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Why might spin play a role in quantum Hall physics?

◮ FQHE observed at high fields (several T) low temperatures (∼
0.5K), and in high mobility samples (∼ 106cm2/Vs) e.g.
GaAs heterostructures.

◮ Might expect electron spins are polarised due to high
magnetic field.

◮ But there are two competing energy scales: Zeeman energy
and Coulomb energy (Halperin 1983).

◮ In GaAs at 10T, Zeeman energy ∼ 3K and Coulomb energy ∼
170K.

◮ Can minimise combined energy with a non-polarised
ground state: decrease in Coulomb energy can
compensate for increase in Zeeman energy.



The Role of Spin in Some Fractional Quantum Hall Ground States

Outline

Outline

Experiments: Measuring the Degree of Spin Polarization
Kukushkin’s Experiment: Optical measurements

Theoretical perspective
Composite fermion theory
Numerical calculation
Our results for ν = 2/3, 3/5 and 4/7
Including finite-thickness corrections
Predictions for the 2nd LL

Engineering the NASS state
Comparison Between CF and NASS at ν = 4

7 and ν = 2 + 4
7

Conclusions



The Role of Spin in Some Fractional Quantum Hall Ground States

Experiments: Measuring the Degree of Spin Polarization

Experiments: Measuring the Degree of Spin Polarization

Vary: applied field strength, keeping ν fixed.
Measure: “degree of spin polarization”

γe =
Ne
1/2 − Ne

−1/2

Ne
1/2 + Ne

−1/2

.

◮ γe = 1 → Polarised.

◮ 0 < γe < 1 → Non-polarised.
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Experiments: Measuring the Degree of Spin Polarization

Vary: applied field strength, keeping ν fixed.
Measure: “degree of spin polarization”

γe =
Ne
1/2 − Ne

−1/2

Ne
1/2 + Ne

−1/2

.

◮ γe = 1 → Polarised.

◮ 0 < γe < 1 → Non-polarised.

How:

◮ Tilted-fields (Du et al. ∼1990s)

◮ Optical measurements (Kukushkin et al. ∼1990s)

◮ NMR (Bar-Joseph et al. ∼2000s, 2010s)

◮ Activation gaps (Eisenstein et al. ∼1990s; Pan et al. ∼2010s)

◮ Also: hysteresis; g-factor tuning; compressibility measurements
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Experiments: Measuring the Degree of Spin Polarization

Kukushkin’s Experiment: Optical measurements

Kukushkin’s Experiment (PRL 82 3665 1999)

GaAs-AlxGa1−xAs single heterojunction with δ doped layer of Be.

GaAs

Al0.3Ga0.7As
I

Top Gate

Substrate

L

Vy

W

Vx

B

Be
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Experiments: Measuring the Degree of Spin Polarization

Kukushkin’s Experiment: Optical measurements

Band structure near the interface.

z0

Be ~ 2x10
10

cm
-2

2DEG

Al0.3Ga0.7As GaAs

Chemical Potential

Conduction Band

Valence Band

B

~1.5x10
11

cm
-2  

  6x10
11

cm
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Kukushkin’s Experiment: Optical measurements

Optical measurements I: Photo-excitation

103   105 Hz, 20ns
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Kukushkin’s Experiment: Optical measurements

Optical measurements II: Radiative recombination

Luminescence spectrum
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Kukushkin’s Experiment: Optical measurements

Optical measurements III: Selection rules for optical transitions

J=L+S

-1/2

1/2

-3/2

-1/2

1/2

3/2

2DEG

Be (2p level)

∆
δ

δ

σ− σ+σ+ σ−
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Experiments: Measuring the Degree of Spin Polarization

Kukushkin’s Experiment: Optical measurements

Optical measurements III: Selection rules for optical transitions

J=L+S

-1/2

1/2

-3/2

-1/2

1/2

3/2

2DEG

Be (2p level)

∆
δ

δ

σ− σ+σ+ σ−

Want to find: Ne
1/2 and Ne

−1/2 in the 2DEG. Assumptions:

◮ Transition probabilities only depend on populations of
electrons and holes in contributing levels.

