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Introduction

Exactly solvable spin models in 2D

• Toric code (Kitaev 2003), Levin-Wen
models (Levin & Wen(2005)).

• Often contrived, so why study them?

• Toy models for topological order.

• Fixed point hamiltonians: These models
capture ‘low-energy long-wavelength’
behaviour of 2D phases of matter – tell us
about the topological order that might
arise in 2D strongly interacting systems.
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Introduction

Exactly solvable spin models in 3D

• Here we study 3D cousins of 2D
Levin-Wen models: Exactly solvable spin
models proposed by Walker and Wang
[arXiv:1104.2632v2].

• Class includes 3D toric code + many
novel models.

• Models capture ‘low-energy
long-wavelength’ behaviour of phases of
matter.

• ‘Confined models’: Exactly solvable lattice
realisation of a chiral Chern-Simons theory
on boundary.
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Outline

• Overview of Levin-Wen models, the 2D cousins of the 3D
lattice models we study here.

• Review 3D toric code, the simplest Walker-Wang model.

• Introduce paradigm of confined WW models, the 3D Semion
model. Understand its topological order, and the emergence
of chiral anyons on its surface.

• Underlying field theories

• Generalisations

• Conclusion
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The 2D toric code

• Hilbert space: σz = ±1 on
each edge of a trivalent lattice.
Represent configurations by
colouring in σz = −1 edges.
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The 2D toric code: Ground states

• HTC = −
∑

v

∏
i∈s(v)

σzi︸ ︷︷ ︸
Bv

−
∑

p

∏
i∈∂p

σxi︸ ︷︷ ︸
Bp

• Lower bound on the energy:
Bv = 1∀ v and Bp = 1∀ p

• Exists because
[Bv ,Bv ′ ] =

[
Bp,Bp′

]
= [Bp,Bv ] = 0.

• Bv = 1→ Ground state a superposition of
closed loop configurations (‘Quantum loop
gas’).

• Bp = 1→ states related by plaquette flips
have the same coefficient in the ground
state.
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Graphical rules
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Ground state degeneracy = 22 on torus.
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Three-dimensional topological lattice models with surface anyons

Introduction

Deconfined defects

• Vertex-type string operators
create deconfined vertex defects
(e ) at their ends:
ŴV (C) =

∏
i∈C σ

x
i .

• Plaquette-type string operators
create deconfined plaquette
defects (m ) at their ends:
ŴP(C′) =

∏
i∈C′ σ

z
i .

• Berry phase of −1 on exchange.
Topological order X.
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The 2D doubled semion model

The 2D doubled semion model (DSem)

• DSem is another lattice model, which is similar to the toric
code except its plaquette operators are different. (Freedman
et al. (2004), Levin & Wen (2005)).

• Hilbert space: σz = ±1 living on each edge of a trivalent
lattice.

• HDSEM = −
∑

v

∏
s(v)

σzi︸ ︷︷ ︸
Bv

+
∑

p (
∏
i∈∂p

σxi )
∏

j∈s(p)

i (1−σ
z
j )/2

︸ ︷︷ ︸
Bp

• Different Bp operator!
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The 2D doubled semion model

The 2D doubled semion model

• HDSEM =
−
∑

v

∏
s(v)

σzi︸ ︷︷ ︸
Bv

+
∑

p (
∏
i∈∂p

σxi )
∏

j∈s(p)

i (1−σ
z
j )/2

︸ ︷︷ ︸
Bp

• Lower bound on the energy:
Bv = 1∀ v and Bp = −1 ∀ p

• Bv = 1→ Ground state is
superposition of closed loops
(‘Quantum loop gas’).

• Bp = −1→ New graphical rules.
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The 2D doubled semion model

Graphical rules
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The 2D doubled semion model

String operators

• Two chiralities of vertex-type string operators:

Ŵ±
V (C) =

∏
i∈C σ

x
i

∏
k∈L vertices(−1)

1
4
(1−σz

i )(1+σ
z
j )
∏

l∈R legs(±i)(1−σ
z
l )/2.
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• Plaquette-type string operator (achiral bound state): ŴP(C′) =
∏

i∈C′ σ
z
i .

