Quantum Hall states and fractional topological insulator states in strained graphene

Jérôme Cayssol

Bordeaux University

MPIPKS (Visiting researcher August 2012 to July 2013)

Pouyan Ghaemi
 (Berkeley, now Postdoc at Urbana Champain)

Donna Sheng (Northridge University, Los Angeles)

Ashvin Vishwanath (Berkeley)

Fractional topological phases and broken time reversal symmetry in strained graphene, P. Ghaemi, J.C., D.N. Sheng, and A. Vishwanath, Phys. Rev. Lett. 108, 266801 (2012)

Quick history of Topological phases of electrons in crystals

Integer and Fractional Quantum Hall effect
$(1981,1983)$
2D electrons in strong magnetic field: $\mathrm{Si}, \mathrm{GaAs}$, graphene,...

Topological insulators with strong spin-orbit coupling 2D: graphene, HgTe quantum wells
$(2005,2007)$
3D: BiSb, Bi2Se3, Bi2Te3, HgTe under strain $(\mathbf{2 0 0 6}, 2008)$
Zoology of Chern insulators with no overall/net magnetic field 2D: Haldane 1988
Various models of Fractional Chern insulators (2011)

Rough / partial classification of topological phases in the absence of a global uniform field

Time-reversal Symmetry	Free electrons	Interacting electrons
NO	Chern insulator No Landau levels Dispersive Bloch bands with nonzero Chern number	Fractional Chern insulators Flattened Bloch band
YES	Topological insulator Experimental evidences: HgTe, Bi2Se3, Bi2Te3	Fractional topological insulators

Our motivation was to propose graphene under strain as:

1) A possible experimental platform to realize topological phases in the absence of external magnetic field
2) A system with a competition between Time-reversal symmetric phases and Time-reversal breaking phases
3) A possible (valley) Fractional Topological Insulator under some fine-tuning of the interactions

Outline

Pseudomagnetic fields in strained/deformed graphene Large valley-dependent fields
Time-reversal $(T R)$ invariance (real magnetic field $=0$)
Experimental signatures (short review)
Observation of large pseudo-fields: 60T, 100T, 300T,... !
Pseudo Landau level structure (PLL)

Interaction driven phases (our theoretical work)
Effet of the Coulomb interaction in a partially filled PLL Fractional quantum Hall states (breaks TR)
Fractional topological insulators (TR invariant state)

Graphene (unstrained and $B=0$)

Honeycomb lattice

Two sublattices A and B

Band structure (pi orbitals)

2 Dirac points at K and K^{\prime}

Microscopic Tight binding model:

$$
H_{0}=\sum_{\mathbf{r}_{m n}} \sum_{a=1,2,3} t a^{\dagger}\left(\mathbf{r}_{m n}\right) b\left(\mathbf{r}_{m n}+\boldsymbol{\delta}_{a}\right)+h . c .
$$

Low energy theory: Dirac Hamiltonian

Smooth deformation of the bonds

$$
H_{0}=\sum_{\mathbf{r}_{m n}} \sum_{i=1,2,3}\left(t+\delta t_{i}\left(\mathbf{r}_{m n}\right)\right)\left(a^{\dagger}\left(\mathbf{r}_{m n}\right) b\left(\mathbf{r}_{m n}+\boldsymbol{\delta}_{i}\right)+h . c .\right)
$$

no intervalley coupling

Low energy theory: Dirac Hamiltonian

$$
H_{\xi}=v_{F}\left(\xi \Pi_{x}^{\xi} \sigma_{x}+\Pi_{y}^{\xi} \sigma_{y}\right)
$$

$$
\boldsymbol{\Pi}^{\xi}=\mathbf{p}+\xi \delta \mathbf{p}
$$

Dirac point motion

$$
\boldsymbol{\Pi}^{\xi}=\mathbf{p}+\xi \delta \mathbf{p}
$$

Dirac points stay time-reversed partners

Momentum shift $=$ Potential vector

$$
\boldsymbol{\Pi}^{\xi}=\mathbf{p}+\overbrace{\xi \in \mathrm{A}}
$$

Induced vector potentials are opposite in the valleys

Uniform deformation

Dirac points shifted but NO pseudomagnetic field (curl $\mathrm{A}=0$)

