

Topological Quantum Phenomena in Condensed Matter with Broken Symmetries

Surface Majorana Fermions in Topological Superconductors

ISSP, Univ. of Tokyo → Nagoya University Masatoshi Sato

In collaboration with

- Satoshi Fujimoto (Kyoto University)
- Yoshiro Takahashi (Kyoto University)
- Yukio Tanaka (Nagoya University)
- Keiji Yada (Nagoya University)
- Ai Yamakage (Nagoya University)

- Satoshi Sasaki (Osaka Univerisy)
- M. Kriener (Osaka University)
- Kouji Segawa (Osaka University)
- Yoichi Ando (Osaka University)

Outline

- 1. Majorana fermions in various systems
- 2. Surface Majorana fermions in superconducting topological insulator Cu_xBi₂Se₃
- 3. Summary

What is topological superconductor ?

Topological superconductors

The gapless boundary state = Majorana fermion

[Read-Green(00), Roy-Stone, Qi et al (09)]

Majorana Fermion

Dirac fermion with Majorana condition

1. Dirac Hamiltonian

$$\mathcal{H}(\boldsymbol{k}) = \boldsymbol{\sigma} \cdot \boldsymbol{k}, \text{ or } \mathcal{H}(k_x) = ck_x$$

2. Majorana condition

$$\Psi = C \Psi^*$$
 particle = antiparticle

[Wilczek(09)]

different bulk topological # = different Majorana fermions

2+1D time-reversal	2+1D time-reversal	3+1D time-reversal	
breaking SC	invariant SC	invariant SC	
1 st Chern #	Z ₂ number	3D winding #	
(TKNN(82), Kohmoto(85), Volovik(87))	(Kane-Mele(06), Qi et al(09))	(Volovik, Schnyder et al (08))	
1+1D chiral	1+1D helical	2+1D helical	
edge Majorana	edge Majorana	surface Majorana	
fermion	fermion	fermion	
Sr ₂ RuO ₄	Noncentosymmetric SC (MS-Fujimto(09), Tanaka et al (09))	³ He B (K.Nagai et al)	

Which system become a topological SC ?

• Spin-triplet (odd-parity) superconductors

Volovik (86), Read-Green(00)

• Superconducting states with SO interaction

MS, Physics Letters B535,126 (03)

MS, Takahashi, Fujimoto PRL(09) PRB(10)

Spin-triplet (odd parity) SCs

A simple criterion for topological SC

If the number of time-reversal invariant momenta enclosed by the Fermi surface is odd, the spin-triplet SC is (strongly) topological.

3D time-reversal invariant spin-triplet SC)

With proper topology of the Fermi surface, spin-triplet SCs (or odd-parity SCs) naturally become topological.

Superconducting states with SO interaction

1. Dirac system with s-wave condensate MS, Physics Letters B535,126 (03)

$$\mathcal{H} = \begin{pmatrix} -i\sigma_i\partial_i & \Phi^* \\ \Phi & -i\sigma_i\partial_i \end{pmatrix} \qquad \Phi = \Phi_0 f(r)e^{i\theta} \qquad \text{vortex}$$

On the surface of topological insulator

Fu-Kane PRL (08)

2. S-wave superconductor with Rashba SO interaction

[MS, Takahashi, Fujimoto PRL(09) PRB(10)]

$$\mathcal{H}(\boldsymbol{k}) = \begin{pmatrix} \frac{(\hbar \boldsymbol{k})^2}{2m} - E_{\rm F} + \boldsymbol{g}_{\boldsymbol{k}} \cdot \boldsymbol{\sigma} - \mu_{\rm B} H_z \sigma_z & i\Delta_0 \sigma_y \\ -i\Delta_0 \sigma_y & -\frac{(\hbar \boldsymbol{k})^2}{2m} + E_{\rm F} + \boldsymbol{g}_{\boldsymbol{k}} \cdot \boldsymbol{\sigma}^* + \mu_{\rm B} H_z \sigma_z \end{pmatrix}$$
$$\mathcal{H}^{\rm D}(\boldsymbol{k}) = D\mathcal{H}(\boldsymbol{k})D^{\dagger}, \quad D = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i\sigma_y \\ i\sigma_y & 1 \end{pmatrix}$$
$$\mathcal{H}^{\rm D}(\boldsymbol{k}) = \begin{pmatrix} \Delta_0 - \mu_{\rm B} H_z \sigma_z & -i\left[\frac{(\hbar \boldsymbol{k})^2}{2m} - E_{\rm F}\right]\sigma_y - i\boldsymbol{g}_{\boldsymbol{k}} \cdot \boldsymbol{\sigma}\sigma_y \\ i\left[\frac{(\hbar \boldsymbol{k})^2}{2m} - E_{\rm F}\right]\sigma_y + i\boldsymbol{g}_{\boldsymbol{k}}\sigma_y \cdot \boldsymbol{\sigma} & -\Delta_0 + \mu_{\rm B} H_z\sigma_l \end{pmatrix}$$

p-wave gap is induced by Rashba SO int.

