An unexpected turn for twisted graphenes

Gene Mele University of Pennsylvania

Twisted Graphenes:

- I. Introduction: what, where, why
- **II.** Family behavior of low energy physics
- III. New approach to an old Hamiltonian
- IV. "Compensated" class near a topological transition
- V. "Uncompensated" new topological state in twisted FLG's

The interlayer coherence scale is large for a Bernal bilayer

Single layer

Bernal Bilayer

but it is very small in faulted multilayers

e.g. M. Sprinkle *et al.* PRL <u>103</u>, 226803 (2009) (ARPES)

The interlayer coherence scale is large for a Bernal bilayer

 k_{\perp} (Å⁻¹)

Some faulted graphene bilayers

Epitaxial graphene on SiC $(000\overline{1})$

C. Berger *et al.* Science 312, 1191 (2006) (synthesis) D.L. Miller *et al.* Science 324, 924 (2009) (Landau level spectroscopy) M. Sprinkle *et al.* PRL 103, 226803 (2009) (ARPES)

more faulted graphene bilayers

Graphene on Graphite

G. Li, A. Luican and E. Andrei, Phys. Rev. Lett. 102, 176804 (2009) Landau level (Scanning Tunneling Spectroscopy)

Folded Exfoliated Graphene

H. Schmidt et al., Appl. Phys. Lett. 93, 172108 (2009)

and some theory

Decoupling via Momentum Mismatch

J.M.B. Lopes dos Santos, N.M.R. Peres and A.H. Castro Neto "Graphene Bilayer with a Twist: Electronic Structure" Phys. Rev. Lett. 99, 256802 (2007)

S. Shallcross, S. Sharma and O.A. Pankratov: "Quantum Interference at the Twist Boundary in Graphene" Phys. Rev. Lett. 101, 056803 (2008)

Many Body Effects

H. Min *et al.*: "Room temperature superfluidity in graphene bilayers". Phys. Rev. B 78, 121401 (2008), etc.

FIG. 1. (Color online) Excitonic condensate in a system of two spatially separated graphene layers. Electrons and holes in the layers are induced by applying the external gate voltage.

<u>Orthodoxy</u>: Layer decoupling comes from the momentum mismatch across a rotational fault

J.M.B. Lopes dos Santos, N.M.R. Peres and A.H. Castro Neto *Physical Review Letters* <u>99</u>, 256802 (2007))

R. Bistritzer and A. H. MacDonald, PNAS 108, 12233 (2011)

Highest Symmetry Bilayers

AB (Bernal) Stacking AA Stacking

Rotationally Faulted Bilayers

Faults are indexed by a 2D graphene translation vector (*m,n*) and occur in complementary partners with the <u>same</u> commensuration area but <u>opposite</u> sublattice exchange symmetry

What is the smoothest density wave that matches the commensuration cell ?

Periodic on commensuration supercell Maxima for "overlapping" sites Minima for "misregistered" zones

$$n_{\mu}(\vec{r}) = \sum_{|\vec{G}_{m}|=G_{1}} \sum_{\alpha} e^{i\vec{G}_{\mu,m} \cdot (\vec{r} - \vec{\tau}_{\mu,\alpha})} \quad \text{(real, lattice-symmetric)}$$
$$n_{sc}(\vec{r}) = n_{1}(\vec{r}) + n_{2}(\vec{r})$$
$$T_{\ell}(\vec{r}) = C_{0} \exp\left[C_{1}\left(n_{1}(\vec{r}) + n_{2}(\vec{r})\right)\right]$$

Exponential suppression is misregistered regions.

Nonlinear mixing of overlapping lattices: all G_s present.

