, where

d
0

= 2t
2

cos�[cos k
x

+ cos k
y

+ cos(k
x

+ k
y

)], (1)

d
x

= t
1

[1 + cos(k
x

+ k
y

) + cos k
y

],

d
y

= t
1

[� sin(k
x

+ k
y

)� sin k
y

],

d
z

= M + 2t
2

sin�[sin k
x

+ sin k
y

� sin(k
x

+ k
y

)].

The single-particle Hamiltonian has inversion symme-
try at M = 0 and the 3-fold point group symmetry of
the honeycomb lattice. At M = 0, inversion exchanges
the two sublattices and transforms the annihilation op-
erators by ( k,A, k,B)T ! �

x

( �k,A, �k,B)T. The 3-
fold rotation generates the cyclic permutation of the lat-
tice translation vectors b

1

! b
2

! �b
1

� b
2

! b
1

on
each sublattice and thus transforms the wave vectors by
(k

x

, k
y

) ! (k
y

,�k
x

� k
y

). Therefore, the Bloch Hamil-
tonian has the following two symmetries:

h(k
x

, k
y

) = �
x

h(�k
x

,�k
y

)�
x

, (2)

h(k
x

, k
y

) = U†(k
x

, k
y

)h(k
y

,�k
x

� k
y

)U(k
x

, k
y

),

where U(k
x

, k
y

) is a diagonal 2⇥ 2 unitary matrix, with
[1, ei(kx

+k

y

)] on the diagonal. When the system is put on
the lattice of finite size N

x

⇥N
y

with periodic boundary,
the 3-fold rotation symmetry is lifted, unless N

x

= N
y

.
To focus on the e↵ect of interactions without being

distracted by single-particle dispersion, we always take
the flat-band limit of the insulator, i.e. replace the
original Bloch Hamiltonian h(k) =

P
n

E
n

(k)P
n

(k) byP
n

E
n

(0)P
n

(k), where P
n

(k) is the projector onto the
n-th band. We then send the band gap to infinity and
work directly in the lowest band, in the same spirit of the
lowest Landau level projection routinely adopted in the
FQH literature. We then add a density-density repulsion
between nearest neighbors. Since a flattened band does
not provide an energy scale, we are free to set the inter-
action strength to unity. After the aforementioned gauge
transform on  k,B , the interaction term can be written
in the sublattice basis as

1

N

X

{k
i

}

 †
k3A

 †
k4B

 k2B k1A�
mod2⇡

k1+k2�k3�k4
Vk1k2k3k4 , (3)

where

Vk1k2k3k4 = 1 + ei(k2�k4)b2 + ei(k2�k4)(b1+b2), (4)

as illustrated in Fig. 1.

A. Ground state at 1/3 filling

We diagonalize the interacting Hamiltonian in the flat-
tened lowest band at filling 1/3. We show the energy
spectrum of N = 8, 10, 12 particles on the N

x

⇥N
y

= 6⇥
N

2

lattice in Fig. 2. The calculations are performed with
(t

1

, t
2

,M,�) = (1, 1, 0, 0.13). The particular choice of pa-
rameters will be discussed later. In the three cases (N =
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FIG. 21: The Kagome lattice model with NN spin-orbit
coupling. The three sublattices A,B,C are colored in red,
green, blue, respectively. The lattice translation vectors are
b1 = 2a1, b2 = 2a2. The hopping amplitude between NN
is t1 � i�1 in the direction of arrows. The two-body and the
three-body interactions between NN are illustrated by the
gray ellipses and triangles, respectively.

particle model has been studied both without and with
NNN hopping terms. We have looked at the e↵ect of
interactions in both cases. But for sake of simplic-
ity we focus mostly on the case without NNN hop-
pings. The hopping amplitude between NN is t

1

±
i�

1

. After a Fourier transform and a gauge transform
 k,B !  k,Be

�ik·b1/2,  k,C !  k,Ce
�ik·b2/2, the single-

particle Hamiltonian can be cast in Bloch form as H =P
k( 

†
k,A, 

†
k,B , 

†
k,C)h(k)( k,A, k,B , k,C)T. Here the

lattice momentum k = (k·b
1

,k·b
2

) ⌘ (k
x

, k
y

) is summed
over the first Brillouin zone, and the h(k) matrix reads

h(k) = �t
1

2

4
0 1 + e�ik

x 1 + e�ik

y

1 + eikx 0 1 + ei(kx

�k

y

)

1 + eiky 1 + ei(ky

�k

x

) 0

3

5

+ i�
1

2

4
0 1 + e�ik

x �1� e�ik

y

�1� eikx 0 1 + ei(kx

�k

y

)

1 + eiky �1� ei(ky

�k

x

) 0

3

5 .

