Fractional Quantum Hall Effect of Lattice Bosons

arXiv:1109.3434; Phys. Rev. Lett. 108, 256809 (2012)

Layla Hormozi

National University of Ireland

Gunnar MollerUniversity of CambridgeSteven H. SimonUniversity of Oxford

Support: NIST/NRC; Marie Curie IIF

Fractional Quantum Hall Effect in Lattice?

Ultracold atomic gasses (usually bosons)

Synthetic magnetic field (rotation, laser-induces fields)

Fractional Quantum Hall Effect in Lattice?

Ultracold atomic gasses (usually bosons) Synthetic magnetic field (rotation, laser-induces fields)

At sufficiently small $v = N / N_{\phi}$ we expect Bosonic versions of fractional quantum Hall states. Cooper et al., '01

> How do the quantum Hall states modify in the presence of a lattice?

> > Laughlin State

Moore-Read State

2D Bosons under Magnetic Field – Lattice

Filling Fraction
$$v = \frac{N}{N_{\phi}}$$
 Flux density $n_{\phi} = \frac{Bd^2}{h/q}$ $0 \le n_{\phi} < 1$

$$n_{\phi} << 1 \rightarrow Effectively the continuum limit$$

Sorensen et al., PRL '05 Hafezi et al., PRA '07

Palmer and Jacksch, PRL '06

 $n_{\phi} \sim p/q \rightarrow Map$ the lattice to a multi-layer model in the continuum limit.

Moller and Cooper, PRL '09 Powell et al., PRL '10

Charged Particles in a Magnetic Field – Single Particle Picture

Continuum

Lattice

Map the lattice near rational n_{ϕ} to a model in the continuum!

Non-interacting System:
$$0 < n_{\varphi} = \varepsilon <<1$$

Palmer and Jacksch, PRL'06

$$H = -J \sum_{\langle ij \rangle} (e^{i\theta_{ij}} c_{i}^{\dagger} c_{j} + hc.) \qquad \theta_{ij} = \int_{i}^{i} \vec{A} \cdot d\vec{l} \qquad \sum_{plaquene} \theta_{ij} = 2\pi\varepsilon$$

$$Iandau Gauge \rightarrow \psi_{k}(x, y) \sim \phi(x) e^{iky}$$

$$\phi(x+1) + \phi(x-1) + 2Cos (2\pi\varepsilon x - k)\phi(x) = -E/J \phi(x)$$

$$\varepsilon <<1 \rightarrow -\partial_{x}^{2}\phi(x) + 2\pi\varepsilon(x - x_{k})^{2}\phi(x) = \widetilde{E}\phi(x) \qquad x_{k} = \frac{k}{2\pi\varepsilon}$$

Non-interacting System:
$$0 < n_{\varphi} = \varepsilon <<1$$

Palmer and Jacksch, PRL'06
 $H = -J\sum_{\langle ij \rangle} (e^{i\theta_{ij}} c_i^{\dagger} c_j + h.c.)$ $\theta_{ij} = \int_i^j \vec{A} \cdot d\vec{l}$ $\sum_{plaquete} \theta_{ij} = 2\pi\varepsilon$ $i \neq \varepsilon$
Landau Gauge
 $\vec{A} = (0, -Bx, 0)$ $H = -\partial_x^2 + 2\pi\varepsilon(x - x_k)^2$ $x_k = \frac{k}{2\pi\varepsilon}$
Ground State $\rightarrow \psi_k(x, y) \sim e^{-\pi\varepsilon(x - x_k)^2} e^{iky} \rightarrow Lowest Landau Level$
Energy Spectrum $\rightarrow E_n = 4J\pi\varepsilon(n + 1/2)$
 $E \int_{\frac{1}{2}} (n + 1/2)\hbar\omega$ $\hbar\omega = 4J\pi\varepsilon$ $E \int_{\frac{2}{2}} \frac{1}{2\pi\varepsilon} \int_{\frac{1}{2}} \frac{1}{2\pi\varepsilon}$

