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FIG. 3. Conductance versus temperature for various values of
e0 on the right side (a) and left side (b) of the left-hand peak
in Fig. 2.

where T 0
K is taken to equal TK�

p
21�s 2 1 so that

G�TK� � G0�2. For the appropriate choice of s, which
determines the steepness of the conductance drop with
increasing temperature, this form provides a good fit to
numerical renormalization group (NRG) results [13] for
the Kondo, mixed-valence, and empty orbital regimes,
giving the correct Kondo temperature in each case. The
parameter s is left unconstrained in the fit to our data, but
its fit value is nearly constant at 0.20 6 0.01 in the Kondo
regime, while as expected it varies rapidly as we approach
the mixed-valence regime [Fig. 3(b)]. The expected value

FIG. 4. The normalized conductance G̃ � G�G0 is a univer-
sal function of T̃ � T�TK, independent of both ẽ0 and G, in
the Kondo regime, but depends on ẽ0 in the mixed-valence
regime. Scaled conductance data for ẽ0 � 21 are compared
with NRG calculations [13] for Kondo (solid line) and mixed-
valence (dashed line) regimes. The stronger temperature de-
pendence in the mixed-valence regime is qualitatively similar
to the behavior for ẽ0 � 20.48 in Fig. 3(b).

of s in the Kondo regime depends on the spin of the
impurity: s � 0.22 6 0.01 for s � 1�2.
Using the values of G0 and TK extracted in this way we

confirm that G̃ is universal in the Kondo regime. Figure 4
shows G̃�T̃ � for data such as those of Fig. 3 for various
values of ẽ0 � 21 (on the left peaks of Fig. 2). We have
also included data from the same SET, but with G reduced
by 25% by adjusting the point-contact voltages. The data
agree well with NRG calculations by Costi and Hewson
(solid line) [13].
In the mixed-valence regime it is difficult to make a

quantitative comparison between theoretical predictions
and our experiment. Qualitatively, in both calculation and
experiment, G̃�T̃ � exhibits a sharper crossover between
constant conductance at low temperature and logarithmic
dependence at higher temperature in the mixed-valence
regime than in the Kondo regime (see Fig. 4) [13].

FIG. 5. (a) Fit values of TK for data such as those in Fig. 3
for a range of values of e0 [22]. The dependence of TK on
e0 is well described by Eq. (1) (solid line). Inset: Expanded
view of the left side of the figure, showing the quality of the fit.
(b) Values of G0 extracted from data such as those in Fig. 3 at
a range of e0. Solid line: G0�e0� predicted by Wingreen and
Meir [4]. Gmax � 0.49e2�h for the left peak, and 0.37e2�h for
the right peak.

5227

Goldhaber-Gordon et al.,
PRL 81, 5225 (1998)



Outline of the talk

Introduction

More recent experimental results

Theory

Theory vs. experiment and a puzzle

Conclusions



Ten years after 1998

current

VG

Grobis et al, PRL 100, 246601 (2008).

conductance G ! dI=dV using standard lock-in tech-
niques, with an rms modulation bias of 1 !V at 337 Hz.
The dot is cooled in the mixing chamber of an Oxford
Instruments Kelvinox TLM dilution refrigerator with a
base electron temperature of 13 mK [20].

At base temperature, the Kondo effect produces a char-
acteristic enhancement of conductance through the quan-
tum dot at odd occupancy (""0, "0 #U > !), as seen in
Fig. 1. The couplings of the dot to its two leads are tuned to
maximize TK while keeping the two couplings nearly
equal. The saturation of conductance at a value near
1:75e2=h throughout the middle of the Kondo plateau
["209 mV<VG <"199:5 mV in Fig. 1(c)] confirms
that Tbase $ TK and indicates that the coupling asymmetry
is around 2:1 [2]. Conductance as a function of source-
drain bias in the Kondo plateau shows a narrow peak
centered at zero bias, known as the Kondo peak [Fig. 1(b)].

