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“topological phase”

“topological”’ quantity =

<> gapped phase Eqc. > 0 (massive)

invariant as long as Eex. > 0
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Topologically non-trivial phases:

quadratic

Hamiltonian

o topol
(topological insulators+superconductors) (—|—ptr?5rct)):’§}c/>ns)

free particles + topology

— well-known methods are available

interacting particles )
3P difficult

(FQHE, 777) problem

— requires new methods



possible (difficult)
numerically

privileged method (at least for FQHE):
model wave function
ground state + excitations

—— a powerful Ansatz: use conformal blocks as w.f.
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Moore-Read construction: what about the edge
excitations?

_ diagonalization edge states
tOpOIOgIICBI Phase EEEEEEEEEEEEEER ) (massless theory)
(Hamiltonian) — 1+41d CFT
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Plan of the talk

> the space of edge excitations, and consequence of the
of bulk correlations
(a.k.a “generalized screening hypothesis”)

> real-space entanglement spectrum

» some remarks about trial wavefunctions



Part I. Edge state inner products



FQHE: trial wave functions as conformal blocks

» N particles in the LLL
U(z1,. .., 2zN)
analytic in the z;'s, and antisymmetric (Fermi statistics)
» Moore-Read: trial wave function given by conformal block
P(z1,...,2zn) = (a(zn) ... a(z1))

a(z3)
a(fl) (.2) 2(54)

chiral CFT



Edge states (1)

> the ground state w.f. is defined as

Vgs(zi,...,zy) = (a(z1) ... a(zn))

> to construct the edge states w.f., we insert contour integrals

(ot oty f o) o) ... oz )

¢j(w;) is in the chiral algebra generated by a(w), af(w)

chiral CFT



Edge states (1)

> the ground state w.f. is defined as

ng.s(zl, Ce 7ZN) = (a(zl) ce a(zN)>

» in other words (radial quantization):

(dual) CFT Hilbert sp. — edge theory Hilbert sp.

<V| — w<v| = (V ’8(21) .. .a(zN)] 0>
A

Laa) az)

(v| Tmmeee .= -

chiral CFT



Edge states (1)

> the ground state w.f. is defined as

VYgs(zi,...,zn) = (a(z1) ... a(zn))

» in other words (radial quantization):

(dual) CFT Hilbert sp. —  edge theory Hilbert sp.
(v| = (vl]a(z1)...a(zn)| 0)

» straightforward generalization of the previous constructions of
edge states for specific w.f.
an example (Laughlin):

CPRTCIED SEd SR | CRR

k<l



Screening hypothesis (1)
1 N

_ VZ,',E,' 2 . 2

Zv = 3 /C I_|_|1e Gz (21, ..., 2n)|

[Y(z1,. .., zv)? = (a(z1) ... a(zn)) x (3(z1) ... 3(zZn))

_CFT
3(z) 3@ 2



Screening hypothesis (I1)

Zy = & [T1eV@&)d?z; (a(z1) ... a(zn)) x (3(z1) ... 3(zy))

Screening No screening

some long-range correl.

short-range correl. only = NOT a gapped
phase of matter



Screening hypothesis (ll-bis)

> plasma mapping [Laughlin, 1983]
» fractional statistics [Arovas, Schrieffer, Wilczek, 1984]

> screening hypothesis and massive fixed points [Nayak, Wilczek,
1996]

» discussions about Haldane-Rezayi state, hints about long range
correlations [Read and Green, 2000

more recently:
» generalized screening = “holonomy = monodromy” [Read, 2009]

> construction of a plasma mapping for the MR (Pfaffian) w.f.
[Bonderson, Gurarie, Nayak, 2011] and other states [Bonderson et
al., unpublished| + numerical evidence for screening phase

» in this talk: assume short-rangeness of bulk correlations, and deduce
nice properties



Screening hypothesis (ll-bis-bis)

<3T(W1) 31 (W3) ey 22VDIDE 2 giro fg,ay(@(z)+@)dzz>




Edge states (II)

» quantum-mechanical inner product

(ot 1900 = g [ T B () i ()
(| | P(wel Zy N! vt [BRLUIANEY (v \ 140

> P ({zi}) [ ({2H)] = (vl a(z1) .. 10)(v] a(z1) ... [0)




Edge states (II)

» quantum-mechanical inner product

(Yl |90} = /CNHede, (2] D ((21)

oo ({2}) [ ({2 1)]" = (2l a(z1) ... [0)(vi] a(z1) ... |0)



Edge states (II)

» quantum-mechanical inner product

(ot 190)) = 5 [ TT ¥ oG] v ()
(v (o] Zy N ov i ¥ (va] i (v i

> P, ({2}) [P (2] = (vela(z1)...[0) (vi] a(z1) ... [0)

-
e
9"
o
n

(va| i [v)

chiral CFT .

» Consequence: <<¢<V1| ’¢<V2| >> = (va|v1) when N — oo.