(7)

The three Bloch bands can be flattened using the projec-
tor method detailed for the Haldane model in Section II.
We focus on the lowest band. Unless specified otherwise,
the numerical calculations shown below are performed at
�
1

= t
1

as discussed in the original paper32. The lowest
band has unit Chern number.

FIG. 22: Low energy spectrum of the Kagome lattice model
with N = 8 (marked by red crosses), N = 10 (green plus
signs), and N = 12 (blue triangles) particles on the N

x

⇥
N

y

= 6⇥N/2 lattice, with energies shifted by E0, the lowest
energy for each system size. Also shown (magenta squares)
is the spectrum of N = 12 particles on the N

x

⇥N

y

= 6 ⇥ 6
lattice in the alternative Kagome model with NNN hoppings
at the parameters suggested in the original paper32, namely
(�1,�2, t2) = (0.28, 0.2,�0.3).

A. Filling 1/3

We fill the flattened lowest band to filling 1/3, and add
density-density repulsion between NN. After the gauge
transform, the interaction term reads

1

N

X

{k
i

}

�mod2⇡

k1+k2�k3�k4

A,B,CX

↵<�

 †
k3↵

 †
k4�

 k2� k1↵V
↵�

k1k2k3k4
,

(8)
where the sublattice indices (↵,�) are summed over
(A,B), (B,C), (C,A), and the interaction factors are

V AB

k1k2k3k4
= 1 + e�i(k2�k4)·b1 , (9)

V BC

k1k2k3k4
= 1 + ei(k2�k4)·(b1�b2),

V CA

k1k2k3k4
= 1 + ei(k2�k4)·b2 .

The 6 terms are illustrated by the 6 ellipses in Fig. 21.
We show the energy spectrum of N = 8, 10, 12 parti-

cles on the N
x

⇥ N
y

= 6 ⇥ N

2

lattice in Fig. 22. In the
three cases, a 3-fold degenerate ground state is seen at
total momenta {(0, 0), (2, 0), (4, 0)}, {(1, 0), (3, 0), (5, 0)},
{(0, 0), (0, 0), (0, 0)}, respectively. Again, this agrees per-
fectly with the (1, 3)-admissible counting proposed in
Ref. 15,22. The ratio of the gap to the energy spread
of the ground-state manifold is larger than that of the
Haldane model. As shown in Fig. 23, the energy gap �E
remains open and scales to a finite value in the limit of
N ! 1 with N

x

/N
y

finite. And the three degenerate
ground states exhibit spectral flow upon flux insertion.
The period of 3 fluxes, shown in Fig. 24, indicates the
system has Hall conductance �

xy

= 1/3.
We probe the quasihole excitations by the particle en-

tanglement spectrum of the ground state. In Fig. 25,

Illustrations from Wu, Regnault, Bernevig, PRB 2012 and Lauchli et al. ArXiv 2012
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Hierarchy of fractional Chern insulators and competing compressible states
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We study the phase diagram of interacting electrons in a dispersionless Chern band as a function of their
filling. We find hierarchy multiplets of incompressible states at fillings ⌫ = 1/3, 2/5, 3/7, 4/9, 5/9, 4/7, 3/5
as well as ⌫ = 1/5, 2/7. These are accounted for by an analogy to Haldane pseudopotentials extracted from
an analysis of the two-particle problem. Important distinctions to standard fractional quantum Hall physics are
striking: absent particle-hole symmetry in a single band, an interaction-induced single-hole dispersion appears,
which perturbs and eventually destabilizes incompressible states as ⌫ increases. For this reason the nature of the
state at ⌫ = 2/3 is hard to pin down, while ⌫ = 5/7, 4/5 do not seem to be incompressible in our system.

PACS numbers: 73.43.-f, 71.10.Fd, 73.43.Nq,

Introduction.— Following recent proposals of the existence
of novel lattice generalizations of fractional quantum Hall
(FQH) states, termed fractional Chern insulators (FCI), in
(approximately) flat bands exhibiting non-zero Chern num-
bers [1–3], there has been intense research activity in under-
standing this phenomenon [4–26].