As the temperature increases from 13 to 205 mK the
overall Kondo conductance decreases [Figs. 1(b) and 1(c)].
Previous measurements found the temperature evolution of
linear conductance G%T; V ! 0& to be well described by an
empirical Kondo (EK) form derived from a fit to numerical
renormalization group conductance calculations [15],

 GEK%T& ! G0=!1# %T=T0
K&2"s: (1)

Here, s ! 0:21 and TK
0 ! TK=%21=s " 1&1=2, which defines

TK as the temperature at which the Kondo conductance is

half of its extrapolated zero-temperature value: GEK%TK& !
G0=2. The values of G0 and TK we extract are shown in
Fig. 2(a). The Kondo conductance traces in our measure-
ments follow the EK form very well at low temperatures
(T < TK=4), but deviate from it at higher temperatures, as
seen in Fig. 2(b). Though the origin of the deviation at
higher temperatures is not completely understood, it most
likely reflects the emergence of additional transport pro-
cesses at higher temperatures. We limit the temperature
range for our fits to T < 35 mK.

To determine whether bias and temperature obey a scal-
ing relationship at low temperatures we fit the low-energy
conductance to the form

 G%T; V& ' G0 " ~cT%kT&PT " ~cV%eV&PV : (2)

Here PT and PV are exponents that characterize the tem-
perature and bias dependence, respectively, and ~cT and ~cV
are expansion coefficients. Unlike the EK form [Eq. (1)],
Eq. (2) does not assume quadratic behavior at low tem-
perature. We first extract PV by fitting G%T; 0& "G%T; V&
as a power law in voltage for jVj< 7 !V at each tempera-
ture point below 20 mK. We find that PV is nearly constant
across the Kondo plateau with an average value of 1:9(
0:15 [Fig. 3(a)]. Extracting PT is more difficult since only a
few temperature points unambiguously reside in the
power-law regime at each gate voltage point. Fits for
T=TK yield a mean value of PT ! 2:0( 0:6 across the
Kondo plateau [21]. These fits are consistent with tempera-
ture and bias sharing a characteristic exponent of 2, as
theoretically expected for the single-channel Kondo effect,
and we assume this universality for the remainder of our
analysis.

Having determined the characteristic scaling exponent,
we now examine to what extent the low-energy nonequi-
librium conductance G%T; V&=G0 is described by a univer-
sal scaling function, F%T=TK; eV=kTK). We assume as a
starting point that G%T; 0& follows the universal curve given
by Eq. (1) and examine the evolution of the differential

FIG. 2. (a) Values of G0 and TK across the Kondo plateau,
extracted using the empirical Kondo (EK) form GEK%0; T& !
G0=%1" %T=TK

0&2&s with TK
0 ! TK=%21=s " 1&1=2. The fit was

performed using data points for temperatures between 13–
35 mK. (b) A plot of the scaled conductance 1" G%T; 0&=G0
versus T=TK for all measured temperatures and gate voltage
points across the Kondo plateau [18]. The solid line shows the
empirical Kondo form.

FIG. 1 (color online). (a) Differential conductance (G) mea-
sured as a function of VG and source-drain bias at T ! 13 mK.
(b) Temperature dependence of the Kondo peak in conductance
for T ! 13–205 mK at VG ! "203 mV. (c) Temperature de-
pendence of the Kondo plateau for T ! 13–205 mK at V !
0 !V. (d) The SEM image shows the quantum dot device with
an overlaid measurement schematic. The topmost lead (marked
‘‘NC’’) is pinched off from the dot and does not contribute to
transport.
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2 + VGnd + V
∑

k

(c†kcd + H. c .)
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particle-hole transformation ck→ck
†, cd→−cd

† swaps the two
energies so that the transformed dot Hamiltonian is given by
the right-hand side of Eq. !2" with !d→−!!d+U".