Non-interacting System:
$$n_{\phi} = 1/2 + \varepsilon$$
 $0 < \varepsilon << 1$

Palmer and Jacksch, PRL '06

$$H = -J \sum_{\langle ij \rangle} (e^{i\theta_{ij}} c_i^{\dagger} c_j + h.c.) \qquad \theta_{ij} = \int_i^j \vec{A} \cdot d\vec{l} \qquad \sum_{plaquette} \theta_{ij} = \pi + 2\pi\epsilon$$

$$Iandau \ Gauge \vec{A} = (0, -Bx, 0) \qquad \Rightarrow \psi_k(x, y) \sim \phi(x) e^{iky}$$

$$\phi(x+1) + \phi(x-1) + 2(-1)^3 Cos \ (2\pi\epsilon x - k)\phi(x) = -E/J \phi(x)$$

$$\epsilon <<1 \rightarrow -\partial_x^2 \phi(x) + 2\pi\epsilon(-1)^x (x - x_k)^2 \phi(x) = \widetilde{E} \phi(x) \qquad x_k = \frac{k}{2\pi\epsilon}$$

Non-interacting System:
$$n_{\phi} = 1/2 + \varepsilon$$

Palmer and Jacksch, PRL'06
 $H = -J \sum_{\langle ij \rangle} (e^{i\theta_{ij}} c_i^{\dagger} c_j + h.c.) \qquad \theta_{ij} = \int_{i}^{j} \vec{A} \cdot d\vec{l} \qquad \sum_{plaquette}^{j} \theta_{ij} = \pi + 2\pi\varepsilon \qquad \overrightarrow{n_{\phi}}$
Landau Gauge
 $\vec{A} = (0, -Bx, 0) \rightarrow \psi_k(x, y) \sim \phi(x) e^{iky}$
 $\phi(x+1) + \phi(x-1) + 2(-1)^n Cos (2\pi\varepsilon x - k)\phi(x) = -E/J\phi(x)$
 $\varepsilon <<1 \rightarrow -\partial_x^2 \phi(x) - 2\pi\varepsilon(-1)^x (x - x_{k-\pi})^2 \phi(x) = \widetilde{E}\phi(x) \qquad x_{k-\pi} = \frac{k-\pi}{2\pi\varepsilon}$

Ļ

Non-interacting System:
$$n_{\phi} = 1/2 + \varepsilon$$

Palmer and Jacksch, PRL'06
 $H = -J \sum_{\langle ij \rangle} (e^{i\theta_{ij}} c_i^{\dagger} c_j + h.c.) \quad \theta_{ij} = \int_i^j \vec{A} \cdot d\vec{l} \quad \sum_{plaquette} \theta_{ij} = \pi + 2\pi\varepsilon$
Landau Gauge
 $\vec{A} = (0, -Bx, 0) \rightarrow \psi_k(x, y) \sim \phi(x) e^{iky}$
 $\phi(x+1) + \phi(x-1) + [2(-1)^x \cos(2\pi\varepsilon x - k)\phi(x) = -E/J\phi(x)]$
 $\varepsilon <<1 \rightarrow -\partial_x^2 \phi(x) + 2\pi\varepsilon(-1)^{x+s} (x - x_{k-s\pi})^2 \phi(x) = \widetilde{E}\phi(x) x_{k-s\pi} = \frac{k-s\pi}{2\pi\varepsilon}$
 $\int_{x}^{x} \theta(x) + 2\pi\varepsilon(-1)^{x+s} (x - x_{k-s\pi})^2 \phi(x) = \widetilde{E}\phi(x) x_{k-s\pi} = \frac{k-s\pi}{2\pi\varepsilon}$