Topological superconductivity can be obtained if we choose a suitable Fermi surface

Topological Edge state

Sato-Takahashi-Fujimoto (09, 10)

One needs to avoid orbital depairing effect to realize Majorana fermion

a) s-wave superfluid of cold atoms with laser generated Rashba SO interaction

[Sato-Takahashi-Fujimoto PRL(09)]

b) 1D nanowire system with SO int.

R. M. Lutchyn et al. PRL(10), Y. Oreg et al, PRL(10)

- Majorana fermions are not merely a theoretical possibility now, but they are what we can realize somehow in experiments.
- Now I would like to discuss another Majorana fermions which can be realized experimentally.

Surface Majorana fermions in superconducting topological insulator Cu_xBi₂Se₃

- The first observed Majorana fermions in solid state physics -

Sasaki, Kriener, Segawa, Yada, Tanaka, MS, Ando, Phys. Rev. Lett. 107, 217001 (11) Yamakage, Yada, MS, Tanaka, Phys. Rev. B85, 180509(R) (12)

3D time-reversal invariant topological SC

[Sasaki, Kriener, Segawa, Yada, Tanaka, MS, Ando PRL (11)]

Superconducting only for $0.10 \le x \le 0.30$

Hor et al., PRL (2010)

Superconducting Topological Insulator (STI)

Recently measurement of tunneling conductance has been done for this STI.

[Sasaki, Kriener, Segawa, Yada, Tanaka, MS, Ando PRL (11)]

Robust zero-bias peak appears in the tunneling conductance

"Evidence" of Majorana fermions on the surface

But the story is not so simple ...

cf.) Superconducting analogue of 3He B-phase

$$\hat{\Delta}(m{k}) = im{d}(m{k}) \cdot m{\sigma}\sigma_2$$
 with $m{d}(m{k}) = \Delta_0m{k}$
Spin-triplet

- The simplest 3D TRI topological SC [Schnyder et al. (08), Qi et al. (09), ...]
- It supports helical Majorana fermions on its surface

Tunneling conductance for the superconducting analogue of 3He-B

[Y.Asano et al. PRB (03)]

- There exist surface
 helical Majorana
 fermions.
- But the tunneling conductance shows no single peak structure

Actually, the zero-bias **dip** is likely a general feature of 3D TSCs.

Is the single peak structure of the tunneling conductance really explained by helical Majorana fermions ?

Our answer: Yes

Two possible solutions

1. Deformed helical Majorana fermion with flat band.

Sasaki, MS el al PRL (11)

2. Structural transition of helical Majorana fermion

Yamakage, Yada, MS, Tanaka PRB (12)

Model Hamiltonian

parent topological insulator

$$H_{\rm TI}(\mathbf{k}) = m(\mathbf{k})\sigma_x + v_z k_z \sigma_y + v \sigma_z (k_x s_y - k_y s_x)$$

$$m(\mathbf{k}) = m_0 + m_1 k_z^2 + m_2 (k_x^2 + k_y^2), \quad (m_1 m_2 > 0)$$

Z2 invariant

$$(-1)^{\nu} = \operatorname{sgn}(m_0 m_1)$$

 $m_0 m_1 < 0$ Surface Dirac Fermion

$$H_D(\boldsymbol{k}) = v(k_x s_y - k_y s_x)$$

Symmetry

- Time-reversal invariance
- Inversion symmetry
- Mirror symmetry $x \to -x$, $s_y \to -s_y$, $s_z \to -s_z$
- (Discrete) rotational symmetry in xy-plane

Superconducting TI $(\psi_{\sigma\uparrow}, \psi_{\sigma\downarrow}, -\psi_{\sigma\downarrow}^{\dagger}, \psi_{\sigma\uparrow}^{\dagger})$ Nambu rep.

$$H_{\rm STI}(\boldsymbol{k}) = \begin{pmatrix} H_{\rm TI}(\boldsymbol{k}) - \mu & \hat{\Delta} \\ \hat{\Delta}^{\dagger} & -H_{\rm TI}(\boldsymbol{k}) + \mu \end{pmatrix}$$

