
Kondo effect in mesoscopic and nanoscopic 
systems

Pablo S. Cornaglia

Centro Atómico Bariloche and Instituto Balseiro,

Comisión Nacional de Energía Atómica, Bariloche, Argentina

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 
Argentina



Recap Lecture 1

● Anderson model
● Magnetic moment formation: Stoner criterion
● At second order in the d level-electron bath coupling the 

Anderson model is equivalent to the Kondo model (are the 
higher order terms important at low energies?)

● Anderson's poor man's scaling: 

– solves problem for ferromagnetic coupling: free 
impurity at low energies.

– suggests a singlet ground state for the 
antiferromagnetic case, but breaks-down at low 
energy scales 



Outline of lecture 2

● Numerical renormalization group
● Numerical solution of the Kondo problem

● Nozières Fermi liquid theory

– Low energy effective description
● Slave boson mean field theory

– Variational solution at low energies (Fermi liquid 
regime)
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Wilson's renormalization group (RG)

● In poor's man scaling approach two couplings are 
considerered: 

– Other couplings that appear in higher order 
perturbation theory may be important

● Wilson's RG considers all couplings.

– There is no need to guess which couplings to use.

– Renormalizations are performed until a fixed point is 
reached where the couplings stop changing.

– An effective Hamiltonian close to the fixed points 



Anderson model



 renormalization by successive diagonalizations

● Solve exactly by numerical diagonalization the problem of the 
impurity coupled to a few high energy states.

● At each iteration Include extra conduction band states with 
decreasing energy.



 renormalization by successive diagonalizations

● Problems:

– Too many states to consider at each energy scale in 
the original Hamiltonian.

– Exact diagonalization can only be done for a few 
conduction band states limiting the number of states 
that can be retained at each iteration.

– Each extra state increases by a factor 4 the size of the 
Hilbert space. (Need to discard ¾ of the states at 
each iteration) 

–  In this form the procedure does not converge.



Wilson's numerical renormalization group (NRG)

● Wilson's approach: discretize conduction band in a 
logarithmic way: defines hierarchy of energy scales. Wilson 
showed that a single electronic state needs to be considered 
at each energy interval.

● Mapping of the conduction band into a semi-infinite tight-
binding chain. Because of the logarithmic discretization, the 
hopping terms of the chain decrease exponentially. The 
impurity is coupled to the first site of the chain.

● Iterative diagonalization of the impurity problem starting from 
the impurity and adding sites to the chain. The exponentially 
growing Hilbert space is truncated keeping a set of low-lying 
states.

[K. G.  Wilson , RMP 47 773 (1975)]



Logarithmic discretization

D-D Λ−1Λ−2−Λ−1−Λ−2 0



Lanczos tridiagonalization

● The model can be brought to a one-dimensional tight binding 
chain using Lanczos tridiagonalization procedure. 

● Change of basis states in the metallic host.

– Define the normalized state:

– where:



Lanczos tridiagonalization

● The d level – metal tunneling term simplifies to:

● Construct an orthonormal basis using:

● with:

● and recursively:



Lanczos tridiagonalization

● We finally have

is the density of states at site 0



Wilson's transformation of the conduction band

R. Bulla et al.  Rev. Mod. Phys 80  395 (2008)

Logarithmic discretization

Single state on each interval

Mapping to a linear chain



Iterative diagonalization

Iteration 1

Iteration 2

Due to the logarithmic discretization
the hoppings decay exponentially

…

…

…

…

Well separated energy scales.
 
Each RG step produces a perturbation
in the spectrum.



Iterative diagonalization

● The size of the Fock space grows exponentially with the 
number of sites: 

● Discard highest energy states after each iteration.
●  In practice converged results for: 

– Λ = 1.5,...,3;

– retaining N = 400,...,5000 at each iteration
● There are small systematic errors due to the logarithmic 

discretization. The precision can be much improved averaging 
over multiple possible discretizations with the same Λ.             
[W Oliveira and L N. Oliveira Phys Rev B 49 11986 (1994)]



Numerical renormalization steps

The parity of the number of sites in the chain changes at each
NRG step. Two steps are necessary in order to obtain a 
convergence in the spectrum at a fixed point.



Numerical renormalization steps

The Hamiltonian is 
diagonalized to obtain the 
eigenenergies and 
eigenfunctions.

The high energy states are 
truncated.

A new site is coupled to 
the chain.



NRG flow for the Anderson model

R. Bulla et al.  Rev. Mod. Phys 80  395 (2008)

Three different regimes:
-Free orbital

-Local moment

-Strong coupling.

