# Topological insulators in $D \geq 2$ dimensions : algebra of projected density operators 

## Benoit Estienne

collaboration with N. Regnault and B.A. Bernevig (arXiv:1202.5543)

Department of Physics
Princeton University
Nordita 08/2012
(1) Motivations
(2) Integer Quantum Hall Effect $(D=2)$

- Some phenomenology
- Projected density operators and GMP algebra
(3) Density algebra for topological insulators $(D \geq 2)$
- Two dimensions and first Chern number
- Chern insulators in higher (even) dimensions
- Topological insulators in odd dimensions
(4) Classical limit
- Volume preservering diffeomorphisms
- Extended excitations (loops, membranes)


## Motivations

Topological phases of matter characterized by a topological invariant : Chern numbers :

$$
C_{1}=\int F, \quad C_{2}=\int F \wedge F
$$

$\mathbb{Z}_{2}$ topological numbers :

$$
P_{1}=\int A, \quad P_{3}=\int F \wedge A+\frac{i}{3} A \wedge A \wedge A
$$

## For 2D Chern insulators / Quantum Hall effect

Projected density operators probe the Berry curvature $F$

- Aharonov-Bohm effect
- Incompressibility (area preserving diffeomorphisms)
- Classification of edges ( $K$ matrices)


## what about higher dimensional topological insulator?

## Integer Quantum Hall Effect Phenomenology and density algebra <br> $$
(D=2)
$$

## Quantum Hall effect and quantized Hall conductance

Hall effect: a two-dimensional electron gas in a perpendicular magnetic field.
$\Rightarrow$ current $\perp$ voltage



IQHE : von Klitzing (1980)
Quantized Hall conductance

$$
\sigma_{x y}=\nu \frac{e^{2}}{h}
$$

$\nu$ is an integer up to $O\left(10^{-9}\right)$
Used in metrology

## $\nu$ is the number of filled bands (Landau levels)

2D particle in a perpendicular $\vec{B}=B \vec{z}: H=\frac{1}{2 m}(\vec{p}-q \vec{A})^{2}$
Discrete spectrum :

$$
E_{n}=\left(\frac{1}{2}+n\right) \hbar \omega_{c}
$$

Each Landau level $n$ is highly degenerate.

$$
\Psi_{n, k_{y}}(x, y) \sim e^{i k_{y} y} e^{-\left(x-k_{y}\right)^{2} / 2}
$$

(Wannier type states)


IQHE : state obtained by filling $\nu$ Landau levels $\Rightarrow$ Bulk gap $\hbar \omega_{c}$.

## $\nu$ is also the number of edge states

A state with momentum $k_{y}$ is localized in real space around $x=k_{y}$


## What is this integer $\nu$ ? TKNN and topology

- TKNN (Thouless et al, '82) : quantization insensitive to disorder or strong periodic potential.
$\nu$ is a topological invariant, the first Chern number
- edge modes (Laughlin '81, Hatsugai '92) : edge states are robust, chiral
number of edge modes $=$ Chern number


Each edge channel contributes $e^{2} / h$ to the Hall conductance

$$
\sigma_{x y}=\nu e^{2} / h=\nu / 2 \pi
$$

## Projection to the Lowest Landau Level

Decomposing the position $\mathbf{r}=\rho+\mathbf{R}$ where the guiding center $\mathbf{R}$ is


The Guiding center

$$
R_{i}=r_{i}-\frac{1}{B} \epsilon_{i j}\left(p_{j}-A_{j}\right)
$$

is a conserved quantity $\left[H, R_{i}\right]=0$ but

$$
\left[R_{x}, R_{y}\right]=\left[R_{1}, R_{2}\right]=i / B
$$

## Projection in the LLL and non-commutative space

$$
P \mathbf{r} P=\mathbf{R}
$$

$$
\left[R_{1}, R_{2}\right]=i / B
$$

The projected positions ( $R_{1}, R_{2}$ ) are conjugate : non-commutative space (+ dimensional reduction : $4 \rightarrow 2$ dimensional phase-space).