◮ Thermal population of holes in Be levels: Nh
J ∝ exp(−EJ/T )
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Kukushkin’s Experiment: Optical measurements

Optical measurements III: Selection rules for optical transitions

J=L+S

-1/2

1/2

-3/2

-1/2

1/2

3/2

2DEG

Be (2p level)

∆
δ

δ

σ− σ+σ+ σ−

Intensities for left/right circularly-polarised light:

I+ = 3Ne
−1/2N

h
−3/2 + Ne

1/2N
h
−1/2
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−(δ+∆)/T ,
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Kukushkin’s Experiment: Optical measurements
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Experiments: Measuring the Degree of Spin Polarization

Kukushkin’s Experiment: Optical measurements

Degree of circular polarisation given by

γcirc. =
I+ − I−

I+ + I−
.

With
I+ ∝ 3Ne

−1/2e
−(2δ+∆)/T + Ne

1/2e
−(δ+∆)/T ,

I− ∝ 3Ne
1/2 + Ne

−1/2e
−(δ)/T .
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Experiments: Measuring the Degree of Spin Polarization

Kukushkin’s Experiment: Optical measurements

Degree of circular polarisation given by

γcirc. =
I+ − I−

I+ + I−
.

With
I+ ∝ 3Ne

−1/2e
−(2δ+∆)/T + Ne

1/2e
−(δ+∆)/T ,

I− ∝ 3Ne
1/2 + Ne

−1/2e
−(δ)/T .

Determine δ, ∆ by measurement of special cases for small B/T .

◮ Polarised case (Ne
−1/2 = 0 for ν = 3, 5...): γcirc. ≈

3δ
4T + ∆

2T .

◮ Filled LL case (Ne
−1/2 = Ne

1/2 for ν = 2): γcirc. ≈
1
2 +

3(∆+δ)
8T .
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Experiments: Measuring the Degree of Spin Polarization

Kukushkin’s Experiment: Optical measurements

Degree of circular polarisation given by

γcirc. =
I+ − I−

I+ + I−
.

With
I+ ∝ 3Ne

−1/2e
−(2δ+∆)/T + Ne

1/2e
−(δ+∆)/T ,

I− ∝ 3Ne
1/2 + Ne

−1/2e
−(δ)/T .

Determine δ, ∆ by measurement of special cases for small B/T .

◮ Polarised case (Ne
−1/2 = 0 for ν = 3, 5...): γcirc. ≈

3δ
4T + ∆

2T .

◮ Filled LL case (Ne
−1/2 = Ne

1/2 for ν = 2): γcirc. ≈
1
2 +

3(∆+δ)
8T .

In general: Measure γcirc. and use known δ,∆,B and T to
calculate Ne

−1/2/N
e
1/2, and hence γe .
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Experiments: Measuring the Degree of Spin Polarization

Kukushkin’s Experiment: Optical measurements

Results from Kukushkin et al. PRL 82, 3665 (1999).

EZ

B

EZ

B



The Role of Spin in Some Fractional Quantum Hall Ground States

Theoretical perspective

Experiments: Measuring the Degree of Spin Polarization
Kukushkin’s Experiment: Optical measurements

Theoretical perspective
Composite fermion theory
Numerical calculation
Our results for ν = 2/3, 3/5 and 4/7
Including finite-thickness corrections
Predictions for the 2nd LL

Engineering the NASS state
Comparison Between CF and NASS at ν = 4

7 and ν = 2 + 4
7

Conclusions



The Role of Spin in Some Fractional Quantum Hall Ground States

Theoretical perspective

Theoretical perspective

FQHE wavefunctions ψ are not known exactly, so we need
variational trial wavefunctions:

◮ only consider ground state wavefunctions.

◮ require wavefunctions where spin can be incorporated.

◮ wavefunctions correspond to an ensemble of electron
configurations ρN({ri}) ∝ |ψ {ri} |2 that minimises the
combined energy (Coulomb + Zeeman).
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Theoretical perspective

Theoretical perspective

FQHE wavefunctions ψ are not known exactly, so we need
variational trial wavefunctions:

◮ only consider ground state wavefunctions.