• Vertex defects of same chirality are relative semions. Topological order X.
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Summary of 2D models

Topological order in the 2D models

The 2D toric code

• GS degeneracy of 22 on torus
X

• Relative statistics between
point and vortex defectsX

• Topological entanglement
entropy of log 2X

• Fixed point HamiltonianX

• → Topological order

The 2D doubled semion model

• GS degeneracy of 22 on torus
X

• Semionic statistics between
vertex defects of same
chiralityX

• Topological entanglement
entropy of log 2X

• Fixed point HamiltonianX

• → Different topological order
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Summary of 2D models

The 2D toric code

m m

e e

p vortex - p vortex

- e qpe qp

Toric code "Superconductor"
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• Superconductors are
topologically ordered (Hansson
et al. (2004)).

• Vertex defects
⇔ charge e quasi-particles.

• Plaquette defects
⇔ π-flux vortices.

The 2D doubled semion model

e ê2 - e ê2
n = -1 ê 2

- -

+ + e ê2 - e ê2
DSem n = +1 ê 2

• Two copies of a ν = ±1/2
bosonic Laughlin.

• Vertex defects, chirality ±
⇔ charge e/2 quasi-particles in
ν = ±1/2 layer.

• Plaquette defects
⇔ Bound state of ± chirality
quasi-particles.
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Summary of 2D models

Generalising the 2D models to 3D

• H = −
∑

v Bv −
∑

p Bp

• The first of these will be the familiar 3D toric code (Hamma
et al. 2005).

• The second will the the ‘3D semion model’. It is qualitatively
very different from the 3D toric code.

Point Split



Three-dimensional topological lattice models with surface anyons

Introduction

The 3D toric code

The 3D toric code

• Hilbert space: σz = ±1 on
each edge.

• HTC =
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The 3D toric code

The 3D toric code

• HTC = −
∑

v

∏
i∈s(v)

σzi︸ ︷︷ ︸
Bv

−
∑

p

∏
i∈∂p

σxi︸ ︷︷ ︸
Bp

• [Bv ,Bv ′ ] =
[
Bp,Bp′

]
= [Bp,Bv ] = 0.

• Bv = 1→ Ground state is superposition
of closed loops.

• Bp = 1→ states that are related by
plaquette flips have the same coefficient in
the ground state.
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The 3D toric code

Graphical rules

• 23 ground states on the 3-torus.

• Topological order X.
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The 3D toric code

Defects

• Vertex-type string operators:
ŴV (C) =

∏
i∈C σ

x
i .

• Lines of plaquette defects (‘vortex
rings’): ŴP(S) =

∏
i∈S σ

z
i .

• Berry phase of −1 on braiding.
Topological order X.
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The 3D toric code

3D Toric code ⇔ ‘3D superconductor’

• Superconductors are topologically
ordered (Hansson et al. (2004)).

• Vertex defects
⇔ charge e quasi-particles.

• Lines of plaquette defects
⇔ π-flux vortex rings.
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The 3D toric code

The 3D semion model

• Hilbert space: σz = ±1 on each edge. Again
represent configurations by colouring in σz = −1
edges.

• H3DSem = −
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v Bv

+
∑

p (
∏
i∈∂p

σxi )(
∏

j∈s(p)

inj ) i
∑

j red nj−
∑

j blue nj

︸ ︷︷ ︸
Bp

(a)
R

R
RR

R
B

B

 B

B

B

B
R

(b) (c)

(d) (e) (f)

p

I-BpM = -i

p

Bp = i

2   3DSemplaquettesflip.nb

(a)
R

R
RR

R
B

B

 B

B

B

B
R

(b) (c)

(d) (e) (f)

p

I-BpM = -i

(a)
R

R

R

R

R

B
B

 B

B

B

B

R

(b)

(c)

(d)

(e)

(f)

2   3DSemplaquettes2.nb



Three-dimensional topological lattice models with surface anyons

Introduction

The 3D semion model

The 3D semion model

• H3DSem = −
∑

v Bv +
∑

p Bp

• Bv = 1→ Ground state is a
superposition of closed loops.

• Bp = −1→ Semion graphical
rules determine relative amplitudes
of loop configurations.
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The 3D semion model

Graphical rules

• Unique ground state on the 3-torus.
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The 3D semion model

Defects

Flipped edges

Vertex defect

Vertex defect

Plaquette 
defects

• Vertex-type string operators are confined.
Any operator ŴV (C) =

∏
i∈C σ

x
i × phases

necessarily produces plaquette defects
along its length.
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The 3D semion model

Unique ground state ⇔ Confined excitations

• ŴV (C) =
∏

i∈C σ
x
i toggles between two ground state sectors.
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• In 3D semion model, applying such an operator to GS leaves
an energetic string behind.

