

Instituto Balseiro

AGENCIA

Kondo effect in mesoscopic and nanoscopic systems

Pablo S. Cornaglia

Centro Atómico Bariloche and Instituto Balseiro,

Comisión Nacional de Energía Atómica, Bariloche, Argentina

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Recap Lecture 1

- Anderson model
- Magnetic moment formation: Stoner criterion
- At second order in the *d* level-electron bath coupling the Anderson model is equivalent to the Kondo model (are the higher order terms important at low energies?)
- Anderson's poor man's scaling:
 - solves problem for ferromagnetic coupling: free impurity at low energies.
 - suggests a singlet ground state for the antiferromagnetic case, but breaks-down at low energy scales $\sim k_B T_K$

Outline of lecture 2

- Numerical renormalization group
 - Numerical solution of the Kondo problem
- Nozières Fermi liquid theory
 - Low energy effective description
- Slave boson mean field theory
 - Variational solution at low energies (Fermi liquid regime)

References

- A. C. Hewson, The Kondo problem to Heavy Fermions [book]
- K. G. Wilson, Rev. Mod. Phys. **47** 773 (1975)
- R. Bulla et al. Rev. Mod. Phys. 80 395 (2008)
- P. Nozières J. of Low Temp. Phys. **17** 31 (1974)
- D. Pines and P. Nozières, The theory of quantum liquids [book]

Wilson's renormalization group (RG)

- In poor's man scaling approach two couplings are considerered: $ho_0 J_{\perp}, ~~
 ho_0 J_{||}$
 - Other couplings that appear in higher order perturbation theory may be important
- Wilson's RG considers all couplings.
 - There is no need to guess which couplings to use.
 - Renormalizations are performed until a fixed point is reached where the couplings stop changing.
 - An effective Hamiltonian close to the fixed points

Anderson model

$$H = H_d + H_m + H_V$$
$$H_d = \epsilon_d (\hat{n}_{\uparrow} + \hat{n}_{\downarrow}) + U \hat{n}_{\uparrow} \hat{n}_{\downarrow}$$
$$H_m = \sum_k \epsilon_k c^{\dagger}_{k\sigma} c_{k\sigma}$$
$$H_V = \sum_k V_k c^{\dagger}_{k\sigma} d_{\sigma} + V^*_k d^{\dagger}_{\sigma} c_{k\sigma}$$

renormalization by successive diagonalizations

- Solve exactly by numerical diagonalization the problem of the impurity coupled to a few high energy states.
- At each iteration Include extra conduction band states with decreasing energy.

renormalization by successive diagonalizations

- Problems:
 - Too many states to consider at each energy scale in the original Hamiltonian.
 - Exact diagonalization can only be done for a few conduction band states limiting the number of states that can be retained at each iteration.
 - Each extra state increases by a factor 4 the size of the Hilbert space. (Need to discard ³/₄ of the states at each iteration)
 - In this form the procedure does not converge.

Wilson's numerical renormalization group (NRG)

- Wilson's approach: discretize conduction band in a logarithmic way: defines hierarchy of energy scales. Wilson showed that a single electronic state needs to be considered at each energy interval.
- Mapping of the conduction band into a semi-infinite tightbinding chain. Because of the logarithmic discretization, the hopping terms of the chain decrease exponentially. The impurity is coupled to the first site of the chain.
- Iterative diagonalization of the impurity problem starting from the impurity and adding sites to the chain. The exponentially growing Hilbert space is truncated keeping a set of low-lying states.

Lanczos tridiagonalization

- The model can be brought to a one-dimensional tight binding chain using Lanczos tridiagonalization procedure.
- Change of basis states in the metallic host.
 - Define the normalized state:

$$|\phi_0\rangle = f_0^{\dagger}|0\rangle = \frac{1}{V}\sum_k V_k c_k^{\dagger}|0\rangle$$

- where:

$$V = (\sum_{k} |V_k|^2)^{1/2}$$

$$H_V = \sum_k V_k c_{k\sigma}^{\dagger} d_{\sigma} + V_k^* d_{\sigma}^{\dagger} c_{k\sigma}$$