From the original observation of a FCI state at Chern band
filling ⌫ = 1/3 [3–5] (at which the original FQH state was
also first observed), a number of questions immediately arise.
Firstly, under what conditions can FCIs be observed? Sec-
ondly, what are the states which compete with the FCI states?
Thirdly, what are the differences between FCI physics in
Chern bands compared to the familiar setting of Landau levels
in the continuum appropriate for describing the FQH state in
conventional semiconductor heterojunctions, e.g. arising due
to the non-uniform Berry curvature in reciprocal space?

This publication aims to contribute to all of these questions.
We start by demonstrating that a nearest neighbor interaction
leads to FCI state also at ⌫ = 2/5 and ⌫ = 1/5, although the
latter fraction has an FCI phase that is substantially less robust
than the ⌫ = 1/3 FCI. We account for this with a heuristic de-
rived from considering the two-particle problem in the lattice
model. Further, we find evidence of several additional FCI
states akin to the hierarchy FQH states familiar from conven-
tional QH physics and its composite Fermion [27] hierarchy
[28, 29] picture.

Turning to the qualitative distinctions from conventional
QH physics, we find that in the absence of particle-hole
symmetry in a single band, an effective crystal-momentum–
dependent potential appears, which shows up in the properties
of the single-hole dispersion, and leads to a modulation of
the occupation numbers n(k) in the many-body ground state
which presage the breakdown of the QH effect. This is re-
flected by a strong distinction between the many-body states
at ⌫ = 1/3 and ⌫ = 2/3 even in the spin-polarised setting that

t2�t2

(a) (b)

(0, 0)

(⇡, ⇡)

(⇡, 0)(⇡/2, ⇡/2)

kxky

t1, �

t1 = 1, � = ⇡/4, t2 = 1/2

Figure 1. (Color online) (a) Illustration of the checkerboard lattice
model with the relevant hopping amplitudes [2, 3]. The interaction
term is a nearest neighbor density-density interaction (interaction be-
tween pairs of white and grey sites). (b) Berry curvature in the first
Brillouin zone for the indicated set of parameters. Dark (light) inten-
sity denotes small (large) Berry curvature.

we study.
Our studies use extensive large-scale exact diagonalisations

of the many-body Hamiltonian of the lattice systems coupled
with analytical considerations. On a more technical level, we
address questions of the interplay of topological order and
the concomitant finite-size lattice quasi–ground-state degen-
eracies, as well as the finite-size scaling of the gaps.

Setup.— In order to be specific we focus on the two-
band checkerboard lattice model introduced in Refs. [2, 3]
and sketched in Fig. 1(a). Here t1e

±i� is a nearest-neighbor
hopping with an orientation dependent complex phase, and t2
denotes the next-nearest-neighbor hopping amplitude. After
Fourier transform, the single-electron (kinetic) Hamiltonian
reads

H =
X

k2BZ

(c†kA, c†kB)h(k)(ckA, ckB)T , (1)

where h(k) is given as [36]. In the following we con-
sider the case of t1 = 1, � = ⇡/4 and varying t2. For
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Lattice model + local fluxes (complex hopping matrix elements)

Local fluxes break Time-Reversal symmetry and allow for 
Quantum Hall Effect for Bloch states (no Landau levels)
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Valley FTI: decoupled 1/3 + 1/3* 

10

In the spin-singlet state V
P,

¯

P,

¯

P

0
,P

0 changes sign be-
tween the states with ⇠0 = �⇠ and ⇠0� = ⇠, where as for
the spin triplet for all the term in the mean field equation
have ⇠0 = ⇠. So we get larger gap and so smaller mean-
field energy for the spin triplet superconducting state.

8. The robustness of the fractional valley Hall
insulator and its evolution with tunning Us

nnn

The fractional valley Hall insulator is characterized by
a large ground state degeneracy. In a finite-size system,
due to the coupling between di↵erent states, one usually
sees a quasi-degeneracy with a finite splitting between
these states in the ground state manifold. As shown in
Fig. 4, around Uop

nnn

= �0.6 without the interaction be-
tween the electrons in the same valley Us

nnn

= 0, the nine
states at the right quantum number sectors are indeed
have much lower energy than other excited states. How-
ever, the splitting between these states are close to the
finite gap between these states and other excited states.
While the quantized nonzero total Chern number of the
ground state manifold indicates the obtained state is in-
deed a fractional valley Hall insulator, a clear-cut evi-
dence of nine fold topological degeneracy is still absent
and it is di�cult to predict the fate of the state as system
becomes very large. Here we address this issue through
tuning the system deep into the topological phase. In-
deed this can be achieved by increasing the correlations
between the electrons in the same valley (Us