� � �i� � ...
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The 3D semion model

Is the 3D semion model even topologically ordered?

3D toric code: 3D semion model:

• GS degeneracy of 23 X

• Universal statistics between
point defects and vortex
linesX

• Topological entanglement
entropy of log 2X

• Fixed point HamiltonianX

• → Topological order

• Unique ground state 7

• All excitations confined in the
bulk 7

• Topological entanglement
entropy of 0 7

• Fixed point HamiltonianX

• → Topological order ??? Not
in the traditional sense
. . . at least in the bulk!
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The 3D semion model

3D semion model with boundary

• Cut off the lattice in a ‘smooth’ manner.

Bp

Bv
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The 3D semion model

3D semion model on the solid donut
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The 3D semion model

Ground states on the solid donut

• Ground state degeneracy of 3D semion model on solid donut
is 2. Topological order X.
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The 3D semion model

Deconfined surface anyons
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The 3D semion model

What is the topological order of the 3D semion model?

• Not topologically ordered in the bulk, at least according to
Wen’s criteria.

• However, a sample with a surface has topological order.

• Topological order: Bosonic ν = 1/2 laughlin state

Chiral semion

n = 1/2 bosonic Laughlin n = -1 ê 2- -

+ +
n = +1 ê 2

bosonic Laughlin

bosonic Laughlin
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Field theory

• ν = 1/2 bosonic hall effect → k=2 Chern-Simons theory.

• Ground-space of 3D semion model on solid donut ⇔ Hilbert
space of compact k = 2 Chern-Simons theory on surface.
Using εµνρσFµνFρσ = εµνρσ∂µ (Aν∂ρAσ) suggests:

SFF [A] =

∫
d4x

(
k

16π
εµνρσFµνFρσ + AµJµ

)
,

n = -1 ê 2- -

+ +
n = +1 ê 2

k = 2 Chern - Simons

Bulk k = 2 F^F theory

k = -2 Chern - Simons

thickeningDSem.nb  3
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Field theory

SFF [A] =

∫
d4x

(
k

16π
εµνρσFµνFρσ + AµJµ

)
,

• Correct GS degeneracy, and anyonic statistics between surface
particles (J).

• No deconfined point particles in the bulk: If J is
non-vanishing in the bulk, the partition function becomes:∫

DAS e
ik
4π

SCS [AS ]+i
∫
JS ·AS δ

[
J0 = − k

4π
εijk∂i∂jAk in bulk

]
• Pairs of bulk point particles connected by a line defect in A

(corresponds to the presence of a energetic line defect in
lattice model).
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Generalisations

• 3D semion model
⇔ k = 2 F ∧ F theory ⇔ k = 2 surface CS theory.

• Can realise many compact chiral (non-abelian) Chern-Simons
theory on the surface of a Walker-Wang model.

Walker-Wang model
based on category
 SUH2Lk Chiral SUH2Lk

Chern-Simons 
anyon 
theory on surface

thickeningCS.nb  5
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Generalisations
• e.g. To realise an SU(2)2 Chern-Simons theory (Ising anyon

theory), construct a Walker-Wang model based on the Ising
category.
• Hilbert space: 3-state system on each edge of the lattice.

Labels {0, 12 , 1} (or {I , σ, ψ, })
• Allowed vertices:

I

ss

y

• ...more complicated graphical rules determining ground states.
• Leads to non-abelian anyons on the surface of the model.

s s
s s
y

y y

Walker-Wang model
based on category
 SUH2L2

Chiral SUH2L2
Chern-Simons 
theory on surface
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Conclusion

• We described the ‘surface topological order’ of the 3D semion
model.

• Explicitly constructed the chiral surface semions.

• Made more concrete the correspondence:
Lattice model ⇔ FF -theory.

• Works for any Chern-Simons theory!

• Known that
3D toric code ⇔ 3D superconductor ⇔ bF -theory
(Hansson et al. (2004))

• Speculate:
3D semion model ⇔ Novel phase?! ⇔ F ∧ F -theory

• Putative novel phase: Gapped bulk with confined excitations,
deconfined anyons on boundary. P and T odd low-energy
Hamiltonian.
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Thanks for listening!

Three-dimensional topological lattice
models with surface anyons

Curt von Keyserlingk

With Fiona J. Burnell and Steven H. Simon.

Nordita, August 9, 2012
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Generalisations

A useful graphical mnemonic

• The vertex type string operators can be drawn as off-lattice
strings.
+ chirality → lay string above lattice.
− chirality → lay string below lattice.
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