Curt von Keyserlingk

with Fiona J. Burnell and Steven H. Simon. University of Oxford

Nordita, August 9, 2012

Exactly solvable spin models in 2D

- Toric code (Kitaev 2003), Levin-Wen models (Levin & Wen(2005)).
- Often contrived, so why study them?
- Toy models for topological order.
- Fixed point hamiltonians: These models capture 'low-energy long-wavelength' behaviour of 2D phases of matter – tell us about the topological order that might arise in 2D strongly interacting systems.

Three-dimensional topological lattice models with surface anyons

Exactly solvable spin models in 3D

- Here we study 3D cousins of 2D Levin-Wen models: Exactly solvable spin models proposed by Walker and Wang [arXiv:1104.2632v2].
- Class includes 3D toric code + many novel models.
- Models capture 'low-energy long-wavelength' behaviour of phases of matter.
- 'Confined models': Exactly solvable lattice¹ realisation of a chiral Chern-Simons theory on boundary.

Outline

- Overview of Levin-Wen models, the 2D cousins of the 3D lattice models we study here.
- Review 3D toric code, the simplest Walker-Wang model.
- Introduce paradigm of *confined* WW models, the 3D Semion model. Understand its topological order, and the emergence of chiral anyons on its surface.
- Underlying field theories
- Generalisations
- Conclusion

The 2D toric code

 Hilbert space: σ^z = ±1 on each edge of a trivalent lattice. Represent configurations by colouring in σ^z = -1 edges.

The 2D toric code: Ground states

•
$$H_{TC} = -\sum_{v} \prod_{\substack{i \in s(v) \\ B_{v}}} \sigma_{i}^{z} - \sum_{p} \prod_{\substack{i \in \partial p \\ B_{p}}} \sigma_{i}^{x}$$

- Lower bound on the energy: $B_v = 1 \forall v \text{ and } B_p = 1 \forall p$
- Exists because $[B_{\nu}, B_{\nu'}] = [B_{p}, B_{p'}] = [B_{p}, B_{\nu}] = 0.$
- $B_{\nu} = 1 \rightarrow$ Ground state a superposition of closed loop configurations ('Quantum loop gas').
- B_p = 1 → states related by plaquette flips have the same coefficient in the ground state.

Graphical rules

Topological order \checkmark .

Deconfined defects

- Vertex-type string operators create deconfined vertex defects (e) at their ends: Ŵ_V(C) = Π_{i∈C} σ^x_i.
- Plaquette-type string operators create deconfined plaquette defects (*m*) at their ends: $\hat{W}_P(C') = \prod_{i \in C'} \sigma_i^z$.
- Berry phase of −1 on exchange. Topological order √.

Three-dimensional topological lattice models with surface anyons

The 2D doubled semion model

The 2D doubled semion model (DSem)

- DSem is another lattice model, which is similar to the toric code except its plaquette operators are different. (Freedman et al. (2004), Levin & Wen (2005)).
- Hilbert space: $\sigma^z = \pm 1$ living on each edge of a trivalent lattice.

Three-dimensional topological lattice models with surface anyons

– The 2D doubled semion model

The 2D doubled semion model

•
$$H_{DSEM} = -\sum_{v} \prod_{\substack{s(v) \\ B_{v}}} \sigma_{i}^{z} + \sum_{p} (\prod_{i \in \partial p} \sigma_{i}^{x}) \prod_{j \in s(p)} i^{(1 - \sigma_{j}^{z})/2}$$

- Lower bound on the energy: $B_v = 1 \,\forall \, v$ and $B_p = -1 \,\forall \, p$
- $B_v = 1 \rightarrow$ Ground state is superposition of closed loops ('Quantum loop gas').
- $B_p = -1 \rightarrow$ New graphical rules.

- Introduction
 - The 2D doubled semion model

Graphical rules

Three-dimensional topological lattice models with surface anyons

- Introduction
 - └─ The 2D doubled semion model

String operators

- Two chiralities of vertex-type string operators: $\hat{W}_V^{\pm}(\mathcal{C}) = \prod_{i \in \mathcal{C}} \sigma_i^x \prod_{k \in L \text{ vertices}} (-1)^{\frac{1}{4}(1-\sigma_i^z)(1+\sigma_j^z)} \prod_{l \in R \text{ legs}} (\pm i)^{(1-\sigma_l^z)/2}.$
- Plaquette-type string operator (achiral bound state): $\hat{W}_{P}(\mathcal{C}') = \prod_{i \in \mathcal{C}'} \sigma_{i}^{z}$.
- Vertex defects of same chirality are relative semions. Topological order \checkmark .