M. O. Goerbig, J.-N. Fuchs, G. Montambaux, and F. Piéchon, PRB 78, 045415 (2008)
G. Montambaux, F. Piéchon, J.-N. Fuchs, and M. O. Goerbig, PRB 80, 153412 (2009)

Pics from M.O. Goerbig, RMP 23, 1193 (2011)

Non uniform deformation yields finite fields

Arbitrary deformation leads in general to:
Non uniform field and complicated band structure...

Class of deformations yielding to
Uniform magnetic field in a given valley
Dirac cones are expected to split into flat Landau levels
F. Guinea, M.I. Katsnelson, and A.K. Geim, Nature Physics, 2009

(Pseudo) Landau levels in zero field

$$
E_{n}=\xi \sqrt{2 e \hbar v_{F}^{2} B|n|}
$$

F. Guinea, M.I. Katsnelson, and A.K. Geim, Nature Physics, 2009

Relation valley-sublattice (n=0 Landau level)

Real magnetic field: K on B sublattice and K^{\prime} on A sublattice.

Pseudo field: Both K and K^{\prime} on the same sublattice (B).

Two natural questions:

1- Experimental evidences of those large fields and associated Landau levels?

2- Can we have Fractional Quantum Hall states in the partially filled Landau levels induced by pure strain?

PART II:

Experiments on deformed graphene systems

Crommie (Berkeley): real graphene (Science 2011)
Lin He (Beijing University): real bilayer graphene (ArXiv 2012)
Manoharan (Stanford): molecular graphene (Nature 2012)
Esslinger (ETH Zurich): fermionic cold atoms (Nature 2012)

Strained graphene (Crommie, Berkeley)

Real graphene on top of a Pt substrate

Nanoscale bubbles scanned by STM

Density of states by STM: Pseudo Landau Levels

Typical fields: 300 Tesla !

Twisted graphene bilayer (Lin He, Beijing)

Graphene bilayer on top of a Rh substrate

Twist creates a

Non relativistic Landau levels

Why strained induced fields are so large in graphene?

But with a limitation on the strained region size

$$
L_{y} \ll \frac{\Phi_{0}}{|B|} \frac{1}{a}=\frac{l_{B}^{2}}{a} \simeq 500 \mathrm{~nm}
$$

Molecular graphene (Manoharan, Stanford)

100-1000 molecules deposited one by one on Cu surface

Lattice spacing a=2 nm
10 times larger than atomic graphene 10 times smaller than patterned 2DEG

DOS by STM

Triaxial deformation

Typical pseudofields: 60 Tesla ! in «pseudographene»

Density of free electrons fixed

Lattice constant of the CO molecules grid can be varied

Highly controlled system

Fermionic cold atoms (Esslinger, ETH Zurich)

Uniform deformation

Dirac point motion

PART III:
 Interactions in a partially filled pseudo Landau level

Interaction Hamiltonian

Integer filling of spin-valley subbands
Fractional filling of the spin-valley degenerated PLL

Interaction Hamiltonian

Long range Coulomb interaction: $V\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)=e^{2} / 4 \pi \epsilon\left|\mathbf{r}_{\mathbf{i}}-\mathbf{r}_{\mathbf{j}}\right|$

$$
H_{\text {int }}=\sum_{\mathbf{r}_{i} \neq \mathbf{r}_{j}} V\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right) n\left(\mathbf{r}_{i}\right) n\left(\mathbf{r}_{j}\right)+U_{0} \sum_{\mathbf{r}_{i}} n\left(\mathbf{r}_{i}\right) n\left(\mathbf{r}_{i}\right)
$$

$$
+U_{n n n} \sum_{\left\langle\mathbf{r}_{i}, \mathbf{r}_{j}\right\rangle} n\left(\mathbf{r}_{i}\right) n\left(\mathbf{r}_{j}\right)
$$

