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Motivations : FTI

A rich physics emerge when turning on strong interaction in QHE

What about Topological insulators ?
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Fractional Chern Insulator



Interacting Chern insulators

A Chern insulator is a zero magnetic field version of the QHE
(Haldane, 88)

Topological properties emerge from the band structure

At least one band is a non-zero Chern number C , Hall
conductance σxy = e2

h |C |
Basic building block of 2D Z2 topological insulator (half of it)

Is there a zero magnetic field equivalent of the FQHE ? →
Fractional Chern Insulator

Here we will focus on the C = ±1.



From CI to FCI

To go from IQHE to FQHE, we need to :

consider a single Landau level

partially fill this level, ν = N/NΦ

turn on repulsive interactions



From CI to FCI

To go from IQHE CI to FQHE FCI, we need to :

consider a single Landau level
consider a single band

partially fill this level, ν = N/NΦ

partially fill this band, ν = N/Nunit cells

turn on repulsive interactions
turn on repulsive interactions

What QH features should we try to mimic to get a FCI ?

Several proposals for a CI with nearly flat band that may lead
to FCI

But “nearly” flat band is not crucial for FCI like flat band is
not crucial for FQHE (think about disorder)



Four (almost) flat band models

Haldane model,

Neupert et al. PRL (2011)

t1 -t2

t2

-t2

t2

Checkerboard lattice,

K. Sun et al. PRL (2011).
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Kagome lattice,

E. Tang et al. PRL (2011)
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The Kagome lattice model

a1

a2

1 2

3

Jo et al. PRL (2012)

three atoms per unit cell,
spinless particles

lattice can be realized in cold
atoms

only nearest neighbor hopping
e iϕ

three bands with Chern numbers
C = 1, C = 0 and C = −1

H(k) = −t1

 0 e iϕ(1 + e−ikx ) e−iϕ(1 + e−iky )

0 e iϕ(1 + e i(kx−ky ))
h.c. 0


kx = k.a1, ky = k.a2



The flat band limit
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We can deform continuously the
band structure to have a
perfectly flat valence band

and project the system onto the
lowest band, similar to the
projection onto the lowest
Landau level

H(k) =
nbr bands∑

n=1

PnEn(k)

−→ HFB(k) =
nbr bands∑

n=1

nPn



Two body interaction and the Kagome lattice

Our goal : stabilize a Laughlin-like state at ν = 1/3.
A key property : the Laughlin state is the unique densest state
that screens the short range repulsive interaction.

1 2

3

HF
int = U

∑
<i ,j>

: ninj :

HB
int = U

∑
i

: nini :

A nearest neighbor repulsion
should mimic the FQH
interaction.

We give the same energy
penalty when two part are
sitting on neighboring sites (for
fermions) or on the same site
(for bosons).

On the checkerboard lattice :
Neupert et al. PRL 106, 236804
(2011), Sheng et al. Nat.
Comm. 2, 389 (2011), NR and
BAB, PRX (2011)



The ν = 1/3 filling factor

An almost threefold degenerate ground state as you expect for the
Laughlin state on a torus (here lattice with periodic BC)
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But 3fold degeneracy is not enough to prove that you have
Laughlin-like physics there (a CDW would have the same

counting).



Gap

Many-body gap can actually increase with the number of
particles due to aspect ratio issues.

Finite size scaling not and not monotonic reliable because of
aspect ratio in the thermodynamic limit.

The 3-fold degeneracy at filling 1/3 in the continuum exists
for any potential and is not a hallmark of the FQH state. On
the lattice, 3-fold degeneracy at filling 1/3 means more than
in the continuum, but still not much
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Quasihole excitations

The form of the groundstate of the Chern insulator at filling
1/3 is not exactly Laughlin-like. However, the universal
properties SHOULD be.
The hallmark of FQH effect is the existence of fractional
statistics quasiholes.
In the continuum FQH, Quasiholes are zero modes of a model
Hamiltonians - they are really groundstates but at lower filling.
In our case, for generic Hamiltonian, we have a gap from a low
energy manifold (quasihole states) to higher generic states.