nnn

).
As shown in Fig. 5, with the turn on of positive

Us

nnn

, the energy gap between the ground state manifold
and other excited states becomes very robust and much
larger than the splitting of the energy of the ground state
manifold. There is no phase transition as U

nnn

continu-
ously increases, so the observed state is indeed the same
phase as the fractional valley Hall insulator at the de-
coupled limit (strong Us

nnn

limit). In that limit, the nine
fold degeneracy is exact and spinless electrons in di↵er-
ent valleys are contributing ±1/3 quantized Hall conduc-
tances. We further perform the flux inserting measure-
ment. we show in Fig. 5b for Us

nnn

= 1, the three low-
est energy states in the momentum sector k = 0 evolve
into other states in the ground state manifold and they
evolve back to themselves after three periods of bound-
ary phase insertion. The energy gap between these states
and other excited states remain robust as illustrated in
Fig. 5b. We further perform valley-dependent Chern
number calculation36,37, and find a total Chern number
quantized to 6 for all nine levels, characterizing the 2/3
fractionalized valley spin-Hall e↵ect37. Remarkably, this
phase persists in a wide range of Us

nnn

� �0.2 includ-
ing the simple case where this interaction is turned o↵

(Us

nnn

= 0 as shown in the main text part of the paper.
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FIG. 5: (Color online) (a) Fractional topological insulating
phase for spinless electrons at filling ⌫ = �2 + 2/3. The
LL degeneracy is N

s

= 12 while there are totally N
e

= 8
(N

L

= N
R

= 4) electrons with polarized spin on a lattice with
24 ⇤ 24 sites. We demonstrate an emergent symmetry where
energies of nine states from k = 0, 2⇡/3 and 4⇡/3 sectors
become near degeneracy at large Us

nnn

limit. The onset of the
fractionalized phase with nine-fold near degenerating GSM is
identified at Us

nnn

� �0.2. (b) The evolution and the robust
of the gap during the change of the boundary phase.

1 E. Tang, J.-W. Mei, and X.-G. Wen, Phys. Rev. Lett. 106,
236802 (2011).
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tween the states with ⇠0 = �⇠ and ⇠0� = ⇠, where as for
the spin triplet for all the term in the mean field equation
have ⇠0 = ⇠. So we get larger gap and so smaller mean-
field energy for the spin triplet superconducting state.

8. The robustness of the fractional valley Hall
insulator and its evolution with tunning Us

nnn

The fractional valley Hall insulator is characterized by
a large ground state degeneracy. In a finite-size system,
due to the coupling between di↵erent states, one usually
sees a quasi-degeneracy with a finite splitting between
these states in the ground state manifold. As shown in
Fig. 4, around Uop

nnn

= �0.6 without the interaction be-
tween the electrons in the same valley Us
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= 0, the nine
states at the right quantum number sectors are indeed
have much lower energy than other excited states. How-
ever, the splitting between these states are close to the
finite gap between these states and other excited states.
While the quantized nonzero total Chern number of the
ground state manifold indicates the obtained state is in-
deed a fractional valley Hall insulator, a clear-cut evi-
dence of nine fold topological degeneracy is still absent
and it is di�cult to predict the fate of the state as system
becomes very large. Here we address this issue through
tuning the system deep into the topological phase. In-
deed this can be achieved by increasing the correlations
between the electrons in the same valley (Us

nnn

).
As shown in Fig. 5, with the turn on of positive
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nnn

, the energy gap between the ground state manifold
and other excited states becomes very robust and much
larger than the splitting of the energy of the ground state
manifold. There is no phase transition as U

nnn

continu-
ously increases, so the observed state is indeed the same
phase as the fractional valley Hall insulator at the de-
coupled limit (strong Us

nnn

limit). In that limit, the nine
fold degeneracy is exact and spinless electrons in di↵er-
ent valleys are contributing ±1/3 quantized Hall conduc-
tances. We further perform the flux inserting measure-
ment. we show in Fig. 5b for Us

nnn

= 1, the three low-
est energy states in the momentum sector k = 0 evolve
into other states in the ground state manifold and they
evolve back to themselves after three periods of bound-
ary phase insertion. The energy gap between these states
and other excited states remain robust as illustrated in
Fig. 5b. We further perform valley-dependent Chern
number calculation36,37, and find a total Chern number
quantized to 6 for all nine levels, characterizing the 2/3
fractionalized valley spin-Hall e↵ect37. Remarkably, this
phase persists in a wide range of Us

