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From Braid Groups to Motion Groups

Particle exchange statistics 
Described by the permutation group Sn (d>2) or the braid group Bn (d=2)

Comes about as 
 - Fundamental group of configuration space
 - We can think of this as the π1 of the space of “embeddings” of n points into space

Exchange behavior of generalized “particles”
Most generally, consider a “particle manifold” S inside a “space manifold” M.
D.M. Dahm,PhD thesis 1962, Princeton; D.L. Goldsmith, Michigan Math. J. 28, 1981
 
The Motion Group Mot(M;S) describes 
“motions of/in M which bring N back to its original configuration in a nontrivial way”

We can think of Mot(M;S) (loosely) as the π1 of the space of embeddings of S into M.

Formally one can define e.g. Mot(M;S) =

Usually, S is disconnected, e.g. if S={n points}, get Sn,  Bn, Torus/Sphere braid groups etc.
for different choices of M.

Here we will look at the case S={n unlinked unknotted circles} with M=R3

We call this Motn. It is also known as the Loop Braid Group.
Naming, similar work: J.C. Baez, D.K. Wise, A.S. Crans, Adv.Theor.Math.Phys.11,2007,  also X.-S. Lin



  

Loops can perform some moves that particles can't...



  

In the actual presentation, videos showing loops leapfrogging followed here....



  

Generators and their action on fundamental groups

Motn is generated by three types of motions: 
Slides (leapfrogging), Flips (flip ring over) and Exchanges (simply exchange rings like particles)

They can be conveniently described by their action on π1(R
3\{n rings})=Fn: 
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Relation to the Braid Group

Bn can also be described by its action on π1(R
2\{n points})=Fn: 
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The braid group lives inside the loop braid group!
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b2 = τ2 σ12 

General braid generators bi = τi σi,i+1, 

Satisfy braid relations – same representation as above!



  

The full set of relations for Mot
n

Slides

Flips, (Z2)
n

Exchanges, Sn

cross
relations

“Yang-Baxter Equation”

Note: 
The slides generate a normal subgroup of finite index in Motn. 

The braid group is not a normal subgroup and has infinite index.
This complicates the relation to anyon models (e.g. many braid groups). 



  

Some relations in pictures
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Some relations in pictures
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Braids inside Loop Braids; Yang-Baxter relation

b1 b2

b2 b1

b1 b2

b1 b2 b1 = b2 b1 b2



  

1-dimensional representations

In conclusion, there are 8 1-dimensional representations of Motn, given by

Slide group (oriented distinguishable rings)

The relations between the slides are all commutators →Trivial in a 1D representation. 
If there are no further generators (distinguishable rings), get 
1D unitary representations: σij → Exp(i θij)

Slides and Permutations (oriented indistinguishable rings)
Rings are bosons (τi →1) or fermions (τi → -1) under exchange.
Invariance under permutations means all θij must be equal, σij → Exp(i θ)
Such rings have been dubbed Bose-anyons and Fermi-anyons (Balachandran '89?)

Slides, Permutations and Flips (unoriented indistinguishable rings)
Conjugation by flips can invert slides. This forces θ=0 or θ=π.

Notes
Any number of rings may be (in)distinguishable or (un)oriented

→This gives rise to many intermediate motion groups.
With oriented rings, distinguishability depends on orientation! 

→Makes sense to keep the flips even in this case...



  

Inducing representations of Sliden

Idea: 
Can define an action of Motn on the vector space

Elements of this space: 
superpositions of                with 

Action of Sliden :
Action of flips, permutations by left multiplication 

Should find all representations of Motn as subrepresentations of these induced slide reps.

Inducing 1D reps of Sliden (examples)

If all θij different and not equal to 0 or π, get irreducible induced rep of dimension 2n n!
Get labels for all permutations and all orientations of the rings! Slides depend on these.

If all θij equal but not equal to 0 or π, get irreducible induced reps of dimension 2n

Get labels for the orientations of the rings only, acted on by flips. 
Slide factors depend on the orientations. Natural for e.g. charge/flux composites. 
Have Bose-/Fermi-anyons when all orientations equal.

Suppose we have a representation (ρ,Vρ) of Sliden. 
We can produce corresponding representations of Motn by Induction.