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0  5  10  15  20  25  30

E
 / 

t 1

Kx + Nx * Ky

N = 9, Nx = 5,Ny = 6
The number of states below
the gap matches the one of

the FQHE !



The one dimensional limit : thin torus

let’s take Nx = 1, thin torus limit

the interacting system can be solved exactly for a
specific model.

the groundstate is just the electrostatic solution (1 electron
every 3 unit cells)

a charge density wave and not a Laughlin state
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Can we differentiate between a Laughlin state and a CDW ?



Entanglement spectroscopy



Entanglement spectrum - Li and Haldane, PRL (2008)

example : system made of two spins 1/2

A B ρ = |Ψ〉 〈Ψ|, reduced density matrix ρA = TrBρ
Entanglement spectrum : ξ = −log(λ) (λ
eigenvalues of ρA) as a function of Sz
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The counting (i.e the number of non zero eigenvalue) also provides
informations about the entanglement



How to cut the system ?

The system can be cut in different ways :

real space
momentum space
particle space

Each way may provide different information about the system (ex :
trivial in momentum space but not in real space)

NF

geometrical  partition

particle  partition

NF/2

edge physics

quasihole physics

NF

Orbital partitioning (OES) :
extracting the edge physics

Particle partitioning (PES) :
extracting the bulk physics



Particle entanglement spectrum

Particle cut : start with the ground state Ψ for N particles,
remove N − NA, keep NA

ρA(x1, ..., xNA
; x ′1, ..., x

′
NA

)

=

∫
...

∫
dxNA+1...dxN Ψ∗(x1, ..., xNA

, xNA+1, ..., xN)

× Ψ(x ′1, ..., x
′
NA
, xNA+1, ..., xN)

“Textbook expression” for the reduced density matrix.
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quasihole states for NA particles on
the same geometry

the fingerprint of the phase.

This information that comes from
the bulk excitations is encoded
within the groundstate !



Away from model states : Coulomb groundstate at ν = 1/3

Coulomb groundstate at ν = 1/3 has the same universal
properties than the Laughlin state
The ES exhibits an entanglement gap.
Depending on the geometry, this gap collapses after a few
momenta away from the maximum one (the system “feels”
the edge) or is along the full range of momenta (torus).
The part below the gap has the same fingerprint than the
Laughlin state : the entanglement gap protects the state
statistical properties.
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Back to the FCI



Particle entanglement spectrum

Back to the Fractional Chern Insulator
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Particle entanglement spectrum : CDW

The PES for a CDW can be computed exactly and is not identical
to the Laughlin PES
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ν = 1/3, Nx = 1, N = 6, NA = 3
59 states below the gap −→ CDW
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Emergent Symmetries in the Chern Insulator

in FQH, we have the magnetic
translational algebra

In FCIs, there is in principle no
exact degeneracy (apart from the
lattice symmetries).

But both the low energy part of
the energy and entanglement
spectra exhibit an emergent
translational symmetry.

The momentum quantum numbers
of the FCI can be deduced by
folding the FQH Brillouin zone.

FQH : N0 = GCD(N,Nφ = Nx × Ny )

FCI : nx = GCD(N,Nx),

ny = GCD(N,Ny )

FQHE BZ

FOLDING
FCI BZ

K  =(0,...,n  -1)x

K  =(0,...,n  -1)y

x

y

K  =(0,...,N-1)x 0

K  =(0,...,N-1)y 0



Beyond the Laughlin states
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A clear signature for composite
fermion states at ν = 2/5 and
ν = 3/7 (here Kagome at ν = 2/5)

Also observed for bosons at ν = 2/3
and ν = 3/4.
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FCI : a perfect world ?