-Summary of 2D models

Topological order in the 2D models

The 2D toric code

- GS degeneracy of 2^2 on torus \checkmark
- Relative statistics between point and vortex defects√
- Topological entanglement entropy of log 2√
- Fixed point Hamiltonian \checkmark
- $\bullet \ \rightarrow \mathsf{Topological} \ \mathsf{order}$

The 2D doubled semion model

- GS degeneracy of 2^2 on torus \checkmark
- Semionic statistics between vertex defects of same chirality√
- Topological entanglement entropy of log 2√
- Fixed point Hamiltonian \checkmark
- $\bullet \ \to {\sf Different \ topological \ order}$

-Introduction

Summary of 2D models

The 2D toric code

- Superconductors are topologically ordered (Hansson et al. (2004)).
- Vertex defects
 ⇔ charge *e* quasi-particles.
- Plaquette defects $\Leftrightarrow \pi$ -flux vortices.

The 2D doubled semion model

- Two copies of a $\nu = \pm 1/2$ bosonic Laughlin.
- Vertex defects, chirality \pm \Leftrightarrow charge e/2 quasi-particles in $\nu = \pm 1/2$ layer.
- Plaquette defects
 ⇔ Bound state of ± chirality quasi-particles.

Introduction

-Summary of 2D models

Generalising the 2D models to 3D

•
$$H = -\sum_{v} B_{v} - \sum_{p} B_{p}$$

- The first of these will be the familiar 3D toric code (Hamma et al. 2005).
- The second will the the '3D semion model'. It is qualitatively very different from the 3D toric code.

- Introduction

—The 3D toric code

The 3D toric code

• Hilbert space: $\sigma^z = \pm 1$ on each edge.

The 3D toric code

The 3D toric code

•
$$H_{TC} = -\sum_{v} \prod_{\substack{i \in s(v) \\ B_{v}}} \sigma_{i}^{z} - \sum_{p} \prod_{\substack{i \in \partial p \\ B_{p}}} \sigma_{i}^{x}$$

•
$$[B_{\nu}, B_{\nu'}] = [B_{\rho}, B_{\rho'}] = [B_{\rho}, B_{\nu}] = 0.$$

- $B_v = 1 \rightarrow$ Ground state is superposition of closed loops.
- $B_p = 1 \rightarrow$ states that are related by plaquette flips have the same coefficient in the ground state.

- Introduction

—The 3D toric code

Graphical rules

- 2³ ground states on the 3-torus.
- Topological order \checkmark .

- Introduction
 - —The 3D toric code

Defects

- Vertex-type string operators: $\hat{W}_V(\mathcal{C}) = \prod_{i \in \mathcal{C}} \sigma_i^x.$
- Lines of plaquette defects ('vortex rings'): $\hat{W}_{P}(S) = \prod_{i \in S} \sigma_{i}^{z}$.
- Berry phase of −1 on braiding. Topological order √.

Introduction

—The 3D toric code

3D Toric code \Leftrightarrow '3D superconductor'

- Superconductors are topologically ordered (Hansson et al. (2004)).
- Vertex defects
 ⇔ charge *e* quasi-particles.
- Lines of plaquette defects
 ⇔ π-flux vortex rings.

- Introduction

The 3D toric code

The 3D semion model

• Hilbert space: $\sigma^z = \pm 1$ on each edge. Again represent configurations by colouring in $\sigma^z = -1$ edges.

Introduction

The 3D semion mode

The 3D semion model

•
$$H_{3DSem} = -\sum_{v} B_{v} + \sum_{p} B_{p}$$

- $B_{\nu} = 1 \rightarrow$ Ground state is a superposition of closed loops.
- B_p = −1 → Semion graphical rules determine relative amplitudes of loop configurations.

Introduction

—The 3D semion mode

Graphical rules

- Introduction
 - The 3D semion model

Defects

Vertex defect Flipped edges Plaquette defects Vertex defect

• Vertex-type string operators are confined. Any operator $\hat{W}_V(\mathcal{C}) = \prod_{i \in \mathcal{C}} \sigma_i^{\times} \times phases$ necessarily produces plaquette defects along its length.

- Introduction
 - The 3D semion mode

Unique ground state \Leftrightarrow Confined excitations

- $\hat{W}_V(\mathcal{C}) = \prod_{i \in \mathcal{C}} \sigma_i^x$ toggles between two ground state sectors. (a) (\cdot, \cdot, \cdot) + (\cdot, \cdot) + (\cdot, \cdot, \cdot) + (\cdot, \cdot) + $(\cdot$
- In 3D semion model, applying such an operator to GS leaves an energetic string behind.

-The 3D semion model

Is the 3D semion model even topologically ordered?

