Quantum Braiding Statistics and Quantum Hall Interferometry

Steven H. Simon

Outline

Fractional Braiding Statistics Experiments in Fractional Quantum Hall Interferometry

Nonabelian Braiding Statistics (why we are so interested) Same experiment but much more complicated

Fractional Statistics

Leinaas+Myrheim 1977 Wilczek 1982

Quasiparticle Excitations of "Simple" Fractional Quantum Hall States Really Are Anyons!

Halperin 1984 Schrieffer+Arovas+Wilczek 1984 W = Topological Winding Number of Braid $\Psi_{f} = e^{iW\alpha} \Psi_{i}$ $\alpha = \text{``Statistical Angle''}$ Bosons: $\alpha = 0$ Fermions: $\alpha = \pi$ Anyons: other α

Experimental Proof?

Sanghun An¹, P. Jiang^{1,2}, H. Choi¹, W. Kang¹, S.H. Simon³, L.N. Pfeiffer⁴, K.W. West⁴, and K.W. Baldwin⁴

¹James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637

²Department of Physics, National Taiwan Normal University, Taipei, Taiwan
³Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford University, OX1 3NP, UK
⁴Department of Electrical Engineering, Princeton University, Princeton, NJ 08544

arXiv:1112.3400 Under Review at Science

The Quantum Hall Fabry-Perot Interferometer

Hoping to prove fractional statistics

Theory: Chamon, Wen, et al 1997 + many many others since

Experiment: Goldman Group; Willett Group; Kang Group; Marcus Group; Heiblum Group

Beam Splitter

Mirror

interference of two partial waves

Conventional Quantum Hall States (v=1/3)

Side gate changes phase

Conventional Quantum Hall States (v=1/3)

Side gate changes phase

Telegraph Noise

Slowish time scale = caused by glassy motion of dopant impurities

Telegraph Noise

Slowish time scale = caused by glassy motion of dopant impurities

Telegraph Noise

PRL 96, 226803 (2006) PHYSICAL REVIEW LETTERS week ending 9 JUNE 2006

Switching Noise as a Probe of Statistics in the Fractional Quantum Hall Effect

Eytan Grosfeld,¹ Steven H. Simon,² and Ady Stern¹

Telegraph noise and the Fabry-Perot quantum Hall interferometer

B. Rosenow¹ and Steven H. Simon²

arXiv:1111.6475

Sanghun An¹, P. Jiang^{1,2}, H. Choi¹, W. Kang¹, S.H. Simon³, L.N. Pfeiffer⁴, K.W. West⁴, and K.W. Baldwin⁴

¹James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637

²Department of Physics, National Taiwan Normal University, Taipei, Taiwan
³Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford University, OX1 3NP, UK
⁴Department of Electrical Engineering, Princeton University, Princeton, NJ 08544

arXiv:1112.3400 Under Review at Science

Telegraph noise seen at some ranges of side gate voltage

Assuming Reproducible

Can a qp really jump in without deforming the "dot"

Aharonov-Bohm Regime vs. Coulomb Dominated Regime

Theory: Rosenow, Halperin 06; Halperin, Stern, Neder, Rosenow 10

Exp: Y. Zhang, **Marcus** et al 09; N. Ofek, **Heiblum** et al 10; Godfrey, **Kang**, Simon, et al arXiv:0708.2448; Choi, Jiang, Godfrey, **Kang**, Simon, ... et al , New J. Phys, 2010.

Multiple Edge States

When qp enters, where does the charge leave from?

Can a qp really jump in without deforming the "dot"

Woowon's Device shows signs of being Coulomb Dominated... ... so why do we measure the "ideal" phase slip?

- Those signs are wrong... OR
- Fine tuned : qp to edge interaction roughly canceled by dopant to edge interaction.

Rosenow, Simon arXiv:1111.6475, PRB 2012

Correlated Motion of Impurities and Quasiparticles

BUT... actually donor charge = 1 quasiparticle charge = 1/3 Can a qp really jump in without deforming the "dot"

Woowon's Device shows signs of being Coulomb Dominated... ... so why do we measure the "ideal" phase slip?

- Those signs are wrong... OR
- Fine tuned : qp to edge interaction roughly canceled by dopant to edge interaction. ??? Rosenow, Simon arXiv:1111.6475, PRB 2012

Fractional Statistics

Leinass+Myrheim 1977 Wilczek 1982

Quasiparticle Excitations of "Simple" Fractional Quantum Hall States Really Are Anyons!