Lanczos tridiagonalization

- The *d* level metal tunneling term simplifies to: $H_V = V(f_{0\sigma}^{\dagger} d_{\sigma} + d_{\sigma}^{\dagger} f_{0\sigma})$
- Construct an orthonormal basis using: $H_m |\phi_0\rangle = \epsilon_0 |\phi_0\rangle + t_1 |\phi_1\rangle \qquad \langle \phi_0 |\phi_1\rangle = 0$
- with:

$$\epsilon_0 = \langle \phi_0 | H_m | \phi_0 \rangle, \quad t_1^2 = \langle \phi_0 | H_m^2 | \phi_0 \rangle - \epsilon_0^2$$

• and recursively:

 $t_{n+1}|\phi_{n+1}\rangle = H_m|\phi_n\rangle - \epsilon_n|\phi_n\rangle - t_n|\phi_{n-1}\rangle$

$$\epsilon_n = \langle \phi_n | H_m | \phi_n \rangle, \quad t_{n+1}^2 = \langle \phi_n | H_m^2 | \phi_n \rangle - \epsilon_n^2 - t_n^2$$

Lanczos tridiagonalization

We finally have

$$H_d = \epsilon_d (\hat{n}_{\uparrow} + \hat{n}_{\downarrow}) + U \hat{n}_{\uparrow} \hat{n}_{\downarrow}$$

$$H_V = V(f_{0\sigma}^{\dagger} d_{\sigma} + d_{\sigma}^{\dagger} f_{0\sigma})$$

$$H_m = \sum_{n=0} \epsilon_n f_n^{\dagger} f_n + \sum_{n=0} t_{n+1} (f_n^{\dagger} f_{n+1} + h.c.)$$

Wilson's transformation of the conduction band

Logarithmic discretization

Mapping to a linear chain

R. Bulla et al. Rev. Mod. Phys 80 395 (2008)

Well separated energy scales.

Each RG step produces a perturbation in the spectrum.

Iterative diagonalization

- The size of the Fock space grows exponentially with the number of sites: $N_{st} = 4^{n+1}$
- Discard highest energy states after each iteration.
- In practice converged results for:

 $-\Lambda = 1.5,...,3;$

- retaining $N = 400, \dots, 5000$ at each iteration
- There are small systematic errors due to the logarithmic discretization. The precision can be much improved averaging over multiple possible discretizations with the same Λ.
 [W Oliveira and L N. Oliveira Phys Rev B 49 11986 (1994)]

Numerical renormalization steps

 $H_{n+1} = \mathcal{R}_{\Lambda}[H_n]$

$$H_{n+1} = \sqrt{\Lambda} H_n + \tilde{t}_{n+1} (f_{n+1}^{\dagger} f_n + f_n^{\dagger} f_{n+1})$$

 $\tilde{t}_{n+1} = \Lambda^{(n-1)/2} t_{n+1} \sim 1$

The parity of the number of sites in the chain changes at each NRG step. Two steps are necessary in order to obtain a convergence in the spectrum at a fixed point.

Numerical renormalization steps

The Hamiltonian is diagonalized to obtain the eigenenergies and eigenfunctions.

The high energy states are truncated.

A new site is coupled to the chain.

NRG flow for the Anderson model

R. Bulla et al. Rev. Mod. Phys 80 395 (2008)

Fixed points

- Free orbital: $k_BT > U, V$
 - The orbital is effectively decoupled
- Local moment $k_B T_K \ll k_B T < U, V$
 - Free spin
- Strong coupling: $k_B T \ll k_B T_K$
 - Screened spin: no remaining magnetic moment.
 - Energy spectrum identical to that of a system with: $J = \infty$
 - Additive spectrum: Fermi liquid behavior.

At iteration n

• Set of eigenfunctions with given quantum numbers:

- charge, spin and energy: $|Q, S, S_z, E, i\rangle_n$

- The energies span a range of roughly an order of magnitude and allow the calculation of thermodynamic properties at a temperature: $T_n \sim D\Lambda^{-(n-1)/2}$
- For dynamic properties, a broadening of the levels is required due to the discrete spectrum: bad resolution at high energies.

 Many developments in recent years to improve resolution: some using Oliveira's trick.