Bulk/edge correspondence

Short-rangeness of bulk correlations implies that

(dual) CFT Hilbert sp. —  edge theory Hilbert sp.
inner product (.|.) inner product ({.].))

(vl — Y = (v]a(z1). .- a(zn)]0)

is an isometric isomorphism in the thermodynamic limit:

(il [Yga1)) = (v2|n)

(for the Laughlin w.f., similar argument appeared first in
which Parsa explained in his talk)



Isometric isomorphism: an example
MR (Pfaffian) wavefunction: [];_(z; — z;)? Pf{ L }

Zk—Z|

» U(1) excitations: multiplication by

L
Sn_ﬁ§4

» fermionic excitations: replace Pf{ L } by

Z—2z)
1 1 1
n—3s np—3 np—3
0 0 7z ? zy P zy
no—3 np—x np—35
0 0  z" % z 2 v
1 1
Mm=3 273 1 1
Pf Z]. Z]. 0 Z1—22 Z1—2ZN
_m=3 n2_% -1 0
2 2 z1—2
1
ZN—1—2N
1 1
T P -1 -1 0




Isometric isomorphism: an example

We compute the overlaps with Monte-Carlo: U(1) sector:

[ [ MC(N=100) ] analytic |
((V]S[S [W) 1.002 (hJ_1)=1
(V]SS [v)) 1.993 (hl_5) =2
(W] (57)25, | w)) 0.005 HI2 ) =0
(V[ (ST2(5)" ) 1.995 BRy) =2
(V1 (32527 [ W) 7.934 BP,) =8
fermionic sector:
[ [ MC (N =100) ] analytic (N — oo)
((\U\FI ;Fl 3 | wy) 1.124 <7¢’1¢§”¢’,37¢’,1 =1
2°2 2'2 2 2 2 2
((W|FY sF1 5 W) 1.151 YivsY s 1) =1
2°2 2’2 2 2 2 2
(VIF; 5F3 5 W) 1.189 (wyv5v_ v 3)=1
2°2 2’2 2 2 2 2
(W|F} ;F3 5|W) -0.001 <w§w§wizw7l =0
2'2 2’2 2 2 2 2
(WIFI 35 7F1L 35 71V) 1.381 V)1¢§¢§wzw,zw,§¢,§¢,;> =1
2°2°2°2 2’ 2°'2 2 2 2 2 2 2 2




Subleading corrections

» for infinite density, conformal b.c.
a(z) = a'(2)

> idea: at finite-density, one should
perturb this b.c. by local operators

Scrr — Scrr + Z Aa / dz ¢,(2)

» coupling scales like A, Z’érl
> relevant h, < 1, marginal h, =1

> irrelevant h, > 1



Subleading corrections

» for infinite density, conformal b.c.
3(z) = a'(2)

> idea: at finite-density, one should
perturb this b.c. by local operators

Scrr — Scrr + Z Aa / dz ¢,(2)

chiral CFT R

e_spert. — e_z)\afdz ¢a(z)

() [P )y = (va| e7%Per |vy)



Subleading corrections

An example: for the Laughlin wavefunction

A3 E22i8 3(2)+
V-3 EErACOUOT-

which gives the corrections to scaling

A4 dz z3( 0%0)(2)+. ..

Spert. =

A
(Wl b)) = (v2lw) +W3<V2\ > Jkdpkip )

k,p>0

3/2 VﬂZ k —1 ka’V2>+
k>0

Note: using the machinery from , it is possible (although,
painful) to recover this formula. Their interpretation of this result, however, seems to

be different (the ¢ < 1 story).



Part Il. Entanglement spectrum



Application to the entanglement spectrum (1)

» what's the Schmidt decomp. of ¢gs(z1,...,2n) ?
Ve = 30X 2 |2)) | 2)
Na=0 n

» we focus on Real Space Partition



Application to the entanglement spectrum (II)

» divide the N = N4 + Np coordinates z;'s into two sets

Z15- 52Ny W1 = ZNg+15 -+ -5 WNg = ZNy+Np

> because 145 is a conformal correlator, one has

Ves({zi} {wi}) = (a(z1)--alzw,) a(wi)..a(wg))
= > _{a(z1)--a(zn,)| va) (va |a(w1)..a(wn))

vn)

= > Gz} D ({wed)

[vn)



Application to the entanglement spectrum (II)
» divide the N = Ny + Npg coordinates z;'s into two sets

215+ 52Ny W1 = ZNp+1s -+ -5 WNg = ZNp+Npg

> because 145 is a conformal correlator, one has
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Application to the entanglement spectrum (II)

» divide the N = Ny + Np coordinates z;'s into two sets

Z1,. -5 2N, W1 = ZNj41, - - -5 WNg = ZNy+Np

> because 145 is a conformal correlator, one has

Ve.s({z}, {m}) = (a(z1)-.a(zn,) a(wi)..a(wi,))
= Z (a(z1).-a(zn,)| va) (va|a(wi)..a(wng))

vn)