## Girvin-MacDonald-Platzmann algebra (or $W_{\infty}$ )

Projected density operators $\rho_{\mathbf{u}}=P e^{i \mathbf{u} \cdot \mathbf{r}} P \propto e^{i \mathbf{u} \cdot \mathbf{R}}$ obey

$$
\left[\rho_{\mathbf{u}}, \rho_{\mathbf{v}}\right]=2 i \sin \left(\frac{\mathbf{u} \wedge \mathbf{v}}{2 B}\right) \rho_{\mathbf{u}+\mathbf{v}}
$$


long wavelength ( $\mathbf{u}, \mathbf{v} \ll 1$ ) : algebra of area-preserving diffeomorphisms.
Projected density operators also act as magnetic translations :

$$
T_{\mathbf{a}}=e^{i \mathbf{u} \cdot \mathbf{D}} \quad D_{i}=B \epsilon_{i j} R_{j}
$$

whose algebra describes the Aharonov-Bohm effect in a uniform $B$

$$
T_{\mathbf{u}} T_{\mathbf{v}}=e^{i B(\mathbf{u} \wedge \mathbf{v})} T_{\mathbf{v}} T_{\mathbf{u}}
$$

$\Rightarrow \rho_{\mathbf{q}}$ implements parallel transport w.r.t. the Berry curvature $B$
This algebra predicts the center-of-mass degeneracy : a state at filling $p / q$ has $q$-fold degeneracy on the torus [Haldane, '85].

## Density algebra for topological insulators $(D \geq 2)$

## TI in $D$ space dimensions : notations

One-body tight biding model Hamiltonian on the infinite lattice $\mathbf{i}, \mathbf{j} \in \mathbb{Z}^{D}$.

$$
H=\sum_{\mathbf{i}, \mathbf{j}} c_{\mathbf{i} \alpha}^{\dagger} h^{\alpha \beta}(\mathbf{i}-\mathbf{j}) c_{\mathbf{j} \beta}
$$

Momenta are restricted to the Brillouin zone (BZ) $\mathbf{k} \in \mathbb{T}_{D}\left(k_{i} \equiv k_{i}+2 \pi\right)$

$$
H=\int_{\mathrm{BZ}} \mathrm{~d}^{D} \mathbf{k} c_{\mathbf{k} \alpha}^{\dagger} h^{\alpha \beta}(\mathbf{k}) c_{\mathbf{k} \beta}
$$

Diagonalizing the the Bloch Hamiltonian

$$
\sum_{\beta} h_{\alpha \beta}(\mathbf{k}) u_{\mathbf{k}, \beta}^{n}=E_{n}(\mathbf{k}) u_{\mathbf{k}, \alpha}^{n}:
$$

$$
H=\sum_{n} \int_{\mathrm{BZ}} \mathrm{~d}^{D} \mathbf{k} E_{n}(\mathbf{k})|\mathbf{k}, n\rangle\langle\mathbf{k}, n|
$$


with states $|\mathbf{k}, n\rangle=\sum_{\beta} u_{\mathbf{k}, \beta}^{n} c_{\mathbf{k}, \beta}^{\dagger}|0\rangle$

## TI in $D$ space dimensions : electromagnetic response

In two dimensions, the response to an external $A_{\mu}^{\text {ext }}$ is

$$
j^{\mu}=\frac{C_{1}}{2 \pi} \epsilon^{\mu \nu \rho} \partial_{\nu} A_{\rho}^{\text {ext }} \quad C_{1}=\frac{1}{2 \pi} \int_{\mathrm{BZ}} d^{2} k \operatorname{Tr}\left(F_{x y}(\mathbf{k})\right) \in \mathbb{Z}
$$

i.e. the winding number from the mapping of $A_{\mu}(\mathbf{k}): \mathbb{T}_{2} \rightarrow U(N)$

$$
C_{1} \neq 0 \Rightarrow 2 D \text { Chern insulator. }
$$

The Berry connection in $\mathbf{k}$ space

$$
A_{\mu}^{n m}(\mathbf{k})=i\langle\mathbf{k}, n| \partial_{k_{\mu}}|\mathbf{k}, m\rangle=i \sum_{\alpha} u_{\mathbf{k}, \alpha}^{n \star} \partial_{k_{\mu}} u_{\mathbf{k}, \alpha}^{m}
$$

defines a non-Abelian $\mathrm{U}(\mathrm{N})$ Berry field strength :