Thermodynamic properties

At low temperatures Fermi liquid like behavior

Compensated spin (no divergence)

$$\chi(T \to 0) \propto \frac{1}{k_B T_K}$$

$$C(T \to 0) = \gamma_{\rm imp} T \propto \frac{T}{T_K}$$

In the Kondo regime there is a single relevant energy scale: $k_B T_K$

Wilson's ratio measures residual interaction between quasiparticles

$$R = \frac{4(\pi k_B)^2}{3(g\mu_B)^2} \frac{\chi_{\rm imp}}{\gamma_{\rm imp}} = 2 \qquad \text{(strong coupling } U \to \infty\text{)}$$

R = 1 For non-interacting quasiparticles

Dynamic properties

• Kondo peak of width: $\propto k_B T_K$

• And height:
$$A_{d\sigma}(E=0,T=0) = \frac{\sin^2(\pi n_{d\sigma})}{\pi \Delta}$$
 (sum rule)

- Charge fluctuation peaks of reduced height compared to noninteracting results.
- No spin symmetry breaking: $A_{d\uparrow}(E, B = 0) = A_{d\downarrow}(E, B = 0)$

Appplications

 Interacting impurity in a superconductor, ferromagnetic or pseudogapped host.

- [Satori et al. 1992], [Martinek et al. 2003], [Ingersent 1996]

- Anderson-Holstein model (coupling to local phonons).
 - [Hewson and Meyer 2002]
- Coupling to a boson bath.
 - [Bulla 2003]
- Coupling to phonon and fermion baths.
 - [Glossop and Ingersent 2008]
- Impurity solver for DMFT (currently limited to at most two conduction bands)
 - [Bulla 1999]

Nozières local Fermi liquid

- Close to the strong coupling fixed point the local moment captures a spin from the conduction band to form a singlet. No spin-flip scattering remains and the energy spectrum can be fitted assuming weakly interacting quasiparticles.
- Based on Anderson's and Wilson's results Nozières constructed a Fermi liquid theory to describe the quasiparticles in terms of the scattering phase shifts.
- The Fermi liquid is described by a set of Landau parameters. Nozières inferred the value of the parameters. e. g. effective mass $\propto 1/T_K$ and scattering phase shift $\delta_0 = \pi/2$

$$A_{d\sigma}(E=0, T=0) = \frac{\sin^2(\pi n_{d\sigma})}{\pi \Delta}$$

[P. Nozières J. of Low Temp. Phys. **17** 31 (1974)]

Slave boson mean field theory

- Variational approach, exact in large N limit: SU(N) symmetry (N=2 for the spin ½ Kondo model).
- Construct a representation of the impurity states extending the Fock space to include auxiliary boson: b
- $\begin{array}{ll} [b,b^{\dagger}]_{-} = 1 & U = \infty \\ [f_{\sigma},f_{\sigma}^{\dagger}]_{+} = 1 & \text{constraint: } b^{\dagger}b + \sum_{\sigma} f_{\sigma}^{\dagger}f_{\sigma} = 1 \\ d_{\sigma} \rightarrow b^{\dagger}f_{\sigma} & \\ |0\rangle \rightarrow b^{\dagger}|vac\rangle|0\rangle \\ |\uparrow\rangle \rightarrow f_{\uparrow}^{\dagger}|vac\rangle|0\rangle \\ |\downarrow\rangle \rightarrow f_{\downarrow}^{\dagger}|vac\rangle|0\rangle \end{array}$

[P. Coleman 1984, Kotliar and Ruckenstein 1986]

Slave bosons U=infinity

$$H_{U=\infty} = \epsilon_d (\hat{n}_{\uparrow} + \hat{n}_{\downarrow}) + \sum_k \epsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + \sum_k V_k c_{k\sigma}^{\dagger} d_{\sigma} + V_k^* d_{\sigma}^{\dagger} c_{k\sigma}$$
$$d_{\sigma} \rightarrow b^{\dagger} f_{\sigma}$$
$$H = \epsilon_d \sum f_{\sigma}^{\dagger} f_{\sigma} + \sum_{k,\sigma} \epsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + \sum_{k,\sigma} V_k c_{k\sigma}^{\dagger} b^{\dagger} f_{\sigma} + V_k^* b f_{\sigma}^{\dagger} c_{k\sigma}$$