FO

LM
SC



Fixed points

● Free orbital:

– The orbital is effectively decoupled
● Local moment

– Free spin
● Strong coupling:

– Screened spin: no remaining magnetic moment.

– Energy spectrum identical to that of a system with: 

– Additive spectrum: Fermi liquid behavior.



At iteration n

● Set of eigenfunctions with given quantum numbers:

– charge, spin and energy:
● The energies span a range of roughly an order of magnitude 

and allow the calculation of thermodynamic properties at a 
temperature:

● For dynamic properties, a broadening of the levels is required 
due to the discrete spectrum: bad resolution at high energies.

– Many developments in recent years to improve 
resolution: some using Oliveira's trick.



Thermodynamic properties

FOLMSC

At a given iteration, thermodynamic properties can be calculated at a 
temperature 



Thermodynamic properties

Compensated spin (no divergence)

At low temperatures Fermi liquid like behavior

Wilson's ratio measures residual interaction between quasiparticles

 (strong coupling              )

For non-interacting quasiparticles

In the Kondo regime there is a single relevant energy scale:



Dynamic properties



Dynamic properties

● Kondo peak of width:

● And height:

● Charge fluctuation peaks of reduced height compared to non-
interacting results.

● No spin symmetry breaking: 

(sum rule)



Appplications

● Interacting impurity in a superconductor, ferromagnetic or 
pseudogapped host.

– [Satori et al. 1992], [Martinek et al. 2003], [Ingersent 1996]

● Anderson-Holstein model (coupling to local phonons). 
– [ Hewson and Meyer 2002]

● Coupling to a boson bath.
– [Bulla 2003] 

● Coupling to phonon and fermion baths. 
– [Glossop and Ingersent 2008]

● Impurity solver for DMFT (currently limited to at most two 
conduction bands)

– [Bulla 1999]



Nozières local Fermi liquid

● Close to the strong coupling fixed point the local moment 
captures a spin from the conduction band to form a singlet. No 
spin-flip scattering remains and the energy spectrum can be 
fitted assuming weakly interacting quasiparticles.

● Based on Anderson's and Wilson's results Nozières 
constructed a Fermi liquid theory to describe the 
quasiparticles in terms of the scattering phase shifts.

● The Fermi liquid is described by a set of Landau parameters. 
Nozières inferred the value of the parameters. e. g. effective 
mass               and scattering phase shift

[P. Nozières J. of Low Temp. Phys. 17 31 (1974) ]



Slave boson mean field theory

● Variational approach, exact in large N limit: SU(N) symmetry  
(N=2 for the spin ½ Kondo model).

● Construct a representation of the impurity states extending the 
Fock space to include auxiliary boson:

[P. Coleman 1984, Kotliar and Ruckenstein 1986]

constraint:



Slave bosons U=infinity

Impose the constraint in the partition function using the 
representation of the Kronecker delta function:



Calculate Z in the mean field approximation replacing the Bose 
operators by their expectation values:

The effective mean field Hamiltonian has the form:

Non interacting model with renormalized parameters



Slave bosons U=infinity

Kondo peak of width       and height   

The Free energy can be calculated and minimized using    and     
as variational parameters.

Some general remarks about the solution:

In the Kondo regime

Taking averages on the constraint we get:

Resonance at the Fermi level



Slave bosons U=infinity

The effective Hamiltonian is quadratic in the fermion operators:
It is a Fermi gas with renormalized parameters.

The Free energy can be calculated and minimized for the 
parameters:

The approach can be formulated in terms of a variational in terms 
of a Fermi gas: it can only be valid if the ground state is a Fermi 
liquid. In the Kondo problem it provides a description at low 
temperatures.



Slave bosons Kondo model

The Kondo coupling to the band turns into a hopping term:

Mean field decoupling:



Slave bosons Kondo model

Using the equation of motion we can write the correlation 
function:

In terms of the d-level Green's function and we obtain  an 
ecuation for 



Slave bosons

Width of the T=0 the resonance



Slave bosons

This method gives a spurious transition at               where 
the impurity decouples 

At high temperatures the local spin is free.

Finite temperatures:



Conclusions Lecture 2

● Numerical Renormalization Group gives a complete solution 
of the Kondo problem and can be used to study other related 
model systems.

● At low temperatures, when the ground state is a Fermi liquid, 
a simple mean field approach can give a semi-quantitative 
description of the low energy physics. 

● The slave boson description can also be extended to study 
more complex systems [Lechermann 2007]

● Next lecture:

– Electronic Transport in nanostructures. 

– Molecular transistors: molecular vibrations an the 
Kondo effect
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