Evidence of anisotropic Kondo coupling in nanostructured devices

Luiz Nunes de Oliveira and Krissia Zawadzki University of São Paulo

Stockholm, 19 September 2012

Nanostructured devices

Elementary geometries

• Single electron transistor

• V_G controls dot occupation n_d

Side-coupled device

Coulomb blockade

• Conduction only when n_{dot} is a half-integer

Coulomb blockade

• Conduction only when n_{dot} is a half-integer

Kondo effect

• Coulomb blockade can be lifted at very low T

 $-\tilde{\epsilon}_0 = 0.00$

10-1

 $T/T_{\rm K}$

10⁰

101

10-2

- Conduction spins screen moment
- Screening allows conduction

Outline of the talk

Introduction

- More recent experimental results
- Theory
- Theory vs. experiment and a puzzle
- Conclusions

Ten years after 1998

Theory Single-electron transistor

Theory Side-coupled device

Anderson model

•
$$H = \sum_{k} \epsilon_{k} n_{k} - \frac{U}{2} (n_{d\uparrow} - n_{d\downarrow})^{2} + V_{g} n_{d} + V \sum_{k} (c_{k}^{\dagger} c_{d} + H. c.)$$
•
$$V_{G} \neq 0$$

$$G = \alpha G_{S} \left(\frac{T}{T_{K}}\right) + \beta \left[1 - G_{S} \left(\frac{T}{T_{K}}\right)\right] = Seridonio \text{ et al.,}$$
EPL **86**, 67006(2009).
•
$$G(T \ll T_{K}) = \alpha = \kappa \mathcal{G}_{2} \sin^{2} \left(\frac{\pi n_{LT}}{2}\right) \equiv G_{FL}$$
•
$$G(T \gg T_{K}) = \beta = \kappa \mathcal{G}_{2} \sin^{2} \left(\frac{\pi n_{HT}}{2}\right) \equiv G_{LM}$$

Anderson model

•
$$H = \sum_{k} \epsilon_{k} n_{k} - \frac{U}{2} (n_{d\uparrow} - n_{d\downarrow})^{2} + V_{g} n_{d} + V \sum_{k} (c_{k}^{\dagger} c_{d} + H. c.)$$
•
$$V_{G} \neq 0$$

$$G = \alpha G_{S} \left(\frac{T}{T_{K}} \right) + \beta \left[1 - G_{S} \left(\frac{T}{T_{K}} \right) \right]$$

$$F = 1 - G_{S} \left(\frac{T}{T_{K}} \right)$$

$$F = 1 - G_{S} \left($$

•
$$G(T \gg T_K) = \beta = \kappa \mathcal{G}_2 \sin^2(\frac{\pi n_{HT}}{2}) \equiv G_{LM}$$

•
$$G\left(\frac{T}{T_{K}}\right)$$
 maps linearly onto $G_{S}\left(\frac{T}{T_{K}}\right)$
 $G\left(\frac{T}{T_{K}}\right) = G_{S}\left(\frac{T}{T_{K}}\right) G_{FL}$
 $+ \left[1 - G_{S}\left(\frac{T}{T_{K}}\right)\right] G_{LM}$
 $G\left(\frac{2e^{2}}{h}\right)$
 $G\left(\frac{2e^{2$

= -204.5 mV= 92mK G_{FL}

•
$$G\left(\frac{T}{T_{K}}\right)$$
 maps linearly onto $G_{S}\left(\frac{T}{T_{K}}\right)$
 $G\left(\frac{T}{T_{K}}\right) = G_{S}\left(\frac{T}{T_{K}}\right) G_{FL}$
 $+ \left[1 - G_{S}\left(\frac{T}{T_{K}}\right)\right] G_{LM}$
 $G\left(\frac{2e^{2}}{h}\right)^{0.6}$
 $G\left(\frac{2e^{2}}{h}\right)^{0.6}$

• High (LM) and low (FL) temperaturas

• High (LM) and low (FL) temperaturas

• Results for 34 V_G 's

- Anderson model describes experimental data very well
 - Thanks to universality
 - There are perturbations outside the scope of the model
- Must allow for partial screening at high T
 - Anisotropic Kondo coupling?