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i\left[A_{\mu}, A_{\nu}\right]
$$

## Flat-Band limit and symmetries

The flat-band limit is obtained by collapsing all occupied bands

$$
\begin{gathered}
H=\sum_{\mathbf{k}, n} E_{n}(\mathbf{k})|\mathbf{k}, n\rangle\langle n, \mathbf{k}| \\
\downarrow \\
H_{\mathrm{FB}}=\epsilon_{G} P+\epsilon_{E}(1-P)
\end{gathered}
$$


where $P=\sum_{n, \mathbf{k}}|\mathbf{k}, n\rangle\langle n, \mathbf{k}|$ is the projector to the occupied bands.
Any projected operator is a symmetry of $H_{\mathrm{FB}}$

$$
\left[H_{\mathrm{FB}}, P O P\right]=0
$$

In particular the projected position $\mathbf{R}=P \mathbf{r} P$ implements parallel transport

$$
R_{\mu}=-i\left(\frac{\partial}{\partial k_{\mu}}-i A_{\mu}(k)\right) \quad\left[R_{\mu}, R_{\nu}\right]=i F_{\mu \nu}(\mathbf{k})
$$

## Projected density operators : the fundamental relation

The projected density operators are

$$
\rho_{\mathbf{q}}=P \sum_{\mathbf{j}, \alpha} e^{i \mathbf{q} \cdot \mathbf{j}} c_{\mathbf{j} \alpha}^{\dagger} c_{\mathbf{j} \alpha} P
$$

- They commute with the one-body Hamiltonian.
- They annihilate the many-body ground state (filled band).

Commutation relation [Parameswaran et. al . '11] :

$$
\left[\rho_{\mathbf{q}_{1}}, \rho_{\mathbf{q}_{2}}\right]|\mathbf{k}, n\rangle=-i q_{1}^{\mu} q_{2}^{\nu}\left(F_{\mu \nu}(\mathbf{k})\right)_{n m}\left|\mathbf{k}+\mathbf{q}_{1}+\mathbf{q}_{2}, m\right\rangle \quad\left(\mathbf{q}_{1}, \mathbf{q}_{2} \ll 1\right)
$$

Parallel transport $\rho_{\mathbf{q}}=1+i q^{\mu} R_{\mu}+O\left(\mathbf{q}^{2}\right)$

$$
\left[\rho_{\mathbf{q}_{1}}, \rho_{\mathbf{q}_{2}}\right]=-i q_{1}^{\mu} q_{2}^{\nu} F_{\mu \nu}(\mathbf{k})
$$

# Density algebra in 2d and first Chern number 

## Density algebra in 2d and first Chern number

 In two dimensions the Berry curvature is $F_{\mu \nu}(\mathbf{k})=B(\mathbf{k}) \epsilon_{\mu \nu}$, Hall type response $j^{i}=\frac{C_{1}}{2 \pi} \epsilon^{i j} E_{j}$ where $C_{1}$ is the first Chern number$$
C_{1}=\frac{1}{4 \pi} \int_{\mathrm{BZ}} d^{2} k \epsilon^{\mu \nu} \operatorname{Tr}\left(F_{\mu \nu}(\mathbf{k})\right)
$$

i.e. the winding number from the mapping of $A_{\mu}(\mathbf{k}): \mathbb{T}_{2} \rightarrow U(N)$