Our assumption

The gap function is a constant matrix

The pairing int. is short-range and attractive

	gap type	parity	energy gap structure	
Δ_1	$\begin{array}{l} \Delta^{11}_{\uparrow\downarrow} = -\Delta^{11}_{\downarrow\uparrow} = \Delta^{22}_{\uparrow\downarrow} = -\Delta^{22}_{\downarrow\uparrow} \\ \Delta^{11}_{\uparrow\downarrow} = -\Delta^{11}_{\downarrow\uparrow} = -\Delta^{22}_{\uparrow\downarrow} = \Delta^{22}_{\downarrow\uparrow} \end{array}$	even	full gap	
Δ_2	$\Delta_{\uparrow\downarrow}^{12} = -\Delta_{\downarrow\uparrow}^{12} = \Delta_{\uparrow\downarrow}^{21} = -\Delta_{\downarrow\uparrow}^{21}$	odd	full gap	
Δ_3	$\Delta_{\uparrow\downarrow}^{12} = \Delta_{\downarrow\uparrow}^{12} = -\Delta_{\uparrow\downarrow}^{21} = -\Delta_{\downarrow\uparrow}^{21}$	odd	point node	
Δ_4	$\begin{array}{l} \Delta_{\uparrow\uparrow\uparrow}^{12} = \Delta_{\downarrow\downarrow}^{12} = -\Delta_{\uparrow\uparrow\uparrow}^{21} = -\Delta_{\downarrow\downarrow}^{21} \\ \Delta_{\uparrow\uparrow\uparrow}^{12} = -\Delta_{\downarrow\downarrow}^{12} = -\Delta_{\uparrow\uparrow\uparrow}^{21} = \Delta_{\downarrow\downarrow}^{21} \end{array}$	odd	point node	[Fu-Berg (10)]

1. Deformed Majorana fermion with flat dispersion

[Sasaki, MS el al PRL (11)]

\varDelta_4 : nodal but topological

(111) Surface state

Tunneling conductance

[Yamakage, MS el al PRB (12)]

The MF in the nodal SC is characterized by the parity of 3d winding number (= mod 2 winding number) $(-1)^{\nu_w}$

MS-Fujimot (10), Sasaki, MS el al PRL (11)7

2. Structural transition of helical Majorana fermions

Yamakage, Yada, MS, Tanaka PRB (12)

- For superconducting TI, the helical Majorana fermion has a structural transition in the energy dispersion.
- The transition make it possible to have a robust zero bias peak

More details

• For small μ , the surface Dirac fermion exists near the FS.

• The surface Dirac fermion remains gapless even in the superconducting state since no s-wave gap function is induced.

$$H_{\text{Dirac}}(\boldsymbol{k}) = \left(\begin{array}{cc} v(s_x k_y - s_y k_x) - \mu & \boldsymbol{X} \\ \uparrow & -v(s_x k_y - s_y) + \mu \end{array}\right)$$

s-wave gap function is not possible, since the induced pairing has the symmetry of Δ_2 .

• Dirac fermion + Majorana cone = Caldera shape

Hao and Lee, PRB (11) Hsieh and Fu, PRL (12) Yamakage et al PRB (12)

The structural transition occurs when $\tilde{v} = 0$

$$\mu_c^2 = \frac{v_z^2}{m_0^2} \begin{pmatrix} 1 \\ -m_0 m_1 \end{pmatrix}$$
 Positive only for TI
(Z2 non-trivial)
$$H_{\text{TI}}(\mathbf{k}) = m\sigma_x + v_z k_z \sigma_y + v\sigma_z (k_x s_y - k_y s_x)$$
$$m = m_0 + m_1 k_z^2 + m_2 (k_x^2 + k_y^2), \quad (m_1 m_2 > 0)$$

Near the transition, we have enhancement of the surface DOS at zero energy

Surface density of states at E=0

$$N(E=0) \sim \frac{1}{\left. (\partial E/\partial k) \right|_{k=0}} = \frac{1}{\tilde{v}} \qquad \mbox{Singular at the critical chemical potential}$$

Robust zero-bias peak of the tunneling conductance

Tunneling conductance near the transition

Summary

Recent measurements of tunneling conductance for the superconducting TI $Cu_xBi_2Se_3$ show a pronounced zero-bias conductance peak.

For originally 3D TSCs, helical Majorana fermions show zero bias dip rather than zero-bias peak in the tunneling conductance.

But the superconducting topological insulator $Cu_xBi_2Se_3$ may support helical Majorana fermions that are consistent with recent experiments of tunneling conductance.