If 2!d+U=0, the dot Hamiltonian remains invariant under
the particle-hole transformation. If, in addition, W=0, Eq. !5"
reduces to the symmetric Hamiltonian

HA
S = #

k
!kak

†ak + V!f0
†cd + H.c." −

U

2
!nd↑ − nd↓"2. !11"

With V!0, two other energies arise: the level width "W $Eq.
!9"% and the Kondo energy kBTK, given by

TK & '#J exp!− 1/#J" , !12"

where J is the antiferromagnetic interaction between the con-
duction electrons and the dot magnetic moment,41

#J = 2
"W

$(%d(
U

%d + U
. !13"

In the Kondo regime, thermal and excitation energies are
much smaller than min!(%d( ,%d+U". In Fig. 3, only the low-
est levels in the central columns are energetically accessible.
The energy "W, associated with transitions from the central
to the external columns in the figure !i.e., with cd

1→cd
2 and

cd
1→cd

0 transitions" becomes inoperant. Instead, at very low
excitation and thermal energies, smaller than the Kondo en-
ergy kBTK, the dot spin binds antiferromagnetically to the
conduction spins. In Fig. 3, the lowest states in the left and
right central columns hybridize to constitute a Kondo singlet.

IV. UNIVERSALITY

The concepts recapitulated in Sec. III C emerged over
three decades ago, with the first accurate computation of the

magnetic susceptibility of the Anderson model,2 long before
the first essentially exact computation of the conductance. A
particularly important result in the more recent survey of
transport properties of Costi et al.29 is the thermal depen-
dence of the conductance for the symmetric Hamiltonian HA

S ,
the universal curve GS!T /TK", depicted by the solid line in
Fig. 4. For kBT&D and any pair !" ,U" satisfying "&U in
Eq. !11", proper adjustment of the Kondo temperature TK
gives a conductance curve G!T /TK" that reproduces
GS!T /TK".

In Fig. 4, for instance, the solid line was computed from
the eigenvalues and eigenvectors of HA

S with "=0.1D and
U=3D. The definition G!TK")0.5G2 yielded the Kondo
temperature TK=2.4'10−6D. When the calculation was re-
peated for U=0.6D and the same ", the Kondo temperature
grew four orders of magnitude to TK=2.2'10−2D. Still, for
kBT(0.1D, the plot of G!T /TK" resulted indistinguishable
from the solid curve. While TK is model-parameter depen-
dent, G!T /TK" is not.

Particle-hole asymmetry drives G away from GS. For U
+2!d!0 or W!0, the universal curve GS!T /TK" no longer
matches G!T /TK". An example is the dashed curve in Fig. 4,
calculated with "=0.1D, U=3D, %d=−0.3D, and W=0. The
definition G!TK"=0.5G2, which in this case yields TK=4
'10−3D, forces the solid and the dashed lines to agree at
T=TK; the conductance for the asymmetric model nonethe-
less undershoots !overshoots" the universal curve for T
(TK!T)TK". To reconcile this discrepancy with the concept
of universality, the following sections rely on
renormalization-group concepts.
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FIG. 3. !Color online" Spectrum of the spin-degenerate Ander-
son model, displayed as in Fig. 2. In the weak-coupling limit, the
eigenstates are labeled by the occupation nd and spin component of
the dot configuration displayed at the bottom. For V!0, each level
in the left and right columns hybridizes with nearly degenerate lev-
els in the central columns and acquires the width "W in Eq. !9". At
low energies, the levels in the two central columns combine into a
singlet and acquire a width "K&kBTK. The vertical arrows near the
right border mark the domains of the LM and FL fixed points.
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FIG. 4. !Color online" Thermal dependences of the conductance
for two sets of model parameters, computed by the procedure in
Sec. VII. The solid line depicts the universal conductance curve
!Ref. 29" for the symmetric Hamiltonian !11". Here, it was com-
puted with "=0.1D and U=3D. The temperatures were scaled by
the Kondo temperature TK=2.4'10−6D /kB, fixed by the require-
ment G!TK"=0.5G2. The dashed curve is the conductance for
Hamiltonian !5" with "=0.1D, U=3D, %d=−0.3D, and W=0,
which yielded TK=4.0'10−3D. To keep the data within the tem-
perature range kBT(0.1D, the dashed plot stops at T=25TK. The
horizontal arrows pointing to the vertical axes indicate the corre-
sponding fixed-point conductances, given by Eqs. !22a" and !22b".
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VG = 0G = G2GS(
T
TK