nnn

� �0.2 includ-
ing the simple case where this interaction is turned o↵

(Us
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= 0 as shown in the main text part of the paper.
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FIG. 5: (Color online) (a) Fractional topological insulating
phase for spinless electrons at filling ⌫ = �2 + 2/3. The
LL degeneracy is N

s

= 12 while there are totally N
e

= 8
(N

L

= N
R

= 4) electrons with polarized spin on a lattice with
24 ⇤ 24 sites. We demonstrate an emergent symmetry where
energies of nine states from k = 0, 2⇡/3 and 4⇡/3 sectors
become near degeneracy at large Us

nnn

limit. The onset of the
fractionalized phase with nine-fold near degenerating GSM is
identified at Us

nnn

� �0.2. (b) The evolution and the robust
of the gap during the change of the boundary phase.
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Adiabatic continuity with the decoupled valley state



Motivations for FTIs (no overall magnetic field) 

Lattice system with Quantum Hall effect but no Landau levels

Are the states in FCIs similar to FQH states in some limit ?

Same serie of fractions or not ? Dependence on the underlying lattice model ?

FTI in a band with high Chern number N>1

etc...

Fractional topological phases and broken time reversal symmetry in strained graphene
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PACS numbers:

In this supplementary material, we provide additional details and derivations of some expressions used in the main
text. We first present the derivation of the strained induced gauge potential. We give explicit examples of strains
leading to a uniform pseudomagnetic field and the corresponding spinor wave functions in the non interacting case.
Then we present mean field analysis of the quantum Hall and superconducting phases discussed in the main text.
Finally we conclude by a discussion of the robustness of the valley fractional topological insulator (FTI) with respect
to further interaction tuning.

Noninteracting strained graphene

Here we consider noninteracting spinless fermions on the honeycomb lattice (including of spin is straightforward).
The triangular Bravais lattice r

mn

= ma1 + na2 is generated by the basis vectors:
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connect any A atom to its three nearest B atoms, a0 = 0.142 nm being the length of the carbon-carbon bond. The
area of the unit cell is A

c

= 3
p
3a20/2.

Strained induced gauge potential

In the absence of interactions, the tight-binding Hamiltonian of strained graphene (Eq. 1 in the main text) can be
written as:

H0 =
X

rmn

X

a=1,2,3
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))(a†(r
mn
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where second quantization operators a(r
mn

) and b(r
mn

+ �
a

) annihilate a fermion at A-type and B-type sites respec-
tively. The strain is described by the deformation field �t

a

(r
mn

) of the nearest-neighbour hopping element between
sites r

mn

and r

mn

+�
a

with respect to the unperturbed value t. Note that the deviations �t
a
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) are real quantities
and must be smaller than t.
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beyond which ! vanishes quickly. By analogy with IQHE
[14], the spin transfer rate corresponds to a finite SHC of
value around 1:8 e

4" , which is nonquantized as spins are
nonconserved. By determining critical Wc at different VR’s
through the calculation of the spin transfer rate, we obtain a
phase diagram in the parameter plane of the Rashba cou-
pling VR and disorder strength W, which is shown in
Fig. 3(b). We find that such a phase boundary is well
correlated with the collapse of the bulk energy gap. In
Fig. 4(a), we show that when W ! 2:2t is very close to
Wc ! 2:4t, localized bulk states are still well separated in
energy from the conducting edge states appearing between
E" 0:0 and 0:07t with simple straight-line level crossing.
With further increasing W to W ! 2:8t slightly above Wc,
the edge states and bulk states mix together, and level
repulsion gaps show up, as indicated by the arrows in
Fig. 4(b), which signals the presence of backward scatter-
ing and the collapse of the bulk energy gap.

Topologically invariant Chern number matrix.—At this
stage, we have firmly established the connection between
the QSHE in the model Eq. (1) and the presence of edge
states within the bulk band gap. In the following, we
examine whether there exists a topological characteriza-
tion of the bulk states as in IQHE, which is responsible for
the existence of the edge states.