Halperin 1984 Schrieffer+Arovas+Wilczek 1984 W = Topological Winding Number of Braid $\Psi_{f} = e^{iW\alpha} \Psi_{i}$ $\alpha = \text{``Statistical Angle''}$ Bosons: $\alpha = 0$ Fermions: $\alpha = \pi$ Anyons: other α

Outline

Fractional Braiding Statistics Experiments in Fractional Quantum Hall Interferometry

Nonabelian Braiding Statistics

(why we are so interested) Same experiment but much more complicated What if there is a multiply degenerate ground state?

"Artist's conception" of a Topological Quantum Computing Device

Ref: *Non-Abelian Anyons and Topological Quantum Computation* C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. DasSarma, Rev Mod Phys 2008 How close are we to achieving this dream?

First Step: Need to Show Non-Abelian Statistics Exist

Outline

Fractional Braiding Statistics Experiments in Fractional Quantum Hall Interferometry

Nonabelian Braiding Statistics (why we are so interested) Same experiment but much more complicated

Sanghun An¹, P. Jiang^{1,2}, H. Choi¹, W. Kang¹, S.H. Simon³, L.N. Pfeiffer⁴, K.W. West⁴, and K.W. Baldwin⁴

Same Experiment... but with quantum Hall state of matter

v = 5/2

... a likely candidate for showing nonabelian statistics

arXiv:1112.3400 Under Review at Science

nonabelian statistics in experiment?

Sanghun An¹, P. Jiang^{1,2}, H. Choi¹, W. Kang¹, S.H. Simon³, L.N. Pfeiffer⁴, K.W. West⁴, and K.W. Baldwin⁴

Same Experiment... but with quantum Hall state of matter

v = 5/2

... a likely candidate for showing nonabelian statistics

arXiv:1112.3400 Under Review at Science

The Fundamental Principles of 5/2 Nonabelions

For each *pair* of e/4 qps there is a single *two state system*.
 called: a "neutral (dirac) fermion" or a "qubit"

(i.e, each qp associated with a majorana)

- Braiding a third qp through the two flips the state of the qubit
- A phase of π is accumulated going around a neutral fermion

ш
Φ
Õ
to D
Ś
<u>.</u>
Ð
ſ

5/2 state interference experiment

Summary of Orthodox Theory:

- If an odd # of qps are in the interferometer, no interference
- If an even # of qps are in the interferometer, yes interference Phase = 0 if even # of neutral fermions Phase = π if odd # of neutral fermions

Selected for a Viewpoint in *Physics*

PHYSICAL REVIEW B 82, 205301 (2010)

S

Alternation and interchange of e/4 and e/2 period interference oscillations consistent with filling factor 5/2 non-Abelian quasiparticles

R. L. Willett,* L. N. Pfeiffer, and K. W. West

Claims of experimental data in agreement with Orthodox Theory

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW B **80**, 155303 (2009)

Waheb Bishara,¹ Parsa Bonderson,² Chetan Nayak,^{2,3} Kirill Shtengel,^{4,5} and J. K. Slingerland^{6,7}

+ Theoretical Blessing

But then.... it turned out that

... the orthodox theory should not apply to this experiment !

R. L. Willett, L. N. Pfeiffer, and K. W. West Phys. Rev. B 82, 205301 (2010)

Area Estimate = $0.2 \ \mu m^2$

PROBLEM = *DEVICE IS SMALL*....

qps (qubits) in the dot
must be strongly
coupled to each other,
and to the edge...
by majorana coupling !

VERY UNLIKE ORTHODOX THEORY

The Fundamental Principles of 5/2 Nonabelions

For each *pair* of e/4 qps there is a single *two state system*.
 called: a "neutral (dirac) fermion" or a "qubit"

(i.e, each qp associated with a majorana)

If qps are far apart, qubit states are degenerate in energy. If qps are close together, majoranas couple – *splits qubit states*.

The Fundamental Principles of 5/2 Nonabelions

If qps are far apart, qubit states are degenerate in energy. If qps are close together, majoranas couple – *splits qubit states*.

Estimate from Trial Wavefunction Monte-Carlo for tunneling Baraban, Zikos, Bonesteel, Simon, PRL 09

Two qps a distance d apart (4 qps in the calculation=2 fusion channels)

qp-edge coupling allows qubit flipping

Overbosch and Wen arXive 2008; Rosenow, Halperin, Simon, Stern PRL 2008, PRB 2009; Bishara and Nayak PRB 2009.

Path length (side gate voltage)

To observe interference we must assume 3 > 1,2

What do these couplings do?

Prediction 1

Which is lower energy ($|0\rangle$ or $|1\rangle$) depends on the detailed configuration of qps in the dot.

Interference signals can flip by π if a qp moves

Estimate from Trial Wavefunction Monte-Carlo for tunneling Baraban, Zikos, Bonesteel, Simon, PRL 09

Two qps a distance d apart (4 qps in the calculation=2 fusion channels)

Which state of qubit is lower depends sensitively on distance!