First Chern number as an obstruction to commutativity

$$
\operatorname{Tr}\left(\left[\rho_{\mathbf{q}_{1}}, \rho_{\mathbf{q}_{2}}\right] \rho_{-\mathbf{q}_{1}-\mathbf{q}_{2}}\right)=\frac{L^{2}}{2 \pi i}\left(\mathbf{q}_{1} \wedge \mathbf{q}_{2}\right) C_{1}
$$

if $F_{x y}(\mathbf{k})=B=$ constant we recover the $\mathbf{q} \ll 1$ limit of the GMP algebra

$$
\left[\rho_{\mathbf{q}_{1}}, \rho_{\mathbf{q}_{2}}\right]=-i B \mathbf{q}_{1} \wedge \mathbf{q}_{2} \rho_{\mathbf{q}_{1}+\mathbf{q}_{2}}+O\left(\mathbf{q}^{3}\right)
$$

## Unitarity and Parallel transport

Projected density operators enjoy the small correct $q$ behavior

$$
\rho_{q}=1+i q_{\mu} R^{\mu}+O\left(q^{2}\right)
$$

but they are not unitary

$$
\langle\mathbf{k}, n| \rho_{\mathbf{q}}^{\dagger} \rho_{\mathbf{q}}|\mathbf{k}, n\rangle=\sum_{m}\left|\left\langle u_{\mathbf{k}-\mathbf{q}}^{m} \mid u_{\mathbf{k}}^{n}\right\rangle\right|^{2}=1-O\left(\mathbf{q}^{2}\right)
$$

In 2D we know the cure : parallel transport w.r.t. $A_{\mu}$

$$
\tilde{\rho}_{\mathbf{q}}|\mathbf{k}, n\rangle=\sum_{m}\left(\mathcal{P} e^{-i \int_{k}^{k+\boldsymbol{q}} d p^{\mu} A_{\mu}(p)}\right)_{n m}|\mathbf{k}+\mathbf{q}, m\rangle
$$

(i.e. $\tilde{\rho}_{\mathbf{q}}=e^{i q^{\mu} R_{\mu}}$ ) and we recover the full GMP algebra

$$
\left[\tilde{\rho}_{\mathbf{q}_{1}}, \tilde{\rho}_{\mathbf{q}_{2}}\right]=-2 i \sin \left(B \frac{\mathbf{q}_{1} \wedge \mathbf{q}_{2}}{2}\right) \tilde{\rho}_{\mathbf{q}_{1}+\mathbf{q}_{2}}
$$

Chern insulator in 2D = same phenomenology and algebra as the IQHE

## Chern insulators/QHE in higher dimensions

Density algebra in even D dimensions
A D dimensional TI is characterized by the topological number

$$
C_{D / 2}=\frac{1}{(D / 2)!(2 \pi)^{D / 2}} \int d^{D} k \operatorname{Tr}(F(\mathbf{k}) \wedge \cdots \wedge F(\mathbf{k}))
$$

We want to probe $F \wedge F \wedge \cdots \wedge F$ !

## We need a "D-commutator"

$$
\left[A_{1}, A_{2}, \cdots, A_{D}\right]=\epsilon^{\alpha_{1} \alpha_{2} \cdots \alpha_{D}} A_{\alpha_{1}} A_{\alpha_{2}} \cdots A_{\alpha_{D}}
$$

$$
\left[\rho_{\mathbf{q}_{1}}, \rho_{\mathbf{q}_{2}}, \cdots, \rho_{\mathbf{q}_{D}}\right]|\mathbf{k}\rangle \simeq\left(\mathbf{q}_{1} \wedge \mathbf{q}_{2} \wedge \cdots \wedge \mathbf{q}_{D}\right)[F(\mathbf{k}) \wedge \cdots \wedge F(\mathbf{k})]|\mathbf{k}\rangle
$$