Interlayer Potentials

30° ± 8.213°

More Interlayer Potentials SE-even near 30°

Bilayer Hamiltonian in the pseudospin basis

$$\begin{array}{ll} \mathbf{SE\, even} & \hat{H}_{even} = \begin{pmatrix} -i\hbar\tilde{v}_{F}\sigma_{1}\bullet\nabla & \hat{H}_{\mathrm{int}}^{+} \\ & \\ \left(\hat{H}_{\mathrm{int}}^{+}\right)^{\dagger} & -i\hbar\tilde{v}_{F}\sigma_{2}\bullet\nabla \end{pmatrix} \end{array}$$

Interlayer & Intra-valley (two copies)

SE odd
$$\hat{H}_{odd} = \begin{pmatrix} -i\hbar\tilde{v}_F\sigma_1 \cdot \nabla & \hat{H}_{int}^- \\ (\hat{H}_{int}^-)^{\dagger} & i\hbar\tilde{v}_F\sigma_2^* \cdot \nabla \end{pmatrix}$$

Interlayer & <u>Inter</u>-valley (two copies)

$$\hat{H}_{\text{int}}^{+} = V_{\ell} e^{i\vartheta} \begin{pmatrix} e^{i\varphi/2} & 0\\ 0 & e^{-i\varphi/2} \end{pmatrix}$$
$$\hat{H}_{\text{int}}^{-} = V_{\ell} e^{i\vartheta} \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix}$$

Transport on two sublattices via x-y pseudospin rotation

Transport on the dominant (eclipsed) sublattice

Two types of low energy physics

Topics for today:

- I. Introduction: what, where, why
- **II.** Family behavior of low energy physics
- HII. New approach to an old Hamiltonian
 - IV. "Compensated" class near a topological transition
 - V. "Uncompensated" new topological state in twisted FLG's

Small angle partners

Spatially modulated coupling

2×2 Matrix Coupling: $\hat{T}(\vec{r}) = \hat{t}_0 + \sum_{n=1}^6 \hat{t}_n e^{i\vec{G}_n \cdot \vec{r}}$

with expansion coefficients

$$\hat{t}_{n} = t_{G} \begin{pmatrix} e^{-i\vec{G}_{n}\cdot\vec{r}_{\gamma}} & e^{-i\vec{G}_{n}\cdot\vec{r}_{\alpha}} \\ e^{-i\vec{G}_{n}\cdot\vec{r}_{\beta}} & e^{-i\vec{G}_{n}\cdot\vec{r}_{\gamma}} \end{pmatrix}$$
$$t_{G} \begin{pmatrix} z & 1 \\ \overline{z} & z \end{pmatrix} \quad (\text{even n}) \& \quad t_{G} \begin{pmatrix} \overline{z} & 1 \\ z & \overline{z} \end{pmatrix} \quad (\text{odd n})$$

$$t_0 = \begin{pmatrix} c_{aa} & c_{ab} \\ c_{ba} & c_{bb} \end{pmatrix}; \quad c_{aa} = c_{bb}, c_{ab} = c_{ba}$$

Slonczewski-Weiss-McClure model

SWMcC model contains a (strong) threefold lattice anisotropy

Coefficien	t Parameterization	Ι	II
$t_{\mathcal{G}}$	$(\gamma_1 - \gamma_3)/9$	43.3	8.3
c_{aa}	$\gamma_4 + (\gamma_1 - \gamma_3)/3$	130.0	69.0
C_{ab}	$(\gamma_1 + 2\gamma_3)/3$	130.0	340.0

TABLE I: Fourier coefficients (meV units) for the interlayer hopping operator Eqn. 2, fitted to the Slonczewski Weiss McClure parameterization for Bernal stacked layers. Model I: $\gamma_1 = 390 \text{ meV}, \gamma_3 = \gamma_4 = 0$. Model II: $\gamma_1 = 390 \text{ meV}, \gamma_3 = 315 \text{ meV}$ and $\gamma_4 = 44 \text{ meV}$.