Generally, in diagonalizing the Hamiltonian Eq. (1)
one may introduce a generalized boundary condition
[5,17,18] for a 2D many-body wave function: !#. . . ; ri# $
Lj; . . .% ! ei$

#
j !#. . . ; ri# ; . . .%, where j ! x, y, and the sys-

tem length vector Lx ! Nx
2 a1 and Ly ! Nya2, with a1

and a2 as two primitive vectors of the Bravais lat-
tice. The twisted boundary condition is represented by
0 & $#j < 2", where # !" and # denotes the spin
index. Through a unitary transformation " !
exp'(iP#

P
i##

$#x
Lx
xi# $

$#y
Ly
yi#%)!, where the summation

runs over all electrons of both spins, " becomes periodic
on a torus. One can then define the topological Chern
numbers as [3,18]

 C#;% ! i
4"

ZZ
d$#x d$

%
y

!"
@"
@$#x

########
@"

@$%y

$
(
"
@"

@$%y

########
@"
@$#x

$%
;

(2)

where the area integration is over a unit cell 0 & $#x , $%y &
2". With #;% !"; # , C#;% form a 2* 2 CNM [18].

The many-body wave function "#$% is necessarily a
smooth function of the boundary phase $ ! f$#x ; $%y g
when the energy gap remains. One can then prove the exact
quantization of C#;% by strictly following the argument of
Thouless et al. [3]. Each topologically invariant matrix
element C#;% should remain unchanged until the energy
gap collapses. Considering the simple case without the
Rashba coupling term (VR ! 0), the only nonzero matrix
elements are the diagonal ones: C#;# ! &# with &" !
(&# ! 1 for VSO > 0, which change sign with VSO.
While the total charge Chern number Cc +

P
#;%C#;%

(corresponding to the total charge Hall conductance of
the system) [18] cancels out, the total spin-related Chern
number is quantized to Csc +

P
#;%#C#;% ! 2, which rep-

resents the spin-Hall response when a common electric
field for both spin components is imposed along the ŷ
direction. In this spin decoupled limit, the quantized spin
Chern number Csc is associated with the SHC by 'sH !
Csc ! 2 in units of e

4" .
Now we turn on the Rashba coupling and numerically

determine Csc. This can be done either by calculating each
C#;% first or carrying out the integration in Eq. (2) for the
opposite boundary condition along the x̂ direction (spin

FIG. 4. (a) Level crossing below Wc at W ! 2:2t in the energy
region 0:0–0:07t. (b) The avoided level crossing (pointed by
arrows) between edgelike states above Wc at W ! 2:8t with
changing $y. Here, N ! 240* 120, VSO, and VR are the same as
in Fig. 3(a) with Wc ! 2:4t.
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FIG. 3 (color online). (a) Spin transfer rate ! ! #hSziedge

#! (in
units of e=4") vs disorder strength W at VSO ! 0:05t and VR !
0:05t averaged over 500 disorder configurations. (b) The phase
boundary for the QSHE determined from the spin transfer, where
the transition happens with a change of the numbers of edge
channels from Nedge ! 2 to Nedge ! 0.
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Superfluid density

Tuned graphene: spinful case

3

which is well separated from the higher energy states (Fig
??.a, lines without symbols). This valley-symmetric and
9-fold degenerated phase is called here valley fractional
topological insulator, since valley plays the role taken by
spin in the previously discussed ”spin” FTIs [? ? ? ?
]. Moreover the momentum quantum numbers of these
states are at k = 0 and other k determined by shifting
the momentum of each electron by an integer multiple
of 2⇡/N

s

, where N
s

is the PLL orbital degeneracy. This
determines three di↵erent momenta sectors (k = 0, ⇡/3,
and 2⇡/3) and there are three near degenerate states in
each sector. These sectors can be considered as ground
state flows from one sector to another upon inserting flux
through adding the twist boundary phase (Fig. ??.b).

As a complementary characterization of the valley FTI
phase, we further perform valley-pseudospin Chern num-
ber calculation [? ? ] by adding the same bound-
ary phase along x-direction, and the opposite ones along
y-direction for both valleys [? ? ]. This generalized
pseudospin Chern number is well defined as the electron
number in each valley is conserved thus that the valley-
pseudospin is a good quantum number. We find a total
Chern number quantized to 6 for all nine levels, charac-
terizing the 2/3 fractionalized valley spin-Hall e↵ect.

Finally we can also turn on and increase the intraval-
ley part of the NNN coupling Us

nnn

(see supplemen-
tary). In the limit of very large intravalley correla-
tions (Us

nnn

! 1), we expect a totally valley-decoupled
1/3 + 1/3̄ phase consisting of two 1/3 Laughlin FQH
states with opposite chiralities. We find no phase tran-
sition between the valley FTI state discussed above (at
Us

nnn

= 0 ) and the decoupled fractional valley Hall in-
sulator (see supplementary).