◮ require wavefunctions where spin can be incorporated.

◮ wavefunctions correspond to an ensemble of electron
configurations ρN({ri}) ∝ |ψ {ri} |2 that minimises the
combined energy (Coulomb + Zeeman).

Composite fermion (CF) theory is one possible framework

J. K. Jain, Composite Fermions, (CUP, 2007).

K. Park and J. K. Jain, Solid State Commun. 119, 291 (2001).
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Theoretical perspective

Composite fermion theory

CF theory overview

◮ Take an IQHE wavefunction for N fermions in n filled LLs: A
Slater determinant of single-particle orbitals Φn

j (zi)

Det[Φn
j (zi )].

◮ Turn it into a FQHE trial wavefunction by multiplying by a
Jastrow factor

∏

l<m

(zl − zm)
2 × Det[Φn

j (zi)].

◮ But, this is not an analytic function. Obtain LLL trial
wavefunction by projecting out the analytic part

2CFn = P̂LLL

{

N
∏

l<m

(zl − zm)
2Det[Φn

j (zi )]

}

.

◮ Filling factor is ν = n/(2n ± 1) n ∈ Z.
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Theoretical perspective

Composite fermion theory

CFs with spin

◮ N↑ spin-up and N↓ spin-down fermions could occupy n↑ and
n↓ independent effective LLs

2CF(n↑:n↓) = P̂LLL

{

N
∏

l<m

(zl − zm)
2Det[Φ

n↑
j (z↑i )]Det[Φ

n↓
j (z↓i )]

}

.

◮ Filling factor is ν = (n↑ + n↓)/(2(n↑ + n↓)± 1) n↑, n↓ ∈ Z.

◮
2CF(n↑:n↓) has “degree of spin polarisation”

γe =
n↑ − n↓

n↑ + n↓
.
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Theoretical perspective

Composite fermion theory

CFs with spin

◮ N↑ spin-up and N↓ spin-down fermions could occupy n↑ and
n↓ independent effective LLs

2CF(n↑:n↓) = P̂LLL

{

N
∏

l<m

(zl − zm)
2Det[Φ

n↑
j (z↑i )]Det[Φ

n↓
j (z↓i )]

}

.

◮ Filling factor is ν = (n↑ + n↓)/(2(n↑ + n↓)± 1) n↑, n↓ ∈ Z.

◮
2CF(n↑:n↓) has “degree of spin polarisation”

γe =
n↑ − n↓

n↑ + n↓
.

◮ Trial wavefunctions with total of n = n↑ + n↓ filled effective
LLs describe the same ν, but with different possible net spin
polarisations.
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Theoretical perspective

Composite fermion theory

Compare CF trial wavefunctions at the same ν, e.g. at ν = 2/3:

- Increasing B

◮ Each CF wavefunction associated with a different Coulomb
energy. Difference in Coulomb energy between two states is
∆EC per electron.

◮ Difference in Zeeman energy per electron = proportion flipped
spins × Zeeman energy per spin EZ .
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Theoretical perspective

Composite fermion theory

Compare CF trial wavefunctions at the same ν, e.g. at ν = 2/3:

- Increasing B

◮ Each CF wavefunction associated with a different Coulomb
energy. Difference in Coulomb energy between two states is
∆EC per electron.

◮ Difference in Zeeman energy per electron = proportion flipped
spins × Zeeman energy per spin EZ .

◮ Condition for a spin transition to occur gives critical Zeeman
energy:

ECrit
Z = n∆EC .
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Theoretical perspective

Composite fermion theory

Summary of CF theory predictions

As B changes expect states with fixed ν and different γe .

n = 2 (ν = 2
3 or 2

5)

n = 3 (ν = 3
5 or 3

7)

n = 4 (ν = 4
7 or 4

9)
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Theoretical perspective

Composite fermion theory

Qualitative interpretation...

1/3

Spin-polarisation 

plateau
Spin transitions

EZ 

B

EZ
Crit

ECrit
Z = n∆EC

1/3

��

�
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Theoretical perspective

Numerical calculation

How do we calculate ∆EC?