Slonczewski-Weiss-McClure model

reflects a threefold anisotropy of its lattice Wannier states

Coefficient	t Parameterization	Ι	II
$t_{\mathcal{G}}$	$(\gamma_1 - \gamma_3)/9$	43.3	8.3
c_{aa}	$\gamma_4 + (\gamma_1 - \gamma_3)/3$	130.0	69.0
c_{ab}	$(\gamma_1 + 2\gamma_3)/3$	130.0	340.0

TABLE I: Fourier coefficients (meV units) for the interlayer hopping operator Eqn. 2, fitted to the Slonczewski Weiss McClure parameterization for Bernal stacked layers. Model I: $\gamma_1 = 390 \text{ meV}, \gamma_3 = \gamma_4 = 0$. Model II: $\gamma_1 = 390 \text{ meV}, \gamma_3 = 315 \text{ meV}$ and $\gamma_4 = 44 \text{ meV}$.

Slonczewski-Weiss-McClure model

TABLE I: Fourier coefficients (meV units) for the interlayer hopping operator Eqn. 2, fitted to the Slonczewski Weiss McClure parameterization for Bernal stacked layers. Model I: $\gamma_1 = 390 \text{ meV}, \gamma_3 = \gamma_4 = 0$. Model II: $\gamma_1 = 390 \text{ meV}, \gamma_3 = 315 \text{ meV}$ and $\gamma_4 = 44 \text{ meV}$.

Model I: q=0 term in K-point basis

$$w = \frac{\gamma_1}{3} = 130 \text{ meV} \text{ (TB est. ~110 meV)}$$

Canonical (isotropic) picture

Topics for today:

- I. Introduction: what, where, why
- II. Family behavior of low energy physics
- III. New approach to an old Hamiltonian
- IV. "Compensated" class near a topological transition
 - V. "Uncompensated" new topological state in twisted FLG's

Model II q=0 term in K-point basis

Model I: coupled layer spectra

Decrease rotation angle

Topological Transition

$$H = \begin{pmatrix} \sigma \bullet (-i\nabla) & \tilde{c}\sigma_{x} \\ \tilde{c}\sigma_{x} & \sigma \bullet (-i\nabla - (1)\hat{e}_{\Delta K}) \end{pmatrix}$$
$$\tilde{H} = \begin{pmatrix} I & 0 \\ 0 & \sigma_{x} \end{pmatrix} H \begin{pmatrix} I & 0 \\ 0 & \sigma_{x} \end{pmatrix}$$
$$\begin{pmatrix} H & (\vec{a}) & \tilde{c} \end{pmatrix}$$

$$\tilde{H} = \begin{pmatrix} H_{K}(\vec{q}) & \tilde{c} I \\ \tilde{c} I & \sigma_{x} H_{K}(\vec{q} - \Delta \vec{K}) \sigma_{x} \end{pmatrix}$$

"Compensated" (opposite helicities)

Evolution of Dirac points

Decrease angle: increase coupling strength

Spectral reconstruction

Pair annihilation for compensated DP's

Converge/collapse/diverge with increasing c

Comments:

The SWMcC model contains a (large) threefold lattice anisotropy

Breakdown of first generation models :

Relativistic (linear) bands \rightarrow Massive (curved) bands

Dirac point annihilation and regeneration.

Gauge potential from twisted neighbor

Topics for today:

- I. Introduction: what, where, why
- II. Family behavior of low energy physics
- III. New approach to an old Hamiltonian
- IV. "Compensated" class near a topological transition
- V. "Uncompensated" new topological state in twisted FLG's

Reverse sign of anisotropy

Topological Transition

$$H = \begin{pmatrix} \sigma \bullet (-i\nabla) & \tilde{c} \ I \\ \tilde{c} \ I & \sigma \bullet (-i\nabla + \hat{e}_{\Delta K}) \end{pmatrix}$$

$$H = \begin{pmatrix} H_{K}(\vec{q}) & \tilde{c} I \\ \tilde{c} I & H_{K}(\vec{q} - \Delta \vec{K}) \end{pmatrix}$$

"Uncompensated" (same helicity)