(Friedel-like oscillations)

Prediction 1

Which is lower energy ($|0\rangle$ or $|1\rangle$) depends on the detailed configuration of qps in the dot.

Interference signals can flip by π if a qp moves

Prediction 1

Expect π phase slips !!

Braiding of Abelian and Non-Abelian Anyons in the Fractional Quantum Hall Effect

Evidence of Qubit Flipping!

What about the even-odd effect?

Overbosch and Wen arXive 2008; Rosenow, Halperin, Simon, Stern PRL 2008, PRB 2009; Bishara and Nayak PRB 2009.

For "odd" to kill interference, lone qp must be decoupled from edge

To see even-odd effect, must have

qp-edge coupling << e*V, T

If a majorana is coupled strongly to the edge, it becomes part of the edge \Rightarrow Nothing encircles it

What about the even-odd effect?

Overbosch and Wen arXive 2008; Rosenow, Halperin, Simon, Stern PRL 2008, PRB 2009; Bishara and Nayak PRB 2009.

For "odd" to kill interference, lone qp must be decoupled from edge

A qp strongly coupled to the edge forms a bound state and decouples from the problem

0

Crossover behavior can be exactly calculated...

 $\mathcal{L}_{charge} = \frac{1}{4\pi\nu} \partial_x \varphi (v_c \partial_x \pm i \partial_\tau) \varphi$ $\mathcal{L}_{neutral} = \psi (v_n \partial_x \pm \partial_t) \psi$ $\mathcal{L}_{qps} = \Gamma_{\alpha} \,\partial_{\tau} \Gamma_{\alpha}$ $\mathcal{L}_{edge-qp} = \lambda \Gamma_{\alpha} \psi(x_{\alpha})$ $\hat{T}(x) = t \ \sigma_u(x)\sigma_d(x) \left[e^{\frac{i}{\sqrt{8}}(\varphi_u - \varphi_d)} + h.c. \right]$ Edge neutral fermion mode

١

Moves charge across

Interference Term =
$$\operatorname{Re} \int_{\tau} e^{iV\tau} \langle \hat{T}_1(\tau) \ \hat{T}_2(0) \rangle$$

Bishara-Nayak

Ising CFT with Boundary

Rosenow, Halperin, Simon, Stern

Rewrite edge as continuum limit of coupled majoranas plus an impurity.

This becomes a quadratic 1d Hamiltonian (of Hilbert type) and with some (substantial) work, can be essentially solved.

What about the even-odd effect?

Overbosch and Wen arXive 2008; Rosenow, Halperin, Simon, Stern PRL 2008, PRB 2009; Bishara and Nayak PRB 2009.

For "odd" to kill interference, lone qp must be decoupled from edge

To see even-odd effect, must have

qp-edge coupling << e*V, T

If a majorana is coupled strongly to the edge, it becomes part of the edge \Rightarrow Nothing encircles it

To observe interference we must assume 3 > 1,2

To see even-odd effect, must have

qp-edge coupling << e*V, T

3 > 1 >> 2

This is probably impossible since 3, 2 are about the same size!

Detailed Electrostatic Simulation (w/ von Keyserlingk)

To observe interference we must assume 3 > 1,2

To see even-odd effect, must have

qp-edge coupling << e*V, T

3 > 1 >> 2

This is probably impossible since 3, 2 are about the same size!

Prediction 2: Even-odd effect should NOT be seen!

Going from even to odd,

if $E_{edge-bulk} >> e^*V$, T zero-mode majorana absorbed into edge

Only see phase slip $(\pm \pi / 4)$ from abelian piece of the qp.

(rough argument:

 $\nu = 1/2$ implies statistical angle $2\pi/2$ for charge e/2 around e/2.

e/4 quasiparticle is only half of this charge, hence quarter of the phase)

 $E_{edge-bulk} \sim e^*V$, T gives not quite $\pi / 4$ and less than full visibility of interference

Overbosch and Wen; Rosenow, Halperin, Simon, Stern; Bishara and Nayak

Predictions: Phase slips of π and $\pi/4$ (and $5\pi/4$)

Histogram of measured phase slips:

<u>Summary</u>

•7/3, Fractional statistics observed in phase slips

- 5/2 more complicated
 - Need qubit splitting to see any interference
 - Strong qp-edge coupling kills even-odd effect
 - Expect π slips associated with qubit flips
 - Expect $\pm \pi/4$ slips associated with qp addition

These results appear in agreement with Kang's data. (In particular evidence for qubit flips looks fairly good)

Quantum Braiding Statistics and Quantum Hall Interferometry

Steven H. Simon

Thank you for Listening