Non-interacting System:
$$n_{\phi} = 1/2 + \varepsilon$$

Pather and Jacksch, PRL'00
 $for our d State \rightarrow \psi_{k'}(x, y) \sim F_s(x) e^{-\pi \varepsilon (x - x_{k-s\pi})^2} e^{iky}$
 $f_s(x) = (1 + (-1)^{s+x} A)$ $s = 0, 1 \rightarrow band index$
 $A = \sqrt{2} - 1 + O(\varepsilon)$
 $1 + A$
 $s = 0$
 $s = 1$

Non-interacting System: $n_{\phi} = 1/2 + \varepsilon$

Palmer and Jacksch, PRL '06

Ground State
$$\rightarrow \psi_{k'}(x, y) \sim F_s(x) e^{-\pi \varepsilon (x - x_{k - s\pi})^2} e^{iky}$$

$$x_{k-s\pi} = \frac{k - s\pi}{2\pi\varepsilon}$$

 $F_s(x) = (1 + (-1)^{s+x} A) \qquad s = 0, 1 \rightarrow band index$

Similar to the continuum case but now with a form factor that depends on the band index.

By introducing the band index we can map the energy spectrum near $n_{\phi} = \frac{1}{2}$ to Landau levels where each state is two-fold degenerate.

Interacting System

Interaction

$$\hat{U} = \frac{1}{2} \sum_{k_1 k_2 k_3 k_4} U_{k_1 k_2 k_3 k_4} c_{k_1} c_{k_2} \dot{c}_{k_3} \dot{c}_{k_4}$$
Haldane, '83
Cooper, '08

$$U_{k_1k_2k_3k_4} = \int dr_1 dr_2 U(r_1 - r_2) \psi_{k_1}^*(r_1) \psi_{k_2}^*(r_2) \psi_{k_3}(r_2) \psi_{k_4}(r_1)$$

$$\psi_{k_i}(r_{\alpha}) \leftarrow single-particle basis states at the lowest Landau level$$

We carry out exact diagonalization of the potential for finite size systems.

Contact Interaction $\hat{U} = U \sum_{i < j} \delta(r_i - r_j)$ Continuum Limit $n_{\phi} = \varepsilon << 1$

Single Particle Ground State $\psi_k(x,y) \sim e^{-\pi \varepsilon (x-x_k)^2} e^{iky}$

 $\rightarrow U_{k_1k_2k_3k_4} = U\sqrt{\varepsilon} e^{-\sum_{i< j} (k_i - k_j)^2 / (16\pi\varepsilon)} \delta_{k_1 + k_2, k_3 + k_4} \rightarrow \forall i, j \quad k_i = k_j$

Interacting Case Near $n_{\phi} = 1/2$

Rotating the Basis

This change of basis isolates the effect of ε to two matrix elements.

Similar to the continuum case but now with matrix elements that depend on pseudospin.

Can a pairing process be observed in an incompressible state?

Incompressible States

We carry out exact diagonalization of the potential for finite size systems and identify incompressible states.

incompressibility L = 0 $\nu = \frac{1}{N_{\phi} + \chi}$ Shift N_{ϕ} $\mathcal{E} = 0.1$ 8 $N = N_{\phi} + 2$ 6 4 2 0 8 10 6 12

over a range of flux densities.

Incompressible States

The incompressible state at v = 1 seems to get more robust as ε increases.

Gap closes as ε vanishes!

→ The anomalous terms seem to stabilize the incompressible state.

Trial Wavefunction

Does not prevent particles of opposite pseudospin from approaching one another --- not energetically favorable.
The event is not accident to the prevent of a site of a

• The overlap is not good either.