Symmetry-protected crossing

Bilayer version of absence of backscattering

Symmetry-protected intersection

Helicity eigenstates

<u>compensated</u> hybridized cones uncompensated symmetry-protected

Velocity renormalization (C)

$$\hat{v}_{+} = \frac{\partial \hat{H}}{\partial q_{-}} = v_{F}\hat{\sigma}_{+} \rightarrow v_{F}(1 - \tilde{c}^{2})\hat{\sigma}_{+}$$
$$\hat{v}_{-} = \frac{\partial \hat{H}}{\partial q_{+}} = v_{F}\hat{\sigma}_{-} \rightarrow v_{F}(1 - \tilde{c}^{2})\hat{\sigma}_{-}$$

$$v_F^* = v_F (1 - 9\tilde{c}^2)$$

perturbative, isotropic reduction

Velocity renormalization (U)

$$\hat{v}_{+} = \frac{\partial \hat{H}}{\partial q_{-}} = v_{F}\hat{\sigma}_{+} \rightarrow v_{F}(\hat{\sigma}_{+} - \tilde{c}^{2}\hat{\sigma}_{-})$$
$$\hat{v}_{-} = \frac{\partial \hat{H}}{\partial q_{+}} = v_{F}\hat{\sigma}_{-} \rightarrow v_{F}(\hat{\sigma}_{-} - \tilde{c}^{2}\hat{\sigma}_{+})$$

$$v_F^* = v_F (1 - \tilde{c}^4 \cos(2\phi))$$

perturbative with twofold anisotropy (vanishes after sum over ΔK triad)

Signatures of the uncompensated state

SYMMETRY-PROTECTED BAND CROSSING

SECOND GENERATION DIRAC POINTS: DEGENERATE AT DISCRETE POINTS (NOT LINES)¹.

NO PERTURBATIVE VELOCITY RENORMALIZATION

EXTENDED (STRONGER) VAN HOVE SINGULARITY

These are all properties of the SiC (000 \bar 1) epitaxial graphenes!

¹ ARPES pending

Matrix elements with threefold anisotropy

$$\begin{split} \Gamma_{0;\mu,\nu} &= f_0^2(q) + \frac{(-1)^{\mu+\nu} \lambda^2}{2} f_3^2(q) \cos(3\theta) \\ \Gamma_{3;\mu,\nu} &= i\lambda f_0(q) f_3(q) \Big[(-1)^{\mu} - (-1)^{\nu} \Big] \cos\Big(3(\phi_q - \alpha - \theta)\Big) \\ \Gamma_{6;\mu,\nu} &= \frac{(-1)^{\mu+\nu} \lambda^2}{2} f_3^2(q) \cos\Big(6(\phi_q - \alpha - \theta/2)\Big) \end{split}$$

Matrix elements with threefold anisotropy

Bernal anisotropy comes from m = 3 $\Gamma_{3;\mu,\nu} = i\lambda f_0(q) f_3(q) \left[(-1)^{\mu} - (-1)^{\nu} \right] \cos \left(3(\phi_q - \alpha - \theta) \right)$

Favors compensated class (SWMcC)

Matrix elements with threefold anisotropy

But an average over bond directions gives m = 0

$$\Gamma_{0;\mu,\nu} = f_0^2(q) + \frac{(-1)^{\mu+\nu} \lambda^2}{2} f_3^2(q) \cos(3\theta)$$

Relevant to low angle twists & favors uncompensated class

Comments:

Sign reversal of anisotropy identifies a second geometrical class ("uncompensated")

Interlayer hybridization prevented by pseudospin orthogonality at <u>discrete symmetry-protected</u> <u>second generation</u> Dirac singularities.

The Fermi velocity in U-class is unrenormalized (in weak coupling)

Geometrical class from anisotropy

Prospects:

- **Topological analysis of (n>2) multilayers** (topological semimetals)
- Transport in vertically-integrated FLG's (birefringence in ballistic transport ?)
- Narrow band physics at small angles

Theory Collaborators:

Charlie Kane Markus Kindermann Andy Rappe