Not all models produce a Laughlin-like
state

Depends on the particle statistics :
Haldane model fermions vs bosons

Longer range interactions destabilize FCI

Even more model dependent for the other
states

Does a flatter Berry curvature help ? Not
really

What are the key ingredients to get a
robust FCI ?
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Overlaps and C > 1



Wannier basis, computing overlaps

Wannier states form a basis of maximally localized states in
one direction x̂ |W (n, ky )〉 = xn|W (n, ky )〉
flow into each other when ky → ky + 2π :
|W (n, ky + 2π)〉 → |W (n + C , ky )〉
mimic the Landau orbitals . Qi’s prescription (PRL 2012) :
take a FQH state and replace the Landau orbitals with the
Wannier states.
This prescription fails to produce good overlaps . Wannier
states are not orthogonal in finite size (trade maximal
localization to restore orthogonality). Need a correct gauge
choice.
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Overlaps at ν = 1/3
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Laughlin ν = 1/3 (up to
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model)

Results are coherent with
the PES observation
(larger ent gap = better
model)

See also G. Moller’s talk,
Wu et al. arxiv :1207.4439

PES for the Kagome
model N = 8,NA = 4 :
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Beyond C = 1

Several almost flat band models with Chern number C > 1 :

Wang and Ran, PRB 2011 C = 2

Wang et al, arxiv :1204.1697 C = 2

Trescher and Bergholtz, arxiv :1205.2245 C = N

Yang et al. arxiv :1205.5792 C = N

0
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Barkeshli and Qi,
arXiv :1112.3311

it decouples into spin up and
down in the non-interacting case

Do we get FQH bilayer physics
for C = 2 ?



Example : C = 3

Several numerical evidences for topological states (arxiv :1204.1697
and arxiv :1206.3759), including states that might be related to
the NASS (with k + 1-body interaction)
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Example C = 3 on the 2−orbital
model of Yang et al.

bosons at ν = 1/4, with on-site two
body repulsion

the (almost) degeneracy matches the
3-component Halperin (221) states ...

... but also the Laughlin ν = 1/4
counting !

even worse, the degeneracy appears
were it should not be (only for N a
multiple of C )

Are these really spinful (or
colorful) states ?



Example : C = 3 and PES

spinless FQH : PES matches the qh
counting for NA ≤ N

2 .

C -color FQH : PES gives the qh
counting if NA ≤ dNC e. For NA > dNC e,
the counting is lower than the full
quasihole counting.

It can be obtained by removing some
SU(C ) multiplets → clearly differs
from the spinless counting

A similar situation is observed for the
C > 2 FCIs

but the counting does not match the
PES colorful FQH counting all the
time.

a)

b) c)
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FTI with time reversal symmetry



From FCI to FQSH

QSH can be built from two CI
copies

One can do the same for FQSH

How stable if the FQSH wrt
when coupling the two layers ?
Coupling via interaction or the
band structure

Neupert et al., PRB 84, 165107
(2011) using the checkerboard
lattice

Not really conclusive for the
FQSH : does it survive beyond
the single layer gap ?

+B

-B

N = 16 at ν = 2/3
V intralayer, U on-site interlayer, λ

NN interlayer



From FCI to FQSH

Two copies of the Kagome model with bosons.

Hubbard model with two parameters for the interaction : U
on-site same layer, V on-site interlayer
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From FCI to FQSH

We can also couple the two layers through the band structure by
adding an inversion symmetry breaking term.

H(k) =

[
hCI(k) ∆invC

∆invC
+ h∗CI(−k)

]
with C = −C t , here

C2 =

 0 1 −1
−1 0 1
1 −1 0

  0
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3D FTI : a technical challenge

an unknown territory : nature of the excitations (strings ?),
effective theory for the surface modes (beyond Luttinger ?),
algebraic structure (GMP algebra in 3D ?)

is there a microscopic model ?

example : Fu-Kane-Mele model with interaction for N
electrons at filling ν = 1/3

3x2x2
dim=61,413

960kb

3x3x2
dim=69,538,908

1Gb

3x3x3
dim=3,589,864,780,047

52Tb



Conclusion

Fractional topological insulator at zero magnetic field exists as
a proof of principle.

A clear signature for several states : Laughlin, CF and MR
(using many body interactions)

There is a counting principle that relates the low energy
physics of the FQHE and the FCI

Entanglement spectrum powerful tool to understand strongly
interacting phases of matter.

PES results are now backed up by overlap calculations

Interesting physics beyond C = 1

What are the good ingredients for an FCI ? Does the
knowledge of the one body problem is enough ?

Do we observe spinful FQH for C > 1 ? A counting principle is
needed...