  

Local representations

Local Representation of Motn (single type of ring) 
Each ring has an internal vector space V 
Total vector space is 

There are linear maps (matrices) 

The permutations act by permutation of the tensor factors (as for particles)

The flips and slides are given by

(acts on tensor factors (i,j))

Remaining nontrivial relations

Note: this works for any n (same R, F)



  

Loop Braid representations of local dimension 2

Aim: classify all local loop braid reps with dV=2 up to equivalence.

Equivalence: 

Start with R. 

All solutions to the d=2 YBE are known (unitary and non-unitary) 
Hietarinta, Phys Lett. A 165, 1992, Dye, Quantum Information Processing 2, 2003.
We classified these up to the equivalence above.

Imposing R13R23=R23R13 

We find that the surviving solutions have R diagonal up to equivalence 
(all diagonal R make slides commute and solve the relations)
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but R is not always diagonal
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All representations with local dimension 2 where F flips the two states

Generalization of Bose-/Fermi-Anyons.
Note slide factors reverse when ring 2 is flipped. 
Sliding does not change orientation.
Only this solution has eigenvalues other than +/-1

Sliding leaves ring 2 unaffected. 
Ring 1 experiences a reflection in orientation space 

Sliding maximally mixes the orientation states
(Both rings' sliding eigenstates have mixed orientation)

Sliding is Flipping



  

Local representations from monodromy/gauge theory 1

Nonabelian representations of the slide group are possible. 
Many of them arise naturally from gauge theories.

Consider the holonomies gi of the gauge connection around the loops xi through the rings

(aka generalized fluxes carried by the rings)

These are topological if the connection is flat, 
e.g. in BF-theories, in Toric code like models (discrete gauge theories)

Motn acts on the holonomies in exactly the same way as on the loops themselves,

g1
g2

g3

Motn also acts on the space of holonomy states – superpositions of flux states. 
For identical rings, each ring carries a superposition of fluxes gi from a conjugacy class A 
of the gauge group. On sliding,these act on each other by conjugation.

For finite gauge groups this gives a finite dimensional representation (d=|A|n)



  

Local representations from monodromy/gauge theory 2

Rings can also carry charge and experience a generalized Aharonov-Bohm effect on sliding.
The flux g acts in the representation α of the gauge group characterizing the charge

g3

g2α(g2)|v}|v}
g2

g3

One may also have rings which carry flux A and charge α. 
In this case α is representation of the centralizer NA of an element of A

The braiding of these representations is well known and is described using D(G),
the quantum double of the gauge group G (this is a quantum group).
Here, the R-matrix of D(G) describes the slides.

For any representation labeled (A,α) of D(G) we have a 
Representation ρA

α of the slides and permutations 

Simplest example: G=D3 (symmetries of a triangle),α=1,  A={ S1,           S2,             S3 }

Here Si Sj Si = Sk (i,j,k distinct) with Si=(Si)
-1  



  

General Structure of Local Representations 1

Conjecture/Theorem (can prove a version with extra assumptions)

For every local irreducible representation ρ of Sliden, there is 
- a group G, 
- a conjugacy class A in G 
- a representation α of the centralizer NA of an element of A
Such that ρ is lies inside the representation ρA

α that comes from D(G)

Note: 
These representations are not universal for Quantum Computation by braiding
They can often be made universal with addition of topological measurement.

Proof Sketch

Start from

With                                   get

And from there



  

General Structure of Local Representations 2

Proof Sketch (continued)

Now assuming the r2
k can be diagonalized,

with

Then

Hence

And the        are invertible – generate a group G! 

Note:  
R “looks” at ring 2 and acts on ring 1 accordingly. It is a “controlled gate”.



  

General Structure of Local Representations 3

Proof Sketch (continued, sketchier)

Now use the YBE and irreducibility to show that 
- The ri close under conjugation (→ conjugacy class A of G)
- The action of R on the images of the Pi is essentially to permute them 
according to conjugation of the corresponding ri

- The remaining freedom is captured by a centralizer representation



  

Discussion/Outlook

- Local Representations with multiple types of rings.
- Projective Representations, Ribbon Loop Braid Groups?
- Relaxed notions of locality (no tensor product structure)
- Induction of Bn representations (instead of induction on slides)
- Loop Braid Hecke/BMW algebras?
- Loop Fusion! Notion of a Loop Braid quantum group... 
- No go theorem for braiding from modular anyon models??
- (More) Physical Models!
- Potential for experimental observations? 
 (Slide interferometers, Loop scattering acmplitudes, Collective effects?)
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Thank You!
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