Trial Wavefunction

Continuum
$$\Psi_L(\{z_i\}) = Pf(\frac{1}{z_i - z_j}) \prod_{i < j} (z_i - z_j) \qquad v = 1$$

$$n_{\phi} = \frac{1}{2} + \mathcal{E} \qquad \Psi(\{z_i\})_{trial} = \prod_{i < j} (z_i^{\uparrow} - z_j^{\uparrow}) Pf(\frac{1}{z_i^{\uparrow} - z_j^{\uparrow}}) \prod_{i < j} (z_i^{\downarrow} - z_j^{\downarrow}) Pf(\frac{1}{z_i^{\downarrow} - z_j^{\downarrow}}) \prod_{i \neq j} (z_i^{\uparrow} - z_j^{\downarrow}) Pf(\frac{1}{z_i^{\downarrow} - z_j^{\downarrow}}) \prod_{i \neq j} (z_i^{\uparrow} - z_j^{\downarrow}) Pf(\frac{1}{z_i^{\downarrow} - z_j^{\downarrow}}) Pf(\frac{1}{z_j^{\downarrow} - z_j^{\downarrow}}) Pf(\frac{1}{z_j^{\downarrow} - z_j^{\downarrow}}) Pf(\frac$$

- Symmetric under exchange of interspecies particles
- Produces the right filling fraction and the right shift
- Pfaffian factor is the real space form of the BCS pairing

$$v = 1$$

 $\chi = 2$

How Good is the Trial Wave function?

$$\Psi(\{z_i\})_{ind} = \prod_{i < j} (z_i^{\dagger} - z_j^{\dagger}) Pf(\frac{1}{z_i^{\dagger} - z_j^{\dagger}}) \prod_{i < j} (z_i^{\dagger} - z_j^{\dagger}) Pf(\frac{1}{z_i^{\dagger} - z_j^{\dagger}}) \prod_{i < j} (z_i^{\dagger} - z_j^{\dagger})$$

$$U_{k'_1 k'_2 k'_3 k'_4} = U\sqrt{\varepsilon} \begin{pmatrix} 1 & \pi\varepsilon \\ 1 & 1 \\ \pi\varepsilon & 1 \end{pmatrix} e^{-\sum_{i < j} (k'_1 - k'_j)^2 / (16\pi\varepsilon)} \prod_{i < j} 0.8 \\ \stackrel{\text{iff}}{\to} 0.6 \\ \stackrel{\text{iff}}{\to} 0.6 \\ \stackrel{\text{iff}}{\to} 0.4 \\ 0.2 \\ 0 \\ 0.05 \\ 0.1 \\ 0.15 \\ 0.2 \\ \varepsilon$$

Excitations

Excitations between the two layers are coupled.

Abelian or Not?

There are two kinds of bosons but only one type of quasihole with two sigma fields that are locked.

The combined excitations are effectively Abelian.

Other Filling Fractions?

$$v = 4/3 \longrightarrow NASS State$$

 $v = 2/3 \longrightarrow 221 State$
 $v = 2 \longrightarrow 2 Copies of CF liquid$

Generalization to $n_{\phi} = p/q + \varepsilon$

Potentially more interesting states but probably harder to realize...

Summary

• Near $n_{\phi} = \frac{1}{2} \longrightarrow$ two-fold degeneracy due to pseudospin.

- Interaction potential suggests pairing of particles with the same pseudospin.
- *At v* = 1 *pairing terms stabilize the groundstate.*
- *Trial wave function for the groundstate of* v = 1 *has excellent overlap with ED result:*

$$\Psi(\{z_i\}) = \prod_{i < j} (z_i^{\uparrow} - z_j^{\uparrow}) \prod_{i < j} (z_i^{\downarrow} - z_j^{\downarrow}) \prod_{i < j} (z_i^{\uparrow} - z_j^{\downarrow}) Pf(\frac{1}{z_i^{\uparrow} - z_j^{\uparrow}}) Pf(\frac{1}{z_i^{\downarrow} - z_j^{\downarrow}})$$

• Pairing terms might be important for other filling fractions, flux densities, other types of interactions, fermions, etc.

LH, G. Moller and S. H. Simon, Phys. Rev. Lett. 108, 256809 (2012)