3D toric code:

- GS degeneracy of 2 3 \checkmark
- Universal statistics between point defects and vortex lines√
- Topological entanglement entropy of log 2√
- Fixed point Hamiltonian \checkmark
- $\bullet \ \rightarrow \mathsf{Topological} \ \mathsf{order}$

3D semion model:

- Unique ground state **X**
- All excitations confined in the bulk **X**
- Topological entanglement entropy of 0 **X**
- Fixed point Hamiltonian \checkmark
- → Topological order ??? Not in the traditional sense
 ... at least in the bulk!

Three-dimensional topological lattice models with surface anyons

- Introduction
 - —The 3D semion mode

3D semion model with boundary

• Cut off the lattice in a 'smooth' manner.

Introduction

└─ The 3D semion model

3D semion model on the solid donut

Three-dimensional topological lattice models with surface anyons

- Introduction
 - The 3D semion mode

Ground states on the solid donut

 Ground state degeneracy of 3D semion model on solid donut is 2. Topological order √.

—The 3D semion mode

Deconfined surface anyons

-The 3D semion mode

What is the topological order of the 3D semion model?

- Not topologically ordered in the bulk, at least according to Wen's criteria.
- However, a sample with a surface has topological order.
- Topological order: Bosonic $\nu = 1/2$ laughlin state

Field Theory

Introduction

Introduction

The 2D toric code The 2D doubled semion model Summary of 2D models The 3D toric code The 3D semion model

Field Theory

Generalisations

Field Theory

Field theory

- $\nu = 1/2$ bosonic hall effect \rightarrow k=2 Chern-Simons theory.
- Ground-space of 3D semion model on solid donut \Leftrightarrow Hilbert space of compact k = 2 Chern-Simons theory on surface. Using $\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma} = \epsilon^{\mu\nu\rho\sigma}\partial_{\mu}(A_{\nu}\partial_{\rho}A_{\sigma})$ suggests:

$$S_{FF}\left[A
ight] = \int d^4x \; \left(rac{k}{16\pi}\epsilon^{\mu
u
ho\sigma}F_{\mu
u}F_{
ho\sigma}+A_\mu J^\mu
ight) \, ,$$

Field Theory

Field theory

$$S_{FF}\left[A
ight] = \int d^4x \; \left(rac{k}{16\pi}\epsilon^{\mu
u
ho\sigma}F_{\mu
u}F_{
ho\sigma}+A_\mu J^\mu
ight) \, ,$$

- Correct GS degeneracy, and anyonic statistics between surface particles (*J*).
- No deconfined point particles in the bulk: If J is non-vanishing in the bulk, the partition function becomes:

$$\int DA_{S} e^{\frac{ik}{4\pi}S_{CS}[A_{S}]+i\int J_{S}\cdot A_{S}} \delta \left[J^{0} = -\frac{k}{4\pi} \epsilon^{ijk} \partial_{i}\partial_{j}A_{k} \text{ in bulk} \right]$$

• Pairs of bulk point particles connected by a line defect in A (corresponds to the presence of a energetic line defect in lattice model).

Generalisations

- 3D semion model $\Leftrightarrow k = 2 F \land F$ theory $\Leftrightarrow k = 2$ surface CS theory.
- Can realise many compact chiral (non-abelian) Chern-Simons theory on the surface of a Walker-Wang model.

Generalisations

- e.g. To realise an SU(2)₂ Chern-Simons theory (Ising anyon theory), construct a Walker-Wang model based on the Ising category.
- Hilbert space: 3-state system on each edge of the lattice. Labels $\{0, \frac{1}{2}, 1\}$ (or $\{I, \sigma, \psi, \}$)
- Allowed vertices:

- ...more complicated graphical rules determining ground states.
- Leads to non-abelian anyons on the surface of the model.

Conclusion

- We described the 'surface topological order' of the 3D semion model.
- Explicitly constructed the chiral surface semions.
- Made more concrete the correspondence: Lattice model ⇔ *FF*-theory.
- Works for any Chern-Simons theory!
- Known that 3D toric code ⇔ 3D superconductor ⇔ bF-theory (Hansson et al. (2004))
- Speculate:

3D semion model \Leftrightarrow *Novel phase*?! \Leftrightarrow *F* \land *F*-theory

• Putative novel phase: Gapped bulk with confined excitations, deconfined anyons on boundary. *P* and *T* odd low-energy Hamiltonian.

Thanks for listening!

Three-dimensional topological lattice models with surface anyons

Curt von Keyserlingk

With Fiona J. Burnell and Steven H. Simon.

Nordita, August 9, 2012

A useful graphical mnemonic

- The vertex type string operators can be drawn as off-lattice strings.
 - + chirality \rightarrow lay string **above** lattice.
 - chirality \rightarrow lay string **below** lattice.