)

G2 ≡
2e2

h

current
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G1!T" =
6

!2GS!T" , !47"

C. Mapping to the universal conductance

We next combine Eqs. !45" and !47" with the result
G!01"=0 to reduce Eq. !36" to the equality

G!T" = "0
2„G2 − GS!T"… + "1

2 6
!2GS!T" . !48"

To determine the coefficients "0 and "1, we need only
compare the right-hand side with the fixed-point expressions
for the conductance. At the LM, GS=0, and Eq. !22a" shows
that "0

2=cos2!#−#W". At the FL, GS=G2, and Eq. !22b"
shows that !6 /!2""1

2=sin2!#−#W". These two results substi-
tuted on its right-hand side, Eq. !48" reads

G# T

TK
$ −

G2

2
= − %GS# T

TK
$ −

G2

2
&cos 2!# − #W" . !49"

Central in this paper, Eq. !49" maps the conductance
G!T /TK" to the universal function GS!T /TK" linearly. The
mapping is controlled by the argument 2!#−#W" of the trigo-
nometric function on the right-hand side. According to the
Friedel sum rule,42 2!#−#W" /! is the screening charge in-
duced by the coupling to the dot, which must equal the dot
occupation nd to insure electrically neutrality. In particular,
when the gate potential Vg is such that dot occupation is
unitary, the phase-shift difference is #−#W=! /2, the cosine
on the right-hand side of Eq. !49" is equal to −1, the second
terms on the right- and left-hand sides cancel out of Eq. !49",
and the remaining terms are equal, G!T /TK"=GS!T /TK". A
particular case is the symmetric Hamiltonian !11", for which
#=! /2, #w=0, and G!T /TK"=GS!T /TK".29

For other gate potentials in the Kondo regime, the ground-
state dot occupation is approximately unitary, as Fig. 3 ex-
plained. The phase shift difference is never too far from ! /2.
If, by contrast, it were #−#w=! /4, the conductance in Eq.
!49" would be flat: G!T"=G2 /2. For the intermediate differ-
ences ! /4$#−#w%! /2 observed in the Kondo regime, the
conductance lies between the universal curve GS!T /TK" and
the horizontal G2 /2. Although monotonically decreasing, the
function G!T /TK" is therefore flatter than GS.

Since #−#w is never too far from ! /2 in the Kondo re-
gime, at the qualitative level we could still treat G!T /TK" as
if it were proportional to GS!T /TK", but the mapping !49"
yields much more accurate conductances and affords quanti-
tative comparison with numerical or experimental data. To
underline this conclusion, the following sections present an
NRG survey of electrical conduction through the device in
Fig. 1.

VII. NUMERICAL PROCEDURE

Equation !12" offers an approximation for TK, and Eqs.
!16", !19", and !21" roughly determine the ground-state phase
shift #. Such estimates are far from the accuracy needed to fit
numerical or experimental data. In the laboratory, TK and #
−#W are adjustable parameters. The former, in particular, is
determined by the definition G!TK"'G2 /2.5,32,33

In the computer office, the two unknown parameters on
the right-hand side of Eq. !49" can be extracted from the
conductance itself, or from other properties of the model
Hamiltonian. The phase shift # can be obtained from the
ground-state eigenvalues of HA, or from the ground-state dot
occupation. The Kondo temperature TK has been traditionally
derived from fits of the temperature dependent magnetic sus-
ceptibility &!T" with the universal curve for kBT&!T /TK".2,4

Here, we break with the tradition and adopt the convention
G!TK"'G2 /2 so that both sides of Eq. !49" vanish at T=TK.