$(\mathbf{u} \wedge \mathbf{v} \wedge \mathbf{w})$ is the volume delimited by

$D$-algebra
The $D$-algebra closes for $\mathbf{q}_{i} \ll 1$

$$
\left[\rho_{\mathbf{q}_{1}}, \rho_{\mathbf{q}_{2}}, \cdots, \rho_{\mathbf{q}_{D}}\right] \propto\left(\mathbf{q}_{1} \wedge \mathbf{q}_{2} \wedge \cdots \wedge \mathbf{q}_{D}\right) C_{\frac{D}{2}} \rho_{\mathbf{q}_{1}+\ldots+\mathbf{q}_{D}}
$$

for a uniform Chern density $[F \wedge \cdots \wedge F]_{n m} \propto C_{\frac{D}{2}} \delta_{n m}$
Flux of the $D$-form $F \wedge \cdots \wedge F=\epsilon^{\mu_{1} \mu_{2} \cdots \mu_{D}} F_{\mu_{1} \mu_{2}} \cdots F_{\mu_{D-1} \mu_{D}}$ through the volume $\left(\mathbf{q}_{1} \wedge \mathbf{q}_{2} \wedge \cdots \wedge \mathbf{q}_{D}\right)$. parallel transport ?


Projection to the lower bands $\Rightarrow$ non-commutative D-dimensional phase-space

$$
\left[R_{1}, R_{2}, \cdots, R_{D}\right] \propto i^{D / 2} C_{\frac{D}{2}}
$$

## Recap

In two dimensions :

$$
\left[\rho_{\mathbf{q}_{1}}, \rho_{\mathbf{q}_{2}}\right] \propto C_{1}\left(\mathbf{q}_{1} \wedge \mathbf{q}_{2}\right) \rho_{\mathbf{q}_{1}+\mathbf{q}_{2}}
$$

Non-commutative plane $\left[R_{1}, R_{2}\right] \propto i C_{1}$ (i.e. uncertainty $\Delta R_{1} \Delta R_{2} \geq C_{1}$ )
Parallel transport $\tilde{\rho}_{\mathbf{q}}=e^{i q^{\mu} R_{\mu}}$, Aharonov-Bohm effect

$$
\tilde{\rho}_{\mathbf{u}} \tilde{\rho}_{\mathbf{u}}=e^{i B \mathbf{u} \wedge \mathbf{v}} \tilde{\rho}_{\mathbf{v}} \tilde{\rho}_{\mathbf{u}}
$$



In $D$ dimensions ( $D$ even)

$$
\left[\rho_{\mathbf{q}_{1}}, \rho_{\mathbf{q}_{2}}, \cdots, \rho_{\mathbf{q}_{D}}\right] \propto C_{\frac{D}{2}}\left(\mathbf{q}_{1} \wedge \mathbf{q}_{2} \wedge \cdots \wedge \mathbf{q}_{D}\right) \rho_{\mathbf{q}_{1}+\ldots+\mathbf{q}_{D}}
$$

Non-commutative $D$-dimensional phase-space $\left[R_{1}, R_{2}, \cdots, R_{D}\right] \propto i^{D / 2} C_{\frac{D}{2}}$ Parallel transport w.r.t the $D$-form $F \wedge F \wedge \cdots \wedge F$ ?

# Topological insulators in odd dimensions 

## $\mathbb{Z}_{2}$ topological number in odd dimensions

In odd space dimensions the topological number is the integrand of the Chern-Simons form

$$
\begin{aligned}
& P_{1}=\frac{1}{2 \pi} \int d k \operatorname{Tr}[A] \\
& P_{3}=\frac{1}{8 \pi^{2}} \int d^{3} k \operatorname{Tr}\left[F \wedge A+\frac{i}{3} A \wedge A \wedge A\right]
\end{aligned}
$$

and are only defined modulo an integer (large gauge transformations).
We've got a problem : projected density operators are gauge invariant
$\Rightarrow$ It is not possible to repeat the contruction obtained for $D$ even