= S YUz} P, ((wed)

[Vn)

> we get the entanglement spectrum using the overlaps

((un] |Gl )Y = (Vi €720 | V)




Application to the entanglement spectrum (llI)

This proves the so-called “scaling property”

the entanglement spectrum is the spectrum of the Hamiltonian
of a perturbed by operators

VF

—logpa = aR — Yiopo + =

of the entanglement
Hamiltonian Heg — log pa

L

4 46 48 50 52 54 56 - z

T T T T T T T T T
15 20 25 30 35 40 45 50 55




Part Ill. Remarks: trial states, entanglement, and
correlators in local field theories



Question:

“Why should FQHE wavefunctions have anything to do
with conformal blocks?"



Trial wave functions in 1d

In 1d, implies that the ground-state
can be approximated by a

’LZJ(Sl, ey SN) = <V‘ M(S]_)M(S2) . M(SN) |U>

where M(s;) is a D x D matrix, and |u), |v) are D-dim vectors



Trial wave functions in 1d

In 1d, implies that the ground-state
can be approximated by a

Y(s1y...,sn) = (v| M(s1)M(s2) ... M(sp) |u)

where M(s;) is a D x D matrix, and |u),|v) are D-dim vectors
< S1 52 53 SN-1 SN >
® — &6 —/ &6 —/ & — & — & — ©

[M(s)]ab = @ =

on
[
o




Entanglement

Example: AKLT chain (spin 1) is an MPS with D = 2

/\/\/\/\
\/\/\/\/

A B

» Schmidt decomposition for bipartition Ha ® Hpg
AKLT)) = M| @ —CD—ED)) o |@D>—>— - )
| —ED-ED)) o | @@ )



Entanglement

» the Schmidt rank is always < D for an MPS

D
[MPS)) = 3" X |A) @ B)

huge reduction compared to min(dimH 4, dimHpg)

» follows from inserting

D
1= |vi) (vl
i=1

in Y(st,...,sn) = (v|A(s1) ... A(sn, )A(SNy+1) - - - A(sw) |u)



Matrix Product States (MPS)

Ideas in the air, from the Quatum Information community:

» Hilbert space of a many-body system is huge

» however, physical states are far from generic: they have
short-range correlations only (for gapped phases of matter)

> states with short-range correlations can be approximated with
arbitray accuracy by MPS with controlable D

» MPS are optimal, in the sense that they are minimally
entangled

> these ideas are supported by several theorems

» recently, MPS played a key role in classification of 1d
topological phases



Trial states for mobile particles in 2d

| b
tensor with 4 indices: T2y = — ho particle
la
| b
1 _ .
Toped =71 @ [ one particle
ld

w(Pl, SRR pN) = Z H Taeﬁbpcpdp

edge ind. plaq.

“Tensor Product State”




Trial states for mobile particles in 2d

Now,

» relabel the edge indices, a, b, c,d — ¢(e)

_ 0
> alp, o] =108 T e yo(e)o(es)p(en)

Tl
> write V[p, S0] — g(el)w(ez)w(%)sﬂ(ez;)

w(e1)w(e2)w(e3)w(eq)

Y(p1,...,pn) =

Z Vip1, ¢]

p(e) conf.

ce V[pN,(p] H e"[

plag.



Trial states for mobile particles in 2d

Now,

» relabel the edge indices, a, b, c,d — ¢(e)

_ 0
> o[p,¢] = log Tgo(el)tp(GQ)GD(e3)<P(e4)

1
T o(en)pler)oles)e(ea)

> write V[p,¢] = 55

w(e1)w(e2)w(e3)e(eq)

1/}(P1, s 7pN) =
> Vip1¢l... Vipw, gle’l¥]
p(e) conf.

with  S[e] = Y olp, ¢]

plag.




Trial states for mobile particles in 2d

Tensor Product State for particles on a lattice:

¢(P17 .. ‘7pN) =
> Vipnel. . View, gle’!
p(e) conf.

® K/J(Xl,...,XN):

w | [Pl Vet Viebw)] S




Main message: a continuous Tensor Product State
is a correlator of ina

Less locality in the field theory means more entanglement for the
Tensor Product State. Looking at correlators of local operators in
a scale-invariant theory is a way of finding optimally entangled trial
states.



Summary
» The use of conformal correlators as wavefunctions is

Ctis . Moreover, a scale-invariant theory (in
particular, a CFT) leads to minimally entangled trial states.

» For these states, provided short-rangeness of bulk correlators,
there is an between the physical space of edge states
and the auxiliary space when N — oo

() |l ) 0 (velv)

» This follows from the CFT outside the droplet, which has a
conformal boundary condition (+local perturbations)

3(z) = al(2)

» The short-rangeness of bulk correlators implies that the
entanglement Hamiltonian is local along the cut.

Thank you.