Once TK and # have been determined, by either a Bethe
ansatz calculation or an NRG computation,3,4,28 one can rely
on the mapping !49" to evaluate the temperature-dependent
conductance G!T" in the Kondo regime. Alternatively, one
can apply the NRG procedure described in Secs. VII A and
VII B to compute equally accurate conductance curves G!T"
over the entire parametrical space of the model.

Here, we rely on the latter approach to provide a more
comprehensive view of the model. Sections VIII A and
VIII B will present NRG computations of the conductance as
a function of the gate voltage and temperature. We cover the
Kondo regime and the neighboring regions of the parametric
space of the model to describe charge transport in the single-
electron transistor and to examine the behavior of the map-
ping !49" beyond the limits of the Kondo regime.

A. Numerical-renormalization group method

Excellent descriptions of the NRG method being
available,2,28,46 one page will be sufficient to recapitulate the
four constituents of the procedure.

1. Logarithmic discretization

Two dimensionless parameters '(1 and 0$z%1 define
the logarithmic discretization of the conduction band.28,47
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FIG. 5. !Color online" NRG results for the thermal dependence
of the auxiliary conductance G0!T", associated with the spectral
density for the operator )0. The open circles show Eq. !37" for j
=0, computed for the symmetric Hamiltonian with the displayed
model parameters. The solid line is the right-hand side of Eq. !45",
i.e., the universal curve in Fig. 4 subtracted from the quantum con-
ductance G2.
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particle-hole transformation ck→ck
†, cd→−cd

† swaps the two
energies so that the transformed dot Hamiltonian is given by
the right-hand side of Eq. !2" with !d→−!!d+U".

If 2!d+U=0, the dot Hamiltonian remains invariant under
the particle-hole transformation. If, in addition, W=0, Eq. !5"
reduces to the symmetric Hamiltonian

HA
S = #

k
!kak

†ak + V!f0
†cd + H.c." −

U

2
!nd↑ − nd↓"2. !11"

With V!0, two other energies arise: the level width "W $Eq.
!9"% and the Kondo energy kBTK, given by

TK & '#J exp!− 1/#J" , !12"

where J is the antiferromagnetic interaction between the con-
duction electrons and the dot magnetic moment,41

#J = 2
"W

$(%d(
U

%d + U
. !13"

In the Kondo regime, thermal and excitation energies are
much smaller than min!(%d( ,%d+U". In Fig. 3, only the low-
est levels in the central columns are energetically accessible.
The energy "W, associated with transitions from the central
to the external columns in the figure !i.e., with cd

1→cd
2 and

cd
1→cd

0 transitions" becomes inoperant. Instead, at very low
excitation and thermal energies, smaller than the Kondo en-
ergy kBTK, the dot spin binds antiferromagnetically to the
conduction spins. In Fig. 3, the lowest states in the left and
right central columns hybridize to constitute a Kondo singlet.

IV. UNIVERSALITY

The concepts recapitulated in Sec. III C emerged over
three decades ago, with the first accurate computation of the

magnetic susceptibility of the Anderson model,2 long before
the first essentially exact computation of the conductance. A
particularly important result in the more recent survey of
transport properties of Costi et al.29 is the thermal depen-
dence of the conductance for the symmetric Hamiltonian HA

S ,
the universal curve GS!T /TK", depicted by the solid line in
Fig. 4. For kBT&D and any pair !" ,U" satisfying "&U in
Eq. !11", proper adjustment of the Kondo temperature TK
gives a conductance curve G!T /TK" that reproduces
GS!T /TK".

In Fig. 4, for instance, the solid line was computed from
the eigenvalues and eigenvectors of HA

S with "=0.1D and
U=3D. The definition G!TK")0.5G2 yielded the Kondo
temperature TK=2.4'10−6D. When the calculation was re-
peated for U=0.6D and the same ", the Kondo temperature
grew four orders of magnitude to TK=2.2'10−2D. Still, for
kBT(0.1D, the plot of G!T /TK" resulted indistinguishable
from the solid curve. While TK is model-parameter depen-
dent, G!T /TK" is not.

