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Introduction
Laughlin (1983)

» quantum Hall states are quantum liquids

 trial wavefunctions are useful:

— represent universality classes
— help guide our understanding

 plasma mapping allows derivation of

Important universal properties from trial
wavefunctions (charge, statistics, exponents)



Introduction
Moore and Read (1991)

* CFT can be used to generate/describe
candidate QH states/universality classes

* describes the edge theory —
“bulk-edge correspondence™

* universal properties are easy to predict
but not necessarily easy to derive



Introduction

Many candidate QH states have

been proposed:

« Laughlin

« HH hierarchy/CF
« MR Pfaffian

* Read-Rezayi
 NASS

* BS hierarchy

« Haldane-Rezayi

« Gaffnian

« Jacks

« Hermanns hierarchy
« minimal model states



Introduction

Main questions:

1. How do we know whether a
candidate 1s a “good” QH state?

2. How do we extract the edge theory?

« Can we exhibit the problems with the Gaffnian?



Introduction

Partial Answer: “Plasma analogy”

* quasiparticle charge and statistics

Laughlin (1983)
Arovas, Schrieffer, and Wilczek (1984)
Bonderson, Gurarie, and Nayak (2011)

* edge excitation scaling exponents
Wen (1992)
Bernevig et al. (unpublished)

« more detailed edge theory can also be obtained from

generalized screening assumption
Dubail, Read, and Rezayi (2012)



Introduction

Partial Answer: “Plasma analogy”

* not all candidates have a plasma mapping

* for those that do, not all the plasmas are

well-understood (screening properties)
— perfect for Laughlin and some hierarchy states
— great for MR, BS, and M(5,4) states
— not fully understood for Gf
— unknown for others (including RR)

* nNeed another, more general method...



Consider a trial wavefunction for N particles

* In the planar disk geometry, with
coordinates z; = z; + iy;

» with a quasiparticle at n
* possibly other quasiparticles (at o for convenience)

N
~s Llail
(773 Zz) Z T] (217... ZN) e i=1
N4, the highest power of 1, depends on the state

P, (z;) are symmetric polynomials for bosons
antisymmetric polynomials for fermions



Define the inner product
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et the quasiparticle coordinate be located
outside the Hall droplet, 1.e. |5| > R qH disk radius

For a properly screening state, the norm
should take the form (in thermodynamic limit)
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and by analytic continuation
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Justified (partly) by plasma mapping

HOUMENS () ="

F is the free energy of a 2D classical plasma
with a test charge g at position n

o <



Justified (partly) by plasma mapping

HOUMENES  (lnlyr (i, m) = e

In its screening phase, the plasma behave
like a metal
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n dependence of F given by the charging
energy of a test charge.



Justified (partly) by plasma mapping

t
T e = e

In its screening phase, the plasma behave
like a metal
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M dependénée of F given by the charging
energy of a test charge.

By method of images: E = 1¢°log (1 — %)



Justified (partly) by an edge CFT
<<I>T (w") P (w)) = (w' — w)_%

@ is the quasiparticle’s edge excitation operator,
l.e. a primary field with conformal weight h

Taking the quasiparticles to the edge 7 = Re? n = Rett’
the inner product should match (up to phases)

L (7,1) ~ (2T (w') @ (w))



Matching the expressions

by powers gives (for n small)
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Defines a sequence of approximations for g

g(n) _|_ T — ]. — Nnd)—n
n RN,

Just need to compute the norms A/,

n small are most accurate, so we focus on
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With powerful Jack polynomial machinery,

these are easier to compute for some states.
Berevig et al. (2007-...)

(1,2) Jack state = Laughlin v =1/2
(2,2) Jack state=MR v =1
(k,2) Jack state = Z,—RR v = 3/2
(2,3) Jack state = Gf v =2/3



Consider a (k,m) Jack state at v = k/m
with a fundamental (flux 1/k) quasihole at n
and a flux (k-1)/k quasiparticle at O

ng = 4 R=+2Ww IN+1)

Po(zi) = (_k)%_a‘]ga(zi) o — — k1

pra = [(1k = 1,0m2)" 0, (k,0m =) %]
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Laughlin State Quasihole
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MR State Quasihole

CFT: 9qn = §
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YJqh
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RR State Quasihole
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Jqh

Gf State Quasihole
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Consider a (k,m) Jack state at v = k/m
with a hole (flux m/k quasiparticle) at n
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dh

Laughlin State Hole/Particle
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RR State Hole/Particle

CFT: gn =2
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Gf State Hole/Particle

CFT: gn =23

Converges, but to a
nonsensical value!
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Conclusion

We have developed a new and general method
to test candidate wavefunctions and extract the
scaling exponents of their edge excitations.

Confirms bulk-edge correspondence for MR!
Not as good for RR, likely due to finite size.
Exhibits the pathologies of the Gaffnian!

Results for more states on the way...