## Density algebra in three dimensions

$$
[A, B, C]=[A, B] C+[B, C] A+[C, A] B
$$

## In odd dimensions the $D$-commutator is annoying :

$$
[A, B, 1]=[A, B] \neq 0
$$

Upon expanding $\rho_{\mathbf{q}}=1+i \mathbf{q} \cdot \mathbf{R}$ we get and anisotropic term

$$
\left[\rho_{\mathbf{q}_{1}}, \rho_{\mathbf{q}_{2}}, \rho_{\mathbf{q}_{3}}\right]=-i\left(q_{1}^{\mu} q_{2}^{\nu}+q_{3}^{\mu} q_{1}^{\nu}+q_{2}^{\mu} q_{3}^{\nu}\right) F_{\mu \nu} \rho_{\mathbf{q}_{1}+\mathbf{q}_{2}+\mathbf{q}_{3}}
$$

which is sensitive to a weak 3D Tl (layers of 2D TI) instead of a strong one.


Check: subdominant term in the 3-commutator

$$
\left[\rho_{\mathbf{q}_{1}}, \rho_{\mathbf{q}_{2}}, \rho_{\mathbf{q}_{3}}\right]=\left[-i\left(q_{1}^{\mu} q_{2}^{\nu}+q_{3}^{\mu} q_{1}^{\nu}+q_{2}^{\mu} q_{3}^{\nu}\right) F_{\mu \nu}+O\left(\mathbf{q}^{3}\right)\right] \rho_{\mathbf{q}_{1}+\mathbf{q}_{2}+\mathbf{q}_{3}}
$$

Is the $O\left(\mathbf{q}^{3}\right)$ term the isotropic $\left(\mathbf{q}_{1} \wedge \mathbf{q}_{2} \wedge \mathbf{q}_{3}\right)\left[F \wedge A+\frac{i}{3} A \wedge A \wedge A\right]$ ?

## No! It's anisotropic

$$
O\left(\mathbf{q}^{3}\right)=\epsilon_{\alpha_{1} \alpha_{2} \alpha_{3}} q_{\alpha_{1}}^{\mu} q_{\alpha_{1}}^{\nu} q_{\alpha_{2}}^{\sigma} C_{\mu \nu \sigma}
$$

$$
C_{\mu \nu \sigma}=i D_{\sigma} B_{\mu \nu}-i \partial_{\mu} \partial_{\nu} A_{\sigma}-\left(A_{\mu} \partial_{\nu}+A_{\nu} \partial_{\mu}\right) A_{\sigma}+F_{\mu \sigma} A_{\nu}+F_{\nu \sigma} A_{\mu}
$$ where $B_{\mu \nu}$ is the subleading term in $\rho_{\mathbf{q}}=\left(1-i q^{\mu} A_{\mu}-\frac{i}{2} q^{\mu} q^{\nu} B_{\mu \nu}\right)$

Moreover $\left[R_{1}, R_{2}, R_{3}\right]=F \wedge(\partial-i A)$ and its trace is not well defined.
Contrary to Neupert et al, arXiv :1202.5188 the CS density cannot and does not appear !

# Classical limit of the $D$-commutator : Nambu bracket 

Nambu bracket and volume perserving diffeomorphisms The classical limit a of $D$-commutator $\left[R_{1}, \cdots, R_{D}\right]=(i \hbar)^{D / 2}$ is a multisimplectic structure describing a $D$-dimensional phase-space

$$
\left\{x_{1}, \cdots, x_{D}\right\}=1
$$

with the Nambu bracket :

$$
\left\{A_{1}, \cdots, A_{D}\right\}=\epsilon_{\alpha_{1} \alpha_{2} \cdots \alpha_{D}} \frac{\partial A_{1}}{\partial x_{\alpha_{1}}} \frac{\partial A_{2}}{\partial x_{\alpha_{2}}} \cdots \frac{\partial A_{D}}{\partial x_{\alpha_{D}}}
$$

## Invariant under volume-preserving diffeomorphisms (VPD)

$$
x_{i} \rightarrow y_{i}(x) \quad \operatorname{det} \frac{\partial y_{i}}{\partial x_{j}}=1 \quad\left\{y_{1}, \cdots, y_{D}\right\}=1
$$

Liouville theorem :

$$
\frac{d x_{i}}{d t}=\left\{x_{i}, H_{1}, \cdots, H_{D-1}\right\}
$$

Hamiltonian(s) evolutions generates all VPDs.