Particle-hole asymmetry drives G away from GS. For U
+2!d!0 or W!0, the universal curve GS!T /TK" no longer
matches G!T /TK". An example is the dashed curve in Fig. 4,
calculated with "=0.1D, U=3D, %d=−0.3D, and W=0. The
definition G!TK"=0.5G2, which in this case yields TK=4
'10−3D, forces the solid and the dashed lines to agree at
T=TK; the conductance for the asymmetric model nonethe-
less undershoots !overshoots" the universal curve for T
(TK!T)TK". To reconcile this discrepancy with the concept
of universality, the following sections rely on
renormalization-group concepts.
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FIG. 3. !Color online" Spectrum of the spin-degenerate Ander-
son model, displayed as in Fig. 2. In the weak-coupling limit, the
eigenstates are labeled by the occupation nd and spin component of
the dot configuration displayed at the bottom. For V!0, each level
in the left and right columns hybridizes with nearly degenerate lev-
els in the central columns and acquires the width "W in Eq. !9". At
low energies, the levels in the two central columns combine into a
singlet and acquire a width "K&kBTK. The vertical arrows near the
right border mark the domains of the LM and FL fixed points.
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FIG. 4. !Color online" Thermal dependences of the conductance
for two sets of model parameters, computed by the procedure in
Sec. VII. The solid line depicts the universal conductance curve
!Ref. 29" for the symmetric Hamiltonian !11". Here, it was com-
puted with "=0.1D and U=3D. The temperatures were scaled by
the Kondo temperature TK=2.4'10−6D /kB, fixed by the require-
ment G!TK"=0.5G2. The dashed curve is the conductance for
Hamiltonian !5" with "=0.1D, U=3D, %d=−0.3D, and W=0,
which yielded TK=4.0'10−3D. To keep the data within the tem-
perature range kBT(0.1D, the dashed plot stops at T=25TK. The
horizontal arrows pointing to the vertical axes indicate the corre-
sponding fixed-point conductances, given by Eqs. !22a" and !22b".
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C. Mapping to the universal conductance

We next combine Eqs. !45" and !47" with the result
G!01"=0 to reduce Eq. !36" to the equality

G!T" = "0
2„G2 − GS!T"… + "1

2 6
!2GS!T" . !48"

To determine the coefficients "0 and "1, we need only
compare the right-hand side with the fixed-point expressions
for the conductance. At the LM, GS=0, and Eq. !22a" shows
that "0

2=cos2!#−#W". At the FL, GS=G2, and Eq. !22b"
shows that !6 /!2""1

2=sin2!#−#W". These two results substi-
tuted on its right-hand side, Eq. !48" reads

G# T

TK
$ −

G2

2
= − %GS# T

TK
$ −

G2

2
&cos 2!# − #W" . !49"

Central in this paper, Eq. !49" maps the conductance
G!T /TK" to the universal function GS!T /TK" linearly. The
mapping is controlled by the argument 2!#−#W" of the trigo-
nometric function on the right-hand side. According to the
Friedel sum rule,42 2!#−#W" /! is the screening charge in-
duced by the coupling to the dot, which must equal the dot
occupation nd to insure electrically neutrality. In particular,
when the gate potential Vg is such that dot occupation is
unitary, the phase-shift difference is #−#W=! /2, the cosine
on the right-hand side of Eq. !49" is equal to −1, the second
terms on the right- and left-hand sides cancel out of Eq. !49",
and the remaining terms are equal, G!T /TK"=GS!T /TK". A
particular case is the symmetric Hamiltonian !11", for which
#=! /2, #w=0, and G!T /TK"=GS!T /TK".29

For other gate potentials in the Kondo regime, the ground-
state dot occupation is approximately unitary, as Fig. 3 ex-
plained. The phase shift difference is never too far from ! /2.
If, by contrast, it were #−#w=! /4, the conductance in Eq.
!49" would be flat: G!T"=G2 /2. For the intermediate differ-
ences ! /4$#−#w%! /2 observed in the Kondo regime, the
conductance lies between the universal curve GS!T /TK" and
the horizontal G2 /2. Although monotonically decreasing, the
function G!T /TK" is therefore flatter than GS.