◮ Calculate Coulomb energy for each trial wavefunction at the
same ν e.g. at ν = 2/3 for 2CF−2 and for 2CF(−1,−1).

◮ Difference between the two values gives ∆EC .
◮ Prediction for critical Zeeman energy from ECrit

Z = n∆EC .
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Theoretical perspective

Numerical calculation

How do we calculate ∆EC?

◮ Calculate Coulomb energy for each trial wavefunction at the
same ν e.g. at ν = 2/3 for 2CF−2 and for 2CF(−1,−1).

◮ Difference between the two values gives ∆EC .
◮ Prediction for critical Zeeman energy from ECrit

Z = n∆EC .

Coulomb energy associated with an electron configuration:

〈ψ|V |ψ〉 =

∫

dr1...drN |ψ({ri})|
2
V (r1, ...rN)

where V (r1, ...rN) Coulomb interaction + neutralising background.

Calculate Coulomb energy by Monte Carlo integration, with sample
configurations ρN({ri}).

◮ Evaluate for finite sized systems
◮ Extrapolate to the thermodynamic limit.
◮ Eliminate boundary effects by using spherical geometry.
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Theoretical perspective

Numerical calculation

Relation to previous work

◮ K. Park and J. K. Jain 2001: Calculated ∆EC for “positive
effective field” states at ν = 2/5, 3/7 and 4/9.

◮ G. Möller and S. H. Simon 2005: Technique to project the
“negative effective field” CF wavefunctions.

◮ Problem: “Negative effective field” states at ν = 2/3, 3/5 and
4/7 are an order of magnitude more difficult to evaluate.
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Theoretical perspective

Numerical calculation

Relation to previous work

◮ K. Park and J. K. Jain 2001: Calculated ∆EC for “positive
effective field” states at ν = 2/5, 3/7 and 4/9.

◮ G. Möller and S. H. Simon 2005: Technique to project the
“negative effective field” CF wavefunctions.

◮ Problem: “Negative effective field” states at ν = 2/3, 3/5 and
4/7 are an order of magnitude more difficult to evaluate.

Our work: PRB 85, 245303 (2012)

◮ We designed an efficient algorithm to evaluate the “negative
effective field” wavefunctions numerically.

◮ We calculated ∆EC for the “negative effective field” case.
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Theoretical perspective

Our results for ν = 2/3, 3/5 and 4/7

Our results for ν = 2/3, 3/5 and 4/7

PRB 85, 245303 (2012)
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Theoretical perspective

Our results for ν = 2/3, 3/5 and 4/7

Comparison with experiments

PRB 85, 245303 (2012)
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Theoretical perspective

Our results for ν = 2/3, 3/5 and 4/7
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Theoretical perspective

Our results for ν = 2/3, 3/5 and 4/7

Park and Jain’s Results for ν = 2/5, 3/7, 4/9...
K. Park and J. K. Jain Solid State Commun. 119 291, (2001)
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Theoretical perspective

Including finite-thickness corrections

Finite-thickness corrections

◮ In a real system the wavefunctions are not perfectly 2D! They
have some finite extent, d , out of the plane.

d

◮ d depends on the particular experimental set-up. Also d=d(B)
through magnetic length units.

◮ We model finite thickness effects with a modified potential for
the 2D system; a softened Coulomb interaction e.g.
Fang-Howard potential for a triangular well.
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Theoretical perspective

Including finite-thickness corrections

Our results

PRB 85, 245303 (2012)
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Theoretical perspective

Predictions for the 2nd LL

Predictions for the 2nd LL

◮ What about CF states at filling factor ν = νLLL + 2 e.g. 8/3?

◮ Calculate associated Coulomb energy using LLL trial
wavefunctions and an effective potential

◮ 2nd LL with Coulomb = LLL with effective potential
C. Töke et al. 72, 125315 (2005)
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Theoretical perspective

Predictions for the 2nd LL

Predictions for the 2nd LL

◮ What about CF states at filling factor ν = νLLL + 2 e.g. 8/3?