The above results for spinless electrons can be summa-
rized in a phase diagram (Fig. ??.c). For Uop

nnn

> �0.35
(which includes realistic graphene), electrons have a nat-
ural tendency towards valley ferromagnetism, which is
expected for repulsive interactions in a such a flat band
system. In order to realize the valley FTI, one needs
to counteract this trend by tuning an attraction between
electrons in the opposite valleys. Besides, one also notices
a narrow range of parameters (�0.58 < Uop

nnn

< �0.35)
where the valley-polarization is lost but the GSM de-
generacy not yet achieved. The understanding of this
crossover region between the valley polarized FQH insu-
lator and the valley FTI is still lacking and will be studied
elsewhere. Finally superconductivity might appear when
attraction is dominant (Uop

nnn

< �0.58). This flat band
superconductivity is discussed below in more details for
the spinfull electrons.

Spinfull fermions and spin triplet superconducting
state. We now consider spinfull fermions and we tune
U
nnn

without distinguishing the valleys. For su�ciently
large attraction (Fig. ??), namely U

nnn

 �0.8 (note
that when added to the Coulomb repulsion, this ends up
giving a somewhat smaller but still attractive next near-

est neighbor interaction of U tot

nnn

= �0.2), the ground
state of the spinful model becomes a spin triplet and
valley singlet superconducting state which is consistent
with BCS-type mean field treatment (see supplemen-
tary). The superconductivity is characterized by a finite
superfluid density

n
s

=
1

2

@2E
g

@✓2
(3)

which is calculated from the change of the ground state
energy E

g

upon adding a small phase twist ✓ as [? ? ].
Moreover the finite jump for n

s

at the transition point
U
nnn

= �0.8 (inset of Fig. ??) points towards a first-
order transition between the valley polarized state and
the spin polarized superconducting state. The typical
momentum dependence of energy (Fig. ??.c) di↵ers dras-
tically from the 2/3 valley-polatized FQH case (Fig. ??c)
as the ground state is in the k = 0-sector without the
typical quasi-degeneracy of FQH state.

Half-filling n = 0 PLL. We now turn to the case
of neutral graphene (filling factor ⌫ = 0) under large
pseudomagnetic fields generated by strain. Due to the
electron-hole symmetry, the n = 0 PLL is half-filled and
there is natural a competition between valley ferromag-
net:
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†
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and spin ferromagnet
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†
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ground states, k labeling the Landau orbitals of the
zero energy (n = 0) PLL and (R,L) the valleys. Similar
issue of valley and spin ferromagnetism in the half-filled
n = 0 Landau level has attracted a lot of interest for
unstrained graphene under a real magnetic field [? ? ?
? ? ? ]. Here we revisit this problem in the case of a
time-reversal symmetric pseudomagnetic field.

We first consider the case of pure Coulomb interaction
(U

0

= U
nnn

= 0). Using Hartree-Fock method [? ? ]
we find that the valley and spin polarized states have
the same energy when only dominant density-density
terms are taken into account. We find that the inter-
valley backscattering terms lift this degeneracy by favor-
ing the valley polarization. Note that for real magnetic
field, those backscattering terms are absent in the zero-
energy Landau level (n = 0) due to the symmetry of
the eigenspinors [? ? ]. Also contrary to the real mag-
netic field Hall e↵ect, long range Coulomb interaction
prefers an Ising-like Z

2

valley polarized state rather than
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FIG. 2: (Color online) The n = 0 PLL at fractional filling
factor ν = −2 + 2/3: spinfull electrons. Left panel: The
energy of different ground states as a function of the next-
nearest-neighboring coupling Unnn defined in Eq. (2). In the
range Unnn < −0.8, which includes the pure Coulomb inter-
action of realistic graphene (Unnn = 0), the ground state is
a valley polarized and spin singlet FQH state (green crosses).
Only a very significant attraction Unnn < −0.8 can destabi-
lize this state towards a valley unpolarized and spin polar-
ized superconducting state (red crosses). This superconduct-
ing phase is characterized by a finite superfluid density as
shown in the inset. Right panel: Two lowest energies in each
momentum sector as a function of k for the valley-polarized
state (Unnn = −0.6, upper) and for the spin-polarized su-
perconductor (Unnn = −1, lower). Parameters for the exact
diagonalization: same than in Fig. 1 but with the spin degree
of freedom.