## Nambu bracket and extended objects

Nambu formalism associates to a classical string $x_{i}(t, \sigma)$ in $N$ dimensions $N(N-1) / 2$ "momenta" $p_{i j}$.

$$
\begin{aligned}
\frac{\partial x_{i}}{\partial t} \frac{\partial x_{j}}{\partial \sigma}-\frac{\partial x_{i}}{\partial \sigma} \frac{\partial x_{j}}{\partial t} & =\partial H / \partial p_{i j} \\
\sum_{j}\left(\frac{\partial p_{i j}}{\partial t} \frac{\partial x_{j}}{\partial \sigma}-\frac{\partial p_{i j}}{\partial \sigma} \frac{\partial x_{j}}{\partial t}\right) & =-\partial H / \partial x_{i}
\end{aligned}
$$

For a string in 2D this becomes, writing $x_{3}=p_{12}$.

$$
\frac{\partial x_{i}}{\partial t} \frac{\partial x_{j}}{\partial \sigma}-\frac{\partial x_{i}}{\partial \sigma} \frac{\partial x_{j}}{\partial t}=\left\{x_{i}, x_{j}, H\right\}
$$

A Nambu bracket appears, with a single Hamiltonian!
Can be extended to $D-1$ membranes.

Extended objects (cf Joost's talk)
3D TI and BF theory (Cho and Moore, '11)

$$
\mathcal{L}_{B F}=\frac{k}{4 \pi} b \wedge F=\frac{k}{4 \pi} \epsilon^{\mu \nu \rho \sigma} b_{\mu \nu} \partial_{\rho} a_{\sigma}
$$

2-form gauge field couple to string-like objects
$b_{\mu \nu}$ is a 2 -form gauge field ( $b_{\mu \nu} \rightarrow b_{\mu \nu}+\partial_{\mu} \beta_{\nu}-\partial_{\nu} \beta_{\mu}$ )
higher gauge theories, and parallel transport of strings/loops. 4D QHE and higher CS theory (Bernevig et al, '02)

$$
\mathcal{L}=A \wedge d A \wedge d A-\frac{3 i}{2} A \wedge A \wedge A \wedge A \wedge d A-\frac{3}{5} A \wedge A \wedge A \wedge A \wedge A
$$

membranes excitations, fractional statistics

## Conclusion

Algebraic structure of projected densisty operators in $D$ dimensions :

## $D$ even

Isotropic $D$-algebra that probes the Hall conductance in $D$ dimensions

$$
\left[\rho_{\mathbf{q}_{1}}, \rho_{\mathbf{q}_{2}}, \cdots, \rho_{\mathbf{q}_{D}}\right] \propto C_{\frac{D}{2}}\left(\mathbf{q}_{1} \wedge \mathbf{q}_{2} \wedge \cdots \wedge \mathbf{q}_{D}\right) \rho_{\mathbf{q}_{1}+\ldots+\mathbf{q}_{D}}
$$

Non-commutative $D$-dimensional phase-space $\left[R_{1}, R_{2}, \cdots, R_{N}\right] \propto i^{D / 2} C_{\frac{D}{2}}$

## D odd

anisotropic, probes the Hall conductance in $D-1$ dimensions

$$
\left[\rho_{\mathbf{q}_{1}}, \rho_{\mathbf{q}_{2}}, \rho_{\mathbf{q}_{3}}\right]=-i\left(q_{1}^{\mu} q_{2}^{\nu}+q_{3}^{\mu} q_{1}^{\nu}+q_{2}^{\mu} q_{3}^{\nu}\right) F_{\mu \nu} \rho_{\mathbf{q}_{1}+\mathbf{q}_{2}+\mathbf{q}_{3}}
$$

Consequences of $D$-algebra poorly understood at this point :

- volume preserving differomorphisms and incompressibility
- extended excitations (strings or membranes)