Impose the constraint in the partition function using the representation of the Kronecker delta function:

$$\delta_{n,0} = \frac{\beta}{2\pi} \int_{-\pi/\beta}^{\pi/\beta} e^{-i\lambda\beta n} d\lambda \qquad \qquad \beta = \frac{1}{k_B T}$$

10

$$Z = \text{Tr}\frac{\beta}{2\pi} \int_{-\pi/\beta}^{\pi/\beta} e^{-\beta H - i\lambda\beta(b^{\dagger}b + \sum_{\sigma} f_{\sigma}^{\dagger}f_{\sigma})} d\lambda$$

Calculate Z in the mean field approximation replacing the Bose operators by their expectation values:

 $r = \langle b \rangle, \quad r = \langle b^{\dagger} \rangle$

The effective mean field Hamiltonian has the form:

$$H_{mf} = (\epsilon_d - i\lambda) \sum f_{\sigma}^{\dagger} f_{\sigma} + \sum_{k,\sigma} \epsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + \sum_{k,\sigma} r V_k c_{k\sigma}^{\dagger} f_{\sigma} + r V_k^* f_{\sigma}^{\dagger} c_{k\sigma}$$

$$H_{mf} = \tilde{\epsilon}_d \sum f_{\sigma}^{\dagger} f_{\sigma} + \sum_{k,\sigma} \epsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + \sum_{k,\sigma} \tilde{V}_k c_{k\sigma}^{\dagger} f_{\sigma} + \tilde{V}_k^* f_{\sigma}^{\dagger} c_{k\sigma}$$

Non interacting model with renormalized parameters

Slave bosons U=infinity

The Free energy can be calculated and minimized using $\tilde{\epsilon}_d$ and r as variational parameters.

Some general remarks about the solution:

In the Kondo regime $\langle f_{\sigma}^{\dagger}f_{\sigma}\rangle \lesssim 1/2$

Taking averages on the constraint we get: $r^2 = 1 - \sum_{\sigma} \langle f_{\sigma}^{\dagger} f_{\sigma} \rangle \ll 1$ Resonance at the Fermi level $\langle \langle f_{\sigma}, f_{\sigma}^{\dagger} \rangle \rangle = \frac{1}{E - \tilde{\epsilon}_d + i\tilde{\Delta}}$ $\tilde{\epsilon}_d \lesssim E_F \ \tilde{\Delta} = \pi r^2 V^2 \rho_0$ $\langle \langle d_{\sigma}, d_{\sigma}^{\dagger} \rangle \rangle = r^2 \langle \langle f_{\sigma}, f_{\sigma}^{\dagger} \rangle \rangle$ Kondo peak of width $\tilde{\Delta}$ and height $\sim \frac{1}{\pi \Delta} \qquad k_B T_K \propto \tilde{\Delta}$

Slave bosons U=infinity

The effective Hamiltonian is quadratic in the fermion operators: It is a Fermi gas with renormalized parameters.

The Free energy can be calculated and minimized for the parameters: λ and r

The approach can be formulated in terms of a variational in terms of a Fermi gas: it can only be valid if the ground state is a Fermi liquid. In the Kondo problem it provides a description at low temperatures.

Slave bosons Kondo model

$$H_{K} = J(S^{+}f_{0\downarrow}^{\dagger}f_{0\uparrow} + S^{-}f_{0\uparrow}^{\dagger}f_{0\downarrow} + S_{z}(f_{0\uparrow}^{\dagger}f_{0\uparrow} - f_{0\downarrow}^{\dagger}f_{0\downarrow}))$$
$$H_{K} = J(d_{\uparrow}^{\dagger}d_{\downarrow}f_{0\downarrow}^{\dagger}f_{0\uparrow} + d_{\downarrow}^{\dagger}d_{\uparrow}f_{0\uparrow}^{\dagger}f_{0\downarrow} + \frac{1}{2}(d_{\uparrow}^{\dagger}d_{\uparrow} - d_{\downarrow}^{\dagger}d_{\downarrow})(f_{0\uparrow}^{\dagger}f_{0\uparrow} - f_{0\downarrow}^{\dagger}f_{0\downarrow}))$$