Since #−#w is never too far from ! /2 in the Kondo re-
gime, at the qualitative level we could still treat G!T /TK" as
if it were proportional to GS!T /TK", but the mapping !49"
yields much more accurate conductances and affords quanti-
tative comparison with numerical or experimental data. To
underline this conclusion, the following sections present an
NRG survey of electrical conduction through the device in
Fig. 1.

VII. NUMERICAL PROCEDURE

Equation !12" offers an approximation for TK, and Eqs.
!16", !19", and !21" roughly determine the ground-state phase
shift #. Such estimates are far from the accuracy needed to fit
numerical or experimental data. In the laboratory, TK and #
−#W are adjustable parameters. The former, in particular, is
determined by the definition G!TK"'G2 /2.5,32,33

In the computer office, the two unknown parameters on
the right-hand side of Eq. !49" can be extracted from the
conductance itself, or from other properties of the model
Hamiltonian. The phase shift # can be obtained from the
ground-state eigenvalues of HA, or from the ground-state dot
occupation. The Kondo temperature TK has been traditionally
derived from fits of the temperature dependent magnetic sus-
ceptibility &!T" with the universal curve for kBT&!T /TK".2,4

Here, we break with the tradition and adopt the convention
G!TK"'G2 /2 so that both sides of Eq. !49" vanish at T=TK.

Once TK and # have been determined, by either a Bethe
ansatz calculation or an NRG computation,3,4,28 one can rely
on the mapping !49" to evaluate the temperature-dependent
conductance G!T" in the Kondo regime. Alternatively, one
can apply the NRG procedure described in Secs. VII A and
VII B to compute equally accurate conductance curves G!T"
over the entire parametrical space of the model.

Here, we rely on the latter approach to provide a more
comprehensive view of the model. Sections VIII A and
VIII B will present NRG computations of the conductance as
a function of the gate voltage and temperature. We cover the
Kondo regime and the neighboring regions of the parametric
space of the model to describe charge transport in the single-
electron transistor and to examine the behavior of the map-
ping !49" beyond the limits of the Kondo regime.

A. Numerical-renormalization group method

Excellent descriptions of the NRG method being
available,2,28,46 one page will be sufficient to recapitulate the
four constituents of the procedure.

1. Logarithmic discretization

Two dimensionless parameters '(1 and 0$z%1 define
the logarithmic discretization of the conduction band.28,47

10−2 10−1 1 10 103
0.0

0.5

1.0

G

G2

T/TK

G0/G2

(G2 − GS)/G2

U = 3D

Γ = 0.1D

FIG. 5. !Color online" NRG results for the thermal dependence
of the auxiliary conductance G0!T", associated with the spectral
density for the operator )0. The open circles show Eq. !37" for j
=0, computed for the symmetric Hamiltonian with the displayed
model parameters. The solid line is the right-hand side of Eq. !45",
i.e., the universal curve in Fig. 4 subtracted from the quantum con-
ductance G2.
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conductance G ! dI=dV using standard lock-in tech-
niques, with an rms modulation bias of 1 !V at 337 Hz.
The dot is cooled in the mixing chamber of an Oxford
Instruments Kelvinox TLM dilution refrigerator with a
base electron temperature of 13 mK [20].

At base temperature, the Kondo effect produces a char-
acteristic enhancement of conductance through the quan-
tum dot at odd occupancy (""0, "0 #U > !), as seen in
Fig. 1. The couplings of the dot to its two leads are tuned to
maximize TK while keeping the two couplings nearly
equal. The saturation of conductance at a value near
1:75e2=h throughout the middle of the Kondo plateau
["209 mV<VG <"199:5 mV in Fig. 1(c)] confirms
that Tbase $ TK and indicates that the coupling asymmetry
is around 2:1 [2]. Conductance as a function of source-
drain bias in the Kondo plateau shows a narrow peak
centered at zero bias, known as the Kondo peak [Fig. 1(b)].