◮ Calculate associated Coulomb energy using LLL trial
wavefunctions and an effective potential

◮ 2nd LL with Coulomb = LLL with effective potential
C. Töke et al. 72, 125315 (2005)

Predictions of CF theory

◮ Spin transition occurs for ν = 8/3 with ECrit
Z = 0.0048(6) e

2

ǫl0
.

◮ No spin transitions at ν = 13/5 or ν = 18/7
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Theoretical perspective

Predictions for the 2nd LL

Predictions for the 2nd LL

◮ What about CF states at filling factor ν = νLLL + 2 e.g. 8/3?

◮ Calculate associated Coulomb energy using LLL trial
wavefunctions and an effective potential

◮ 2nd LL with Coulomb = LLL with effective potential
C. Töke et al. 72, 125315 (2005)

Predictions of CF theory

◮ Spin transition occurs for ν = 8/3 with ECrit
Z = 0.0048(6) e

2

ǫl0
.

◮ No spin transitions at ν = 13/5 or ν = 18/7

Recent observation

◮ Spin transition observed at ν = 8/3 with ECrit
Z ∼ 0.006 e2

ǫl0
(W. Pan et al. , PRL, 2012)
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Engineering the NASS state

The Non-Abelian Spin Singlet (NASS) State

What other ground state trial wavefunctions have been proposed?

◮ Moore and Read: FQH trial wavefunctions can be written as
conformal blocks. See Nucl. Phys. B 360, 362 (1991).

◮ E. Ardonne, and K. Schoutens: NASS state: a spin singlet
state constructed from conformal blocks of Gepner
parafermions. See PRL. 82, 5096–5099 (1999).

◮ Conformal field theory properties can be used to predict
behaviour of quasi-particle excitations: NASS quasi-particle
excitations exhibit non-abelian braiding statistics.
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Engineering the NASS state

◮ At filling ν = 4
7 the co-ordinate version of the NASS is

ψNASS =
∏

i<j

(zi − zj)Ŝz↑,z↓ [φ]

where

φ =

2
∏

a=1





N/4
∏

i<j

(

z
↑a
i − z

↑a
j

)2
N/4
∏

i<j

(

z
↓a
i − z

↓a
j

)2
N/4
∏

i ,j

(

z
↓a
i − z

↑a
j

)





K. Schoutens, E. Ardonne, and F.J.M van Lankvelt, cond-mat/0112379 (2001)

◮ Comparable CF trial wavefunction at ν = 4
7 is 2CF(−2,−2).

◮ Evaluate suitability of ψNASS against competing 2CF(−2,−2)

by comparing Coulomb energy.
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Engineering the NASS state

Comparison Between CF and NASS at ν = 4
7
and ν = 2 + 4

7

Comparison Between CF and NASS

Results so far... 2CF(−2,−2) is more energetically favourable for

◮ pure Coulomb interaction at ν = 4
7 .

◮ Fang-Howard potential at ν = 4
7 .

◮ pure Coulomb interaction at ν = 2 + 4
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Comparison Between CF and NASS

Results so far... 2CF(−2,−2) is more energetically favourable for

◮ pure Coulomb interaction at ν = 4
7 .

◮ Fang-Howard potential at ν = 4
7 .

◮ pure Coulomb interaction at ν = 2 + 4
7 .

Does not look promising!

But there are other options to try...

◮ bilayer potentials.

◮ potential due to capacitor plates.

◮ take into account LL mixing.
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Conclusions

◮ Established record of experimental evidence for significant role
of spin in some FQHE ground states.

◮ CF theory conjectures trial wavefunctions describing FQH
states with spin — qualitatively matches some experimental
observations, but not all.

◮ CF theory prediction for the critical Zeeman energy compares
moderately well with the experimental data — some aspects
of the data remain unexplained.

◮ An observation of extensive non-polarized behaviour at
ν = 2 + 2/3, 2 + 3/5 or 2 + 4/7 would suggest ground state
wavefunctions not predicted by CF theory.

◮ At ν = 4/7 and ν = 2 + 4/7 the NASS state might not
provide the most energetically favourable trial wavefunction.
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