Real graphene: time reversal breaking FQH state in a
single valley. We first consider real graphene with the
unscreened Coulomb interaction, namely U0 = Unnn = 0
in Eq. (2). Then the ground state is found to be a
valley polarized FQH state both for spinless (Fig. 1) and
spinfull (Fig. 2) electrons. This valley-polarized state
breaks spontaneously the time-reversal invariance of the
strained graphene Hamiltonian, and spins are in a singlet
state as in the 2/3 FQH states [33–35] obtained under
real magnetic field. We have further checked that the
Chern number is 2/3 and that the three lowest energy
states form a degenerated ground state manifold. Due to
the large values of strain-induced pseudomagnetic fields,
this state may be realized with elevated energy scales,
allowing for the stabilization of fragile states. In order
to test quantitatively the robustness of the 2/3 valley
polarized FQH state, we now vary the parameter Unnn in
the Hamiltonian Eq. (2). It turns out that the 2/3 valley
polarized state is rather stable both in the spinless (Fig.
1) and spinfull (Fig. 2) cases. Nevertheless when Unnn

is sufficiently negative, exotic valley symmetric phases
can also be realized as detailled below. For clarity we
describe separately the spinless and spinfull cases.

Spinless fermions and valley fractional topological in-
sulator (FTI): Let us consider spinless electrons and de-
compose the NNN coupling of Eq.(2) into an interaction
between opposite-valley electrons (Uop

nnn) and an interac-

tion between same-valley electrons (Us
nnn). We first tune

the intervalley correlations (Uop
nnn) while Us

nnn = 0 (but
note that electrons in the same valley still interact via
the bare Coulomb potential).
In some intermediate parameter range (−0.73 <

Uop
nnn < −0.58), an interesting quantum phase emerges

with nine nearly degenerated states forming a ground
state manifold GSM (Fig. 1.a, lines with symbols) which
is well separated from the higher energy states (Fig 1.a,
lines without symbols). This valley-symmetric and 9-fold
degenerated phase is called here valley fractional topolog-
ical insulator, since valley plays the role taken by spin in
the previously discussed ”spin” FTIs [19–22]. Moreover
the momentum quantum numbers of these states are at
k = 0 and other k determined by shifting the momen-
tum of each electron by an integer multiple of 2π/Ns,
where Ns is the PLL orbital degeneracy. This determines
three different momenta sectors (k = 0, π/3, and 2π/3)
and there are three near degenerate states in each sector.
These sectors can be considered as ground state flows
from one sector to another upon inserting flux through
adding the twist boundary phase (Fig. 1.b).
As a complementary characterization of the valley FTI

phase, we further perform valley-pseudospin Chern num-
ber calculation [36, 37] by adding the same boundary
phase along x-direction, and the opposite ones along
y-direction for both valleys [38, 39]. This generalized
pseudospin Chern number is well defined as the electron
number in each valley is conserved thus that the valley-
pseudospin is a good quantum number. We find a total
Chern number quantized to 6 for all nine levels, charac-
terizing the 2/3 fractionalized valley spin-Hall effect.
Finally we can also turn on and increase the intraval-

ley part of the NNN coupling Us
nnn (see supplemen-

tary). In the limit of very large intravalley correla-
tions (Us

nnn → ∞), we expect a totally valley-decoupled
1/3 + 1/3̄ phase consisting of two 1/3 Laughlin FQH
states with opposite chiralities. We find no phase tran-
sition between the valley FTI state discussed above (at
Us
nnn = 0 ) and the decoupled fractional valley Hall in-

sulator (see supplementary).
The above results for spinless electrons can be summa-

rized in a phase diagram (Fig. 1.c). For Uop
nnn > −0.35

(which includes realistic graphene), electrons have a nat-
ural tendency towards valley ferromagnetism, which is
expected for repulsive interactions in a such a flat band
system. In order to realize the valley FTI, one needs
to counteract this trend by tuning an attraction between
electrons in the opposite valleys. Besides, one also notices
a narrow range of parameters (−0.58 < Uop

nnn < −0.35)
where the valley-polarization is lost but the GSM de-
generacy not yet achieved. The understanding of this
crossover region between the valley polarized FQH insu-
lator and the valley FTI is still lacking and will be studied
elsewhere. Finally superconductivity might appear when
attraction is dominant (Uop

nnn < −0.58). This flat band
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