As the temperature increases from 13 to 205 mK the
overall Kondo conductance decreases [Figs. 1(b) and 1(c)].
Previous measurements found the temperature evolution of
linear conductance G%T; V ! 0& to be well described by an
empirical Kondo (EK) form derived from a fit to numerical
renormalization group conductance calculations [15],

 GEK%T& ! G0=!1# %T=T0
K&2"s: (1)

Here, s ! 0:21 and TK
0 ! TK=%21=s " 1&1=2, which defines

TK as the temperature at which the Kondo conductance is

half of its extrapolated zero-temperature value: GEK%TK& !
G0=2. The values of G0 and TK we extract are shown in
Fig. 2(a). The Kondo conductance traces in our measure-
ments follow the EK form very well at low temperatures
(T < TK=4), but deviate from it at higher temperatures, as
seen in Fig. 2(b). Though the origin of the deviation at
higher temperatures is not completely understood, it most
likely reflects the emergence of additional transport pro-
cesses at higher temperatures. We limit the temperature
range for our fits to T < 35 mK.

To determine whether bias and temperature obey a scal-
ing relationship at low temperatures we fit the low-energy
conductance to the form

 G%T; V& ' G0 " ~cT%kT&PT " ~cV%eV&PV : (2)

Here PT and PV are exponents that characterize the tem-
perature and bias dependence, respectively, and ~cT and ~cV
are expansion coefficients. Unlike the EK form [Eq. (1)],
Eq. (2) does not assume quadratic behavior at low tem-
perature. We first extract PV by fitting G%T; 0& "G%T; V&
as a power law in voltage for jVj< 7 !V at each tempera-
ture point below 20 mK. We find that PV is nearly constant
across the Kondo plateau with an average value of 1:9(
0:15 [Fig. 3(a)]. Extracting PT is more difficult since only a
few temperature points unambiguously reside in the
power-law regime at each gate voltage point. Fits for
T=TK yield a mean value of PT ! 2:0( 0:6 across the
Kondo plateau [21]. These fits are consistent with tempera-
ture and bias sharing a characteristic exponent of 2, as
theoretically expected for the single-channel Kondo effect,
and we assume this universality for the remainder of our
analysis.

Having determined the characteristic scaling exponent,
we now examine to what extent the low-energy nonequi-
librium conductance G%T; V&=G0 is described by a univer-
sal scaling function, F%T=TK; eV=kTK). We assume as a
starting point that G%T; 0& follows the universal curve given
by Eq. (1) and examine the evolution of the differential

FIG. 2. (a) Values of G0 and TK across the Kondo plateau,
extracted using the empirical Kondo (EK) form GEK%0; T& !
G0=%1" %T=TK

0&2&s with TK
0 ! TK=%21=s " 1&1=2. The fit was

performed using data points for temperatures between 13–
35 mK. (b) A plot of the scaled conductance 1" G%T; 0&=G0
versus T=TK for all measured temperatures and gate voltage
points across the Kondo plateau [18]. The solid line shows the
empirical Kondo form.

FIG. 1 (color online). (a) Differential conductance (G) mea-
sured as a function of VG and source-drain bias at T ! 13 mK.
(b) Temperature dependence of the Kondo peak in conductance
for T ! 13–205 mK at VG ! "203 mV. (c) Temperature de-
pendence of the Kondo plateau for T ! 13–205 mK at V !
0 !V. (d) The SEM image shows the quantum dot device with
an overlaid measurement schematic. The topmost lead (marked
‘‘NC’’) is pinched off from the dot and does not contribute to
transport.
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Results for 34 VG ’s
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Summary

Anderson model describes experimental data very well

Thanks to universality

There are perturbations outside the scope of the model

Must allow for partial screening at high T

Anisotropic Kondo coupling?
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