Half-filled n=0 Pseudo Landau Level

Valley ferromagnet: $\quad \Psi_{V}=\prod_{k} c_{R, k, \uparrow}^{\dagger} c_{R, k, \downarrow}^{\dagger}|0\rangle$
Spin ferromagnet:

$$
\Psi_{S}=\prod_{k} c_{R, k, \uparrow}^{\dagger} c_{L, k, \uparrow}^{\dagger}|0\rangle
$$

Reminiscent of the same problem for a real field:
J. Alicea and M.P.A. Fisher, Phys. Rev. B 74, 075422, 2006
M. O. Goerbig, R. Moessner, and B. Douçot, Phys. Rev. B 74, 161407, 2006
but here $S U(4)$ symmetry is reduced to $S U(2) x Z 2$

Coulomb only

Dominant density-density terms: Spin ferromagnet and Valley Ising ferromagnet have the same Hartree-Fock energy

Backscattering terms favor the Ising valley ferromagnet

Some density-density terms

Backscattering term

Coulomb + on-site Hubbard corrections U0

On-site repulsion favors the spin ferromagnet
No Zeeman effect at all (in contrast to real field)

Numerical Hartree-Fock calculation of the groundstate energies (Donna Sheng)

Shows the sensitivity to local part of the interaction

Fractional filling 2/3 graphene

Two scenarios:

1) Electrons valley polarize and realize a FQH state in the large effective field of this valley. Time-reversal symmetry is spontaneously broken.
2) Electrons populate the two valleys. Time-reversal invariant state.

Graphene at fractional filling $2 / 3$ (of the $\mathbf{n}=\mathbf{0}$ PLL)

Exact diagonalization (Donna Sheng)

$$
\begin{array}{lll}
N_{e}=8 \\
N_{\phi}=12
\end{array} \quad \Phi_{0} / 48 \quad \text { per hexagon on a } 24^{*} 24 \text { lattice }
$$

1) Groundstate and excited states energies
2) Wavefunctions
3) Chern number

Grounstate energy for Spinless electrons

Valley polarized $2 / 3$ state

Valley symmetric $(1 / 3+1 / 3)$ state

Valley K: +B
Valley K': -B

Grounstate energy for Spinless electrons

Valley polarized $2 / 3$ state

Valley symmetric $(1 / 3+1 / 3)$ state

Valley K: +B
Valley K': -B

Valley polarized state is the most stable for pure Coulomb

$$
\text { (} \mathrm{U}=0 \text { points) }
$$

Properties of the valley polarized state

3 -fold degenerate groundstate on the torus

Total Chern number 2 for the 3-degenerated states (calculated by a mesh method in phase twist space)

This state is qualitatively similar to a FQH state at $2 / 3$ It is also a spin singlet state (for spinful electrons). but realized in very large effective fields (up to hundreds of Tesla)

Grounstate energy for Spinless electrons

Valley polarized 2/3 state

Valley symmetric $(1 / 3+1 / 3)$ state

Valley K!-B

Valley symmetric state can be obtained by decreasing the next-nearest-neighbor interaction Unnn^op
(between opposite valleys)

Low energy spectrum for spinless electrons

9 fold quasi-degenerate groundstate

Valley fractional topological insulator (FTI)

Properties of this state

Boundary-phase twist

9-fold degenerated valley Fractional Topological Insulator

Phase diagram: spinless case

Phase diagram: spinless case

Spin FTI from Hua Chen and Kun Yang, PRB 85, 195113 (2012)
(a)

$$
\begin{aligned}
\hat{\mathcal{H}}_{\mathrm{int}}= & \frac{1}{2} \sin (\varphi) \sum_{\left\{j_{i}\right\} \sigma} V_{j_{1} j_{2} j_{3} j_{4}}^{\sigma \sigma} c_{j_{1} \sigma}^{\dagger} c_{j_{2} \sigma}^{\dagger} c_{j_{3} \sigma} c_{j_{4} \sigma} \\
& +\frac{1}{2} \cos (\varphi) \sum_{\{i,\}^{2} \sigma} V_{j_{1} j_{2} j_{3} j_{4}}^{\sigma \bar{\sigma}} c_{j_{1} \sigma}^{\dagger} c_{j_{2} \bar{\sigma}}^{\dagger} c_{j_{3} \bar{\sigma}} c_{j_{4} \sigma}
\end{aligned}
$$

same spin
opposite spin

Grounstate energy for Spinful electrons

Zeeman energy is strictly zero

Valley K: +B Valley K': -B

Four different states

Valley polarized + spin singlet for Unnn=0 (Pure Coulomb)
Valley unpolarized + spin singlet stabilized by Unnn <0 but no fractional topological insulator :-(

Experiments vs theory

Status of experiments:

- Spectroscopy of pseudo Landau levels
- Few flux quanta in samples
- No magnetotransport experiments so far

Possible improvements:

- Samples on insulating substrate
- Bigger samples (larger orbital degeneracy of the PLL)

Interactions in current experiments:

- Strained graphene and molecular graphene: interactions are screened by metallic substrate

Conclusions and perspectives

Real graphene: valley polarized state at partial filling. Spin (or valley) Hall ferromagnet at neutrality.

Tuned interactions: valley Fractional Topological Insulator

New platforms to generate high fields and correlated phases.

Potentially the richness of Quantum Hall physics but with additional competition between time-reversal breaking (FQH like) and time reversal invariant states.

Still a lot to study: activation gaps, excitations, role of additional real magnetic field, superconductivity ...

Thanks for your attention!

Chern insulators (also Quantum Anomalous Hall phases)

Haldane model (1988)

Kagome lattice

(a)

Chekerboard lattice

Lattice model + local fluxes (complex hopping matrix elements)

Local fluxes break Time-Reversal symmetry and allow for Quantum Hall Effect for Bloch states (no Landau levels)

Valley FTI: decoupled $1 / 3+1 / 3^{*}$

Properties of this valley FTI

Adiabatic continuity with the decoupled valley state

Motivations for FTIs (no overall magnetic field)

Lattice system with Quantum Hall effect but no Landau levels
Are the states in FCls similar to FQH states in some limit?
Same serie of fractions or not? Dependence on the underlying lattice model ?
FTI in a band with high Chern number $\mathrm{N}>1$
etc...

$$
C=\frac{i}{4 \pi} \iint d \theta_{x} d \theta_{y}\left[\left\langle\left.\frac{\partial \Psi}{\partial \theta_{x}} \right\rvert\, \frac{\partial \Psi}{\partial \theta_{y}}\right\rangle-\left\langle\left.\frac{\partial \Psi}{\partial \theta_{y}} \right\rvert\, \frac{\partial \Psi}{\partial \theta_{x}}\right\rangle\right]
$$

$$
C^{\alpha, \beta}=\frac{i}{4 \pi} \iint d \theta_{x}^{\alpha} d \theta_{y}^{\beta}\left[\left\langle\left.\frac{\partial \Psi}{\partial \theta_{x}^{\alpha}} \right\rvert\, \frac{\partial \Psi}{\partial \theta_{y}^{\beta}}\right\rangle-\left\langle\frac{\partial \Psi}{\partial \theta_{y}^{\beta}} \left\lvert\, \frac{\partial \Psi}{\partial \theta_{x}^{\alpha}}\right.\right\rangle\right]
$$

Tuned graphene: spinfull case

Superfluid density

$$
n_{s}=\frac{1}{2} \frac{\partial^{2} E_{g}}{\partial \theta^{2}}
$$