Mean field decoupling:

$$d^{\dagger}_{\uparrow}d_{\downarrow}f^{\dagger}_{0\downarrow}f_{0\uparrow} \to d^{\dagger}_{\uparrow}\langle d_{\downarrow}f^{\dagger}_{0\downarrow}\rangle f_{0\uparrow} + f^{\dagger}_{0\downarrow}\langle f_{0\uparrow}d^{\dagger}_{\uparrow}\rangle d_{\downarrow} - \langle f^{\dagger}_{0\downarrow}d_{\downarrow}\rangle \langle f_{0\uparrow}d^{\dagger}_{\uparrow}\rangle$$

The Kondo coupling to the band turns into a hopping term: $\tilde{H}_K = \tilde{J} \sum_{\sigma} (d^{\dagger}_{\sigma} f_{0\sigma} + h.c.)$ $\tilde{J} = J \langle d_{\downarrow} f^{\dagger}_{0\downarrow} \rangle = J \langle d_{\uparrow} f^{\dagger}_{0\uparrow} \rangle$

Slave bosons Kondo model

Using the equation of motion we can write the correlation function:

 $\langle\langle f_{0\sigma}, d^{\dagger}_{\sigma}\rangle\rangle = i\pi\rho_0 \tilde{J}G_{\sigma}(E)$

1

In terms of the d-level Green's function and we obtain an ecuation for $\langle f_0, d_\sigma^\dagger \rangle$

$$\langle f_{0\sigma}, d^{\dagger}_{\sigma} \rangle = -\frac{1}{\pi} \int_{-D}^{D} dE f(E) \pi \tilde{J} \rho_0 Re[G_{\sigma}(E)]$$

$$G_{\sigma}(E) = \frac{1}{E + i\tilde{\Delta}} \qquad \tilde{\Delta} = \pi \langle d_{\downarrow} f_{0\downarrow}^{\dagger} \rangle^2 J^2 \rho_0$$

Slave bosons

$$\langle f_{0\sigma}, d^{\dagger}_{\sigma} \rangle = -\frac{1}{\pi} \int_{-D}^{D} dE f(E) \pi \tilde{J} \rho_0 Re[G_{\sigma}(E)]$$

$$\frac{1}{\rho_0 J} = -\int_{-D}^{D} dE f(E) \frac{E}{E^2 + \tilde{\Delta}^2}$$

$$T = 0$$

$$\frac{1}{\rho_0 J} = -\int_{-D}^0 dE \frac{E}{E^2 + \tilde{\Delta}^2} = \ln\sqrt{1 + (D/\tilde{\Delta})^2}$$

Width of the T=0 the resonance $\tilde{\Delta} \sim De^{-1/\rho_0 J} = k_B T_K$

Slave bosons

 \overline{T}

Finite temperatures:

$$\frac{1}{\rho_0 J} = \int_0^D dE \tanh[\beta E/2] Re[G_\sigma(E)]$$
$$\frac{1}{\rho_0 J} \simeq \int_0^{2T} dE \frac{\beta E}{2} Re[G_\sigma(E)] + \int_{2T}^D dE Re[G_\sigma(E)]$$

This method gives a spurious transition at $T\sim T_K\,$ where the impurity decouples $\;\tilde{\Delta}(\sim T_K)=0\;$

At high temperatures the local spin is free.

 $\sim T_K$

 $\langle d_{\sigma} f_{0\sigma}^{\dagger} \rangle_{\blacktriangle}$

Conclusions Lecture 2

- Numerical Renormalization Group gives a complete solution of the Kondo problem and can be used to study other related model systems.
- At low temperatures, when the ground state is a Fermi liquid, a simple mean field approach can give a semi-quantitative description of the low energy physics.
- The slave boson description can also be extended to study more complex systems [Lechermann 2007]
- Next lecture:
 - Electronic Transport in nanostructures.
 - Molecular transistors: molecular vibrations an